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Preface to the Second Edition

The objectives and organization of the second edition remain essentially

unchanged. The major difference from the first edition is the inclusion of

new material on topics such as dendrimers, polymer recycling, Hansen

solubility parameters, nanocomposites, creep in glassy polymers, and twin-

screw extrusion. New examples have been introduced throughout the book,

additional problems appear at the end of each chapter, and references to the

literature have been updated. Additional text and figures have also been added.

The first edition has been successfully used in universities around the

world, and we have received many encouraging comments. We hope the

second edition will also find favor with our colleagues, and be useful to future

generations of students of polymer science and engineering.

Anil Kumar

Rakesh K. Gupta
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Preface to the First Edition

Synthetic polymers have considerable commercial importance and are known

by several common names, such as plastics, macromolecules, and resins.

These materials have become such an integral part of our daily existence that

an introductory polymer course is now included in the curriculum of most

students of science and engineering. We have written this book as the main

text for an introductory course on polymers for advanced undergraduates and

graduate students. The intent is to provide a systematic coverage of the

essentials of polymers.

After an introduction to polymers as materials in the first two chapters,

the mechanisms of polymerization and their effect on the engineering design

of reactors are elucidated. The succeeding chapters consider polymer char-

acterization, polymer thermodynamics, and the behavior of polymers as

melts, solutions, and solids both above and below the glass transition

temperature. Also examined are crystallization, diffusion of and through

polymers, and polymer processing. Each chapter can, for the most part, be

vii
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read independently of the others, and this should allow an instructor to design

the course to his or her own liking. Note that the problems given at the end of

each chapter also serve to complement the main text. Some of these problems

cite references to the literature where alternative viewpoints are introduced. We

have been teaching polymer science for a long time, and we have changed the

course content from year to year by adopting and expanding on ideas of the

kind embodied in these problems.

Since polymer science is an extremely vast area, the decision to include

or exclude a given subject matter in the text has been a difficult one. In this

endeavor, although our own biases will show in places, we have been guided

by how indispensable a particular topic is to proper understanding. We have

attempted to keep the treatment simple without losing the essential features;

for depth of coverage, the reader is referred to the pertinent technical literature.

Keeping the student in mind, we have provided intermediate steps in most

derivations. For the instructor, lecturing becomes easy since all that is

contained in the book can be put on the board. The future will tell to what

extent we have succeeded in our chosen objectives.

We have benefited from the comments of several friends and colleagues

who read different parts of the book in draft form. Our special thanks go to

Ashok Khanna, Raj Chhabra, Deepak Doraiswamy, Hota V. S. GangaRao,

Dave Kofke, Mike Ryan, and Joe Shaeiwitz. Professor Khanna has used the

problem sets of the first seven chapters in his class for several years.

After finishing my Ph.D. from Carnegie-Mellon University, I (Anil

Kumar) joined the Department of Chemical Engineering at the Indian Institute

of Technology, Kanpur, India, in 1972. My experience at this place has been

rich and complete, and I decided to stay here for the rest of my life. I am

fortunate to have a good set of students from year to year with whom I have

been able to experiment in teaching various facets of polymer science and

modify portions of this book continuously.

Rakesh Gupta would like to thank Professor Santosh Gupta for introdu-

cing polymer science to him when he was an undergraduate student. This

interest in polymers was nurtured by Professor Art Metzner and Dr. K. F.

Wissbrun, who were his Ph.D. thesis advisors. Rakesh learned even more from

the many graduate students who chose to work with him, and their contribu-

tions to this book are obvious. Kurt Wissbrun reviewed the entire manuscript

and provided invaluable help and encouragement during the final phases of

writing. Progress on the book was also aided by the enthusiastic support of

Gene Cilento, the Department Chairman at West Virginia University. Rakesh

adds that these efforts would have come to nought without the determined help

of his wife, Gunjan, who guarded his spare time and allowed him to devote it

viii Preface to the First Edition
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entirely to this project. According to Rakesh, ‘‘She believed me when I told

her it would take two years; seven years later she still believes me!’’

I doubt that this book would ever have been completed without the

constant support of my wife, Renu. During this time there have been several

anxious moments, primarily because our children, Chetna and Pushkar, were

trying to choose their careers and settle down. In taking care of them, my role

was merely helping her, and she allowed me to divide my attention between

home and work. Thank you, Renu.

Anil Kumar

Rakesh Gupta
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1

Introduction

1.1 DEFINING POLYMERS

Polymers are materials of very high molecular weight that are found to have

multifarious applications in our modern society. They usually consist of several

structural units bound together by covalent bonds [1,2]. For example, polyethy-

lene is a long-chain polymer and is represented by

�CH2CH2CH2� or ½�CH2CH2��n ð1:1:1Þ
where the structural (or repeat) unit is �CH2�CH2� and n represents the chain

length of the polymer.

Polymers are obtained through the chemical reaction of small molecular

compounds called monomers. For example, polyethylene in Eq. (1.1.1) is formed

from the monomer ethylene. In order to form polymers, monomers either have

reactive functional groups or double (or triple) bonds whose reaction provides the

necessary linkages between repeat units. Polymeric materials usually have high

strength, possess a glass transition temperature, exhibit rubber elasticity, and have

high viscosity as melts and solutions.

In fact, exploitation of many of these unique properties has made polymers

extremely useful to mankind. They are used extensively in food packaging,

clothing, home furnishing, transportation, medical devices, information technol-

ogy, and so forth. Natural fibers such as silk, wool, and cotton are polymers and

1
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TABLE 1.1 Some Common Polymers

Commodity thermoplastics

Polyethylene

Polystyrene

Polypropylene

Polyvinyl chloride

Polymers in electronic applications

Polyacetylene

Poly(p-phenylene vinylene)

Polythiophene

Polyphenylene sulfide

Polyanilines

Biomedical applications

Polycarbonate (diphenyl carbonate)

Polymethyl methacrylate

Silicone polymers

2 Chapter 1
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have been used for thousands of years. Within this century, they have been

supplemented and, in some instances, replaced by synthetic fibers such as rayon,

nylon, and acrylics. Indeed, rayon itself is a modification of a naturally occurring

polymer, cellulose, which in other modified forms have served for years as

commercial plastics and films. Synthetic polymers (some common ones are listed

in Table 1.1) such as polyolefins, polyesters, acrylics, nylons, and epoxy resins

find extensive applications as plastics, films, adhesives, and protective coatings. It

may be added that biological materials such as proteins, deoxyribonucleic acid

(DNA), and mucopolysaccharides are also polymers. Polymers are worth study-

ing because their behavior as materials is different from that of metals and other

low-molecular-weight materials. As a result, a large percentage of chemists and

engineers are engaged in work involving polymers, which necessitates a formal

course in polymer science.

Biomaterials [3] are defined as materials used within human bodies either

as artificial organs, bone cements, dental cements, ligaments, pacemakers, or

contact lenses. The human body consists of biological tissues (e.g., blood, cell,

proteins, etc.) and they have the ability to reject materials which are ‘‘incompa-

tible’’ either with the blood or with the tissues. For such applications, polymeric

materials, which are derived from animals or plants, are natural candidates and

some of these are cellulosics, chitin (or chitosan), dextran, agarose, and collagen.

Among synthetic materials, polysiloxane, polyurethane, polymethyl methacry-

Specialty polymers

Polyvinylidene chloride

Polyindene

Polyvinyl pyrrolidone

Coumarone polymer

Introduction 3
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late, polyacrylamide, polyester, and polyethylene oxides are commonly employed

because they are inert within the body. Sometimes, due to the requirements of

mechanical strength, selective permeation, adhesion, and=or degradation, even

noncompatible polymeric materials have been put to use, but before they are

utilized, they are surface modified by biological molecules (such as, heparin,

biological receptors, enzymes, and so forth). Some of these concepts will be

developed in this and subsequent chapters.

This chapter will mainly focus on the classification of polymers; subse-

quent chapters deal with engineering problems of manufacturing, characteriza-

tion, and the behavior of polymer solutions, melts, and solids.

1.2 CLASSIFICATION OF POLYMERS AND SOME
FUNDAMENTAL CONCEPTS

One of the oldest ways of classifying polymers is based on their response to heat.

In this system, there are two types of polymers: thermoplastics and thermosets. In

the former, polymers ‘‘melt’’ on heating and solidify on cooling. The heating and

cooling cycles can be applied several times without affecting the properties.

Thermoset polymers, on the other hand, melt only the first time they are heated.

During the initial heating, the polymer is ‘‘cured’’; thereafter, it does not melt on

reheating, but degrades.

A more important classification of polymers is based on molecular

structure. According to this system, the polymer could be one of the following:

1. Linear-chain polymer

2. Branched-chain polymer

3. Network or gel polymer

It has already been observed that, in order to form polymers, monomers must

have reactive functional groups, or double or triple bonds. The functionality of a

given monomer is defined to be the number of these functional groups; double

bonds are regarded as equivalent to a functionality of 2, whereas a triple bond has

a functionality of 4. In order to form a polymer, the monomer must be at least

bifunctional; when it is bifunctional, the polymer chains are always linear. It is

pointed out that all thermoplastic polymers are essentially linear molecules,

which can be understood as follows.

In linear chains, the repeat units are held by strong covalent bonds, while

different molecules are held together by weaker secondary forces. When thermal

energy is supplied to the polymer, it increases the random motion of the

molecules, which tries to overcome the secondary forces. When all forces are

overcome, the molecules become free to move around and the polymer melts,

which explains the thermoplastic nature of polymers.

4 Chapter 1
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Branched polymers contain molecules having a linear backbone with

branches emanating randomly from it. In order to form this class of material,

the monomer must have a capability of growing in more than two directions,

which implies that the starting monomer must have a functionality greater than 2.

For example, consider the polymerization of phthalic anhydride with glycerol,

where the latter is tri-functional:

C
O

C

O

O

CH

OH

CH2 OH  +

CH CH2 O

OH

C

O

C

O

OCH2

C

O

C

O

O

CH CH2

(1.2.1)

CH2OH

CH2OH

The branched chains shown are formed only for low conversions of monomers.

This implies that the polymer formed in Eq. (1.2.1) is definitely of low molecular

weight. In order to form branched polymers of high molecular weight, we must

use special techniques, which will be discussed later. If allowed to react up to

large conversions in Eq. (1.2.1), the polymer becomes a three-dimensional

network called a gel, as follows:

OC

O

C

O

CH2CHCH2O

O

O

C O

C

O

O

OC

O

C

O

CH2CHCH2O O

CH2CH CH2 O C

O

C

O

CH2CH CH2 O C

O

C

O

(1.2.2)

O

C O

C

O

O
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In fact, whenever a multifunctional monomer is polymerized, the polymer evolves

through a collection of linear chains to a collection of branched chains, which

ultimately forms a network (or a gel) polymer. Evidently, the gel polymer does

not dissolve in any solvent, but it swells by incorporating molecules of the solvent

into its own matrix.

Generally, any chemical process can be subdivided into three stages [viz.

chemical reaction, separation (or purification) and identification]. Among the

three stages, the most difficult in terms of time and resources is separation. We

will discuss in Section 1.7 that polymer gels have gained considerable importance

in heterogeneous catalysis because it does not dissolve in any medium and the

separation step reduces to the simple removal of various reacting fluids. In recent

times, a new phase called the fluorous phase, has been discovered which is

immiscible to both organic and aqueous phases [4,5]. However, due to the high

costs of their synthesis, they are, at present, only a laboratory curiosity. This

approach is conceptually similar to solid-phase separation, except that fluorous

materials are in liquid state.

In dendrimer separation, the substrates are chemically attached to the

branches of the hyper branched polymer (called dendrimers). In these polymers,

(A)  CH2 CHCO2Me

(B)  NH2CH2CH2NH2 (Excess)

Repeat steps (A) and (B)

NH2

N
N

N

NH2

N
H2N NH2

NH2H2N

(Generation = 1.0) (etc)

(Generation = 0)

N

N
N

N

N

N
N N

NN

H2N
H2N NH2

NH2

NH2

NH2

NH2
NH2H2N

H2N

H2N

H2N

Terminal
groups

Initiator
core

‘Dendrimers’

Generations

Dendrimer
repeating units

0 1 2

(1.2.3a)

NNHC CNH

CNH

O O

O

NH2H2N

NH2

H2N
N

NH2

NH2

NH3
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the extent of branching is controlled to make them barely soluble in the reaction

medium. Dendrimers [6] possess a globular structure characterized by a central

core, branching units, and terminal units. They are prepared by repetitive reaction

steps from a central initiator core, with each subsequent growth creating a new

generation of polymers. Synthesis of polyamidoamine (PAMAM) dendrimers are

done by reacting acrylamide with core ammonia in the presence of excess

ethylene diamine.

Dendrimers have a hollow interior and densely packed surfaces. They have

a high degree of molecular uniformity and shape. These have been used as

membrane materials and as filters for calibrating analytical instruments, and

newer paints based on it give better bonding capacity and wear resistance. Its

sticking nature has given rise to newer adhesives and they have been used as

catalysts for rate enhancement. Environmental pollution control is the other field

in which dendrimers have found utility. A new class of chemical sensors based on

these molecules have been developed for detection of a variety of volatile organic

pollutants.

In all cases, when the polymer is examined at the molecular level, it is

found to consist of covalently bonded chains made up of one or more repeat units.

The name given to any polymer species usually depends on the chemical structure

of the repeating groups and does not reflect the details of structure (i.e., linear

molecule, gel, etc.). For example, polystyrene is formed from chains of the repeat

unit:

CHCH2

(1.2.3b)

Such a polymer derives it name from the monomer from which it is usually

manufactured. An idealized sample of polymer would consist of chains all having

identical molecular weight. Such systems are called monodisperse polymers. In

practice, however, all polymers are made up of molecules with molecular weights

that vary over a range of values (i.e., have a distribution of molecular weights)

and are said to be polydisperse. Whether monodisperse or polydisperse, the

chemical formula of the polymer remains the same. For example, if the polymer

is polystyrene, it would continue to be represented by

CH2 CH nCHCH2X CH2 CH Y

(1.2.4)

For a monodisperse sample, n has a single value for all molecules in the system,

whereas for a polydisperse sample, n would be characterized by distribution of
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values. The end chemical groups X and Y could be the same or different, and

what they are depends on the chemical reactions initiating the polymer formation.

Up to this point, it has been assumed that all of the repeat units that make

up the body of the polymer (linear, branched, or completely cross-linked network

molecules) are all the same. However, if two or more different repeat units make

up this chainlike structure, it is known as a copolymer. If the various repeat units

occur randomly along the chainlike structure, the polymer is called a random

copolymer. When repeat units of each kind appear in blocks, it is called a block

copolymer. For example, if linear chains are synthesized from repeat units A and

B, a polymer in which A and B are arranged as

is called an AB block copolymer, and one of the type

is called an ABA block copolymer. This type of notation is used regardless of the

molecular-weight distribution of the A and B blocks [7].

The synthesis of block copolymers can be easily carried out if functional

groups such as acid chloride ( COCl), amines ( NH2), or alcohols ( OH) are

present at chain ends. This way, a polymer of one kind (say, polystyrene or

polybutadiene) with dicarboxylic acid chloride (ClCO COCl) terminal groups

can react with a hydroxy-terminated polymer (OH OH) of the other kind (say,

polybutadiene or polystyrene), resulting in an AB type block copolymer, as

follows:

ClC CCl  + OH OH

O O

C C

O O

O O
n

HCl (1.2.7)

In Chapter 2, we will discuss in more detail the different techniques of producing

functional groups. Another common way of preparing block copolymers is to

utilize organolithium initiators. As an example, sec-butyl chloride with lithium

gives rise to the butyl lithium complex,

CH3 CH

CH3

CH2Cl  +  Li CH3CH

CH3

CH2Li+ ... Cl– (1.2.8)
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which reacts quickly with a suitable monomer (say, styrene) to give the following

polystyryl anion:

... Cl–  + n1CH2CH3 CH

CH3

CH2Li+ CH2

... Cl–Li+CHCH2 1CHCH2

CH3

(1.2.9)

CH3 n

This is relatively stable and maintains its activity throughout the polymerization.

Because of this activity, the polystyryl anion is sometimes called a living anion; it

will polymerize with another monomer (say, butadiene) after all of the styrene is

exhausted:

CH3CH

CH3

CH2 CH

... Cl–Li+CHCH

CH3

CH3

(1.2.10)

Cl–  + n2CH2Li+CH2

... CH CH CH2

CH2 CH2 CH2HC CH CH

1n

1n 2n

In this way, we can conveniently form an AB-type copolymer. In fact, this

technique of polymerizing with a living anion lays the foundation for modifying

molecular structure.

Graft copolymers are formed when chains of one kind are attached to the

backbone of a different polymer. A graft copolymer has the following general

structure:

(1.2.11)

A A A A A A A

B B

B B

BB

......

... ...
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Here �(A)n constitutes the backbone molecule, whereas polymer (B)n is

randomly distributed on it. Graft copolymers are normally named poly(A)-g-

poly(B), and the properties of the resultant material are normally extremely

different from those of the constituent polymers. Graft copolymers can be

generally synthesized by one of the following schemes [1]:

The ‘‘grafting-from’’ technique. In this scheme, a polymer carrying active

sites is used to initiate the polymerization of a second monomer. Depending on

the nature of the initiator, the sites created on the backbone can be free-radical,

anion, or Ziegler–Natta type. The method of grafting-from relies heavily on the

fact that the backbone is made first and the grafts are created on it in a second

polymerization step, as follows:

CH  ∗  + nCH2

R

CH2CHCH2CH

RR

(1.2.12)

This process is efficient, but it has the disadvantage that it is usually not

possible to predict the molecular structure of the graft copolymer and the number

of grafts formed. In addition, the length of the graft may vary, and the graft

copolymer often carries a fair amount of homopolymer.

The ‘‘graft-onto’’ scheme. In this scheme, the polymer backbone carried a

randomly distributed reactive functional group X. This reacts with another

polymer molecule carrying functional groups Y, located selectively at the chain

ends, as follows:

CH2CHCH2

R

X  +  Y CH2CH

R

CH2 CH

R

(1.2.13)

In this case, grafting does not involve a chain reaction and is best carried out in

a common solvent homogeneously. An advantage of this technique is that it

allows structural characterization of the graft copolymer formed because the

backbone and the pendant graft are both synthesized separately. If the molecular

weight of each of these chains and their overall compositions are known, it is

possible to determine the number of grafts per chain and the average distance

between two successive grafts on the backbone.

The ‘‘grafting-through’’ scheme. In this scheme, polymerization with a

macromer is involved. A macromer is a low-molecular-weight polymer chain

with unsaturation on at least one end. The formation of macromers has recently

been reviewed and the techniques for the maximization of macromer amount

10 Chapter 1

Copyright © 2003 Marcel Dekker, Inc.



discussed therein [4]. A growing polymer chain can react with such an

unsaturated site, resulting in the graft copolymer in the following way:

This type of grafting can introduce linkages between individual molecules if

the growing sites happen to react with an unsaturated site belonging to two or

more different backbones. As a result, cross-linked structures are also likely to be

formed, and measures must be taken to avoid gel formation.

There are several industrial applications (e.g., paints) that require us

to prepare colloidal dispersions of a polymer [5]. These dispersions are in a

particle size range from 0.01 to 10 mm; otherwise, they are not stable and, over a

period of time, they sediment. If the polymer to be dispersed is already available

in bulk, one of the means of dispersion is to grind it in a suitable organic fluid. In

practice, however, the mechanical energy required to reduce the particle size

below 10 mm is very large, and the heat evolved during grinding may, at times,

melt the polymer on its surface. The molten surface of these particles may cause

agglomeration, and the particles in colloidal suspensions may grow and subse-

quently precipitate this way, leading to colloidal instability. As a variation of this,

it is also possible to suspend the monomer in the organic medium and carry out

the polymerization. We will discuss these methods in considerable detail in

Chapter 7 (‘‘emulsion and dispersion’’ polymerization), and we will show that the

problem of agglomeration of particles exists even in these techniques.

Polymer colloids are basically of two types: lyophobic and lyophilic. In

lyophilic colloids, polymer particles interact with the continuous fluid and with

other particles in such a way that the forces of interaction between two particles

lead to their aggregation and, ultimately, their settling. Such emulsions are

unstable in nature. Now, suppose there exists a thermodynamic or steric barrier

between two polymer particles, in which case they would not be able to come

close to each other and would not be able to agglomerate. Such colloids are

lyophobic in nature and can be stable for long periods of time. In the technology

of polymer colloids, we use special materials that produce these barriers to give

the stabilization of the colloid; these materials are called stabilizers. If we wanted

to prepare colloids in water instead of an organic solvent, then we could use soap

(commonly used for over a century) as a stabilizer. The activity of soap is due to

its lyophobic and lyophilic ends, which give rise to the necessary barrier for the

formation of stable colloids.
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In several recent applications, it has been desired to prepare colloids in

media other than water. There is a constant need to synthesize new stabilizers for

a specific polymer and organic liquid system. Recent works have shown that the

block and graft copolymers [in Eqs. (1.2.5) and (1.2.11)] give rise to the needed

stability. It is assumed that the A block is compatible with the polymer to be

suspended and does not dissolve in the organic medium, whereas the B block

dissolves in the organic medium and repulses polymer particles as in Figure 1.1.

Because of the compatibility, the section of the chain consisting of A-repeat units

gets adsorbed on the polymer particle, whereas the section of the chain having

B-repeat units projects outward, thus resisting coalescence.

Example 1.1: Micellar or ampliphilic polymers (having hydrophobic as well as

hydrophilic fragments in water) have the property of self-organization. What are

these and how are they synthesized?

Solution: Micellar polymers have properties similar to surfactant molecules, and

because of their attractive properties, they are used as protective colloids,

emulsifiers, wetting agents, lubricants, viscosity modifiers, antifoaming agents,

pharmaceutical and cosmetic formulating ingredients, catalysts, and so forth [8].

FIGURE 1.1 Stabilizing effect of graft and block copolymers.
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Micellar polymers can have six types of molecular architecture, and in the

following, hydrophobic and hydrophilic portions are shown by a chain and a

circle, respectively, exactly as it is done for ordinary surfactant (i.e., tail and head

portions).

(a) Block copolymer

OH (CH2CH2O) (CH CH2

CH3

O)nm

(b) Star copolymer

COOP

COOPPOOC

where

(c) Graft polymer

CH2CH CH CH2 CHn CH CHCH2

NH CH2CH2

m

x
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(d) Dendrimer

(e) Segmented block copolymer

N+(CH2)16

Br–

CH3H3C

n

(f) Polysoap

CH2 CH

CH2

(CH2)17

COO– Na+

n

Example 1.2: Describe polymers as dental restorative materials and their

requirements.
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Solution: The dental restorative polymers must be nontoxic and exhibit long-

term stability in the presence of water, enzymes, and various oral fluids. In

addition, it should withstand thermal and load cycles and the materials should be

easy to work with at the time of application. The first polyacrylolyte material used

for dental restoration was zinc polycarboxylate. To form this, one uses zinc oxide

powder which is mixed with a solution of polyacrylic acid. The zinc ions cross-

link the polyacid chains and the cross-linked chains form the cement.

Another composition used for dental restoration is glass ionomer cement

(GIC). The glass used is fluoroaluminosilicate glass, which has a typical

composition of 25–25mol% SiO2, 14–20wt% Al2O3, 13–35wt% CaF2, 4–

6wt% AlF3, 10–25% AlPO4, and 5–20% Na3AlF6. In the reaction with poly-

acrylic acid, the latter degrades the glass, causing the release of calcium and

aluminum ions which cross-link the polyacid chains. The cement sets around the

unreacted glass particles to form a reaction-bonded composite. The fluorine

present in the glass disrupts the glass network for better acid degradation.

Completely polymeric material used for dental restoration is a polymer of

methyl methacrylate (MMA), bisphenol-A, glycidyl methacrylate (bis GMA),

and triethylene glycol dimethacrylate (TEGDMA). The network thus formed has

both hydrophilic as well as hydrophobic groups and can react with teeth as well,

giving a good adhesion. In order to further improve the adhesion by interpene-

tration and entanglements into dental surfaces, sometimes additives like 4-META

(4-methoxyethyl trimellitic anhydride), phenyl-P (2-methacryloxy ethyl phenyl

hydrogen phosphate), or phenyl-P derivatives are added.

Example 1.3: Anticancer compounds used in chemotherapy are low-molecular-

weight compounds, and on its ingestion, it is not site-specific to the cancerous

tissues leading to considerable toxicity. How can polymer help reduce toxicity?

How does this happen? Give a few examples.

Solution: Macromolecules are used as carriers, on whose backbone both the

anticancerous compounds as well as the targeting moieties are chemically bound.

As a result of this, the drug tends to concentrate near the cancerous tissues. The

targeting moieties are invariably complementary to cell surface receptors or

antigens, and as a result of this, the carrier macromolecule can recognize (or

biorecognize) cancerous tissues. The polymer-mediated drug now has a consider-

ably altered rate of uptake by body cells as well as distribution of the drug within

the body.

Some of the synthetic polymers used as drug carriers are HPMA (poly 2-

hydroxy propyl methacrylamide), PGA (poly L-glutamic acid), poly(L-lysine),

and Block (polyethylene glycol coaspartic acid). Using HPMA, the following

drugs have been synthesized [9]:
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Drug Targeting moiety

Abriamycin Galactosamine

Duanomycin Anti-Iak antibodies

Chlorin e6 anti-Thy 1.2 antibody

By putting the targeting moiety to the polymer, one has created an ability in

the polymer to differentiate between different biological cells and recognize

tumour cells [10]. This property is sometimes called molecular recognition and

this technique can also be used for separating nondesirable components from

foods or fluids (particularly biological ones).

The general technique of creating molecular recognition (having antibody-

like activity) is called molecular imprinting. Templates are defined as biological

macromolecules, micro-organisms, or whole crystals. When functional mono-

mers are brought in contact with the templates, they adhere to it largely because

of noncovalent bonding. These could now be cross-linked using a suitable cross-

linking agent. If the templates are destroyed, the resulting cross-link polymer

could have a mirror-image cavity of the template, functioning exactly like an

antibody.

1.3 CHEMICAL CLASSIFICATION OF POLYMERS
BASED ON POLYMERIZATION MECHANISMS

In older literature, it was suggested that all polymers could be assigned to one of

the two following classes, depending on the reaction mechanism by which they

are synthesized.

1.3.1 Addition Polymers

These polymers are formed by sequential addition of one bifunctional or

polyfunctional monomer to growing polymer chains (say, Pn) without the

elimination of any part of the monomer molecule. With the subscript n

representing the chain length, the polymerization can be schematically repre-

sented as follows:

Pn  +  M Pn + 1 (1.3.1)

M represents a monomer molecule; this chain growth step is usually very fast.
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The classic example of addition polymerization is the preparation of vinyl

polymers. Vinyl monomers are unsaturated organic compounds having the

following structure:

CH2 CH

R

(1.3.2)

where R is any of a wide variety of organic groups: a phenyl, a methyl, a halide

group, and so forth. For example, the polymerization of vinyl chloride to give

poly(vinyl chloride) can be written in the simplified form

CHnCH2

Cl

CHCH2

Cl
n (1.3.3)

Ring-opening reactions, such as the polymerization of ethylene oxide to give

poly(ethylene oxide), offer another example of the formation of addition

polymers:

CH2nCH2

O

CH2 CH2 O n (1.3.4)

The correct method of naming an addition polymer is to write poly( ), where the

name of the monomer goes into the parentheses. If �R in compound (1.3.2) is an

aliphatic hydrocarbon, the monomer is an olefin as well as a vinyl compound;

these polymers are classified as polyolefins. In the case of ethylene and propylene,

the parentheses in the names are dispensed with and the polymers are called

polyethylene and polypropylene.

1.3.2 Condensation Polymers

These polymers are formed from bifunctional or polyfunctional monomers with

the elimination of a small molecular species. This reaction can occur between any

two growing polymer molecules and can be represented by

Pm  +  Pn Pm + n  +  W (1.3.5)

where Pm and Pn are polymer chains and W is the condensation product.
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Polyesterification is a good example of condensation polymerization. In the

synthesis of poly(ethylene terephthalate), ethylene glycol reacts with terephthalic

acid according to the following scheme:

COOHOH  +  COOHCH2CH2OH

OC C OCH2CH2

OO

O n +  H2O

(1.3.6)

As indicated by the double arrow, polyesterification is a reversible reaction.

Polyamides (sometimes called nylons) are an important class of condensation

polymers that are formed by reaction between amine and acid groups, as in

NH2 (CH2)6 NH2  +  COOH (CH2)4 COOH
Hexamethylene

diamine
Adipic

acid

NH (CH2)6 NHCO (CH2)6 +  H2O
Nylon 66

(1.3.7a)

NH2 (CH2)5 COOH  +  H2O
ω-Aminocaproic acid

(CH2)5

Nylon 6
CONH n (1.3.7b)

Both of these polymers are classified as polyamides because the repeat units

contain the �[CO�NH]� amide group.

Naming of condensation polymers is done as follows. The polymer

obtained from reaction (1.3.6) is called poly(ethylene terephthalate) because the

repeat unit is the ester of ethylene glycol and terephthalic acid. Similarly, the

polymer in Eq. (1.3.7b) is called poly(o-aminocaproic acid). The product in Eq.

(1.3.7a) is called poly(hexamethylene adipamide), in which the hexamethylene

part of the name is associated with the diamine reactant, and the adipamide part is

associated with the amide unit in the backbone.

As researchers learned more about polymerization chemistry, it became

apparent that the notion of classifying polymers this way was somehow incon-

sistent. Certain polymer molecules could be prepared by more than one

mechanism. For example, polyethylene can be synthesized by either of the two

mechanisms:

CH2 CH2 CH2 CH2 (1.3.8a)n

Br  + 2mH2 CH2 CH2 (1.3.8b)5mCH2 10
mBr
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The latter is neither addition nor condensation polymerization. Likewise, the

following reaction, which is a typical addition polymerization, gives the same

polyamide as reaction (1.3.7b):

(CH2)4CH2 CO

NH
ε-Caprolactam

(CH2)5 CONH n

Nylon 6

(1.3.9)

Similarly, the polymerization of polyurethane does not involve the evolution of

a condensation product, even though its kinetics can be described by that of

condensation polymerization. Clearly, it is not correct to classify polymers

according to the scheme discussed earlier. It is now established that there are

two classes of polymerization mechanisms:

1. Chain-growth polymerization: an alternative, but more chemically

consistent name for addition polymerization.

2. Step-growth polymerization: mechanisms that have kinetics of this type

exhibited by condensation polymerization but include reactions such as

that in (1.3.9), in which no small molecular species are eliminated.

This terminology for discussing polymerization will be used in this textbook.

In chain-growth polymerization, it is found that individual molecules start

growing, grow rapidly, and then suddenly stop. At any time, therefore, the

reaction mass consists of mainly monomer molecules, nongrowing polymer

molecules, and only a small number of rapidly growing polymer molecules. In

step-growth polymerization, on the other hand, the monomer molecules react with

each other at the beginning to form low-molecular-weight polymer, and the

monomer is exhausted very quickly. They initially form low-molecular-weight

polymer molecules then continue to react with each other to form continually

growing chains. The polymers formed from these distinct mechanisms have

entirely different properties due to differences in molecular-weight distribution,

which is discussed in the following section.

1.4 MOLECULAR-WEIGHT DISTRIBUTIONS

All commercial polymers have a molecular-weight distribution (MWD). In

Chapters 3–7, we will show that this is completely governed by the mechanism

of polymerization and reactor design. In Chapter 8, we give some important

experimental techniques to determine the molecular-weight distribution and its

averages, and in view of the importance of this topic, we give some of the basic

concepts here. The chain length n represents the number of repeat units in a given

polymer molecule, including units at chain ends and at branch points (even

though these units have a somewhat different chemical structure than the rest of
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the repeat units). For chain molecules with molecular weights high enough to be

classified as true polymer molecules, there are at least one order of magnitude

more repeat units than units at chain ends and branch points. It is therefore

possible to write (with negligible error)

Mn ¼ nM0 ð1:4:1Þ
where Mn is the molecular weight of a polymer molecule and M0 is that of a

single repeat unit.

In reality, the average chain length of all polymer molecules in the reaction

mass must be equal to some whole number. The product of a given polymeriza-

tion reaction can be thought of as having a distribution of the degrees of

polymerization (DPs), which is given by a histogram, as shown in Figure 1.2.

In this representation, Wn* is the weight of a species of degree of polymerization n

such that

Wt ¼ Total weight of polymer

¼ P1
n¼1

Wn*
ð1:4:2Þ

By definition, the weight-average molecular weight, Mw, is given by

Mw ¼
P1
n¼1

Wn*Mn

Wt

ð1:4:3Þ

where Mn is the molecular weight of a species of chain length equal to n. For

sufficiently high molecular weight, Mn is, for all practical purposes, identical to

Mn of Eq. (1.4.1). For lower-molecular-weight species, the molecular weights of

end units and branch points would have to be considered in determining Mn.

Because polymers of high molecular weight are usually of interest, this complex-

ity is normally ignored in the analysis.

Although Eqs. (1.4.1)–(1.4.3) serve as the starting point for this discussion,

it is more useful to define a weight distribution of degrees of polymerization Wn

by the equation

Wn ¼
Wn*

W t*
ð1:4:4Þ

Alternatively, Wn can be interpreted as the fraction of the mass of the polymer,

with the degreee of polimerization (DP) equal to n or a molecular weight of nM0.

The weight-average chain length, mw, is now defined by

mw ¼
Mw

M0

¼ Pt
n¼1

nWn ð1:4:5Þ
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It is thus seen that mw is just the first moment of the weight distribution of the

degree of polymerization.

There is an alternative but equivalent method of describing distributions of

molecular weight. If Nn* is the total number of moles of a polymer of chain length

equal to n in a given sample, one can write

Nt
n ¼

Wn*

Mn

ð1:4:6Þ

The total number of moles of polymer, Nt, can then be written as

Nt ¼
P1
n¼1

Nn* ð1:4:7Þ

By definition, the number-average molecular weight, mn, is given by

mn ¼
P1
n¼1

MnNn*

Nt

ð1:4:8Þ

It is convenient, however, to define a number distribution of the degree of

polymerization (DP) Nn as

Nn ¼
Nn*

Nt

ð1:4:9Þ

FIGURE 1.2 A typical histogram of the degree of polymerization.

Introduction 21

Copyright © 2003 Marcel Dekker, Inc.



such thatP1
n¼1

Nn ¼ 1 ð1:4:10Þ

Because Nn is also the fraction of the molecules of polymer of DP equal to n or

molecular weight of nM0, Eq. (1.4.8) then becomes

Mn ¼
P1
n¼1

MnNn ð1:4:11Þ

which gives the number-average chain length, mn, as

mn ¼
Mn

M0

¼ P1
n¼1

nNn ð1:4:12Þ

and, as before, we see that mn is just the first moment of the distribution function

Nn.

The higher moments of the mole fraction distribution Nn can be defined as

lk ¼
P1
n¼1

nkNn k ¼ 0; 1; 2; . . . ð1:4:13Þ

where lk represents the kth moment. The zeroth moment (l0) is, according to Eq.

(1.4.10), unity. The first moment (l1) is the same as mn in Eq. (1.4.12). The

second moment (l2) is related to mw by

mw ¼
l2
l1

ð1:4:14Þ

The polydispersity index Q of the polymer is defined as the ratio of mw and mn by
the following relation:

Q ¼ mw
mn
¼ l2l0

l21
ð1:4:15Þ

The polydispersity index is a measure of the breadth of mole fraction (or

molecular weight) distribution. For a monodisperse polymer, Q is unity;

commercial polymers may have a value of Q lying anywhere between 2

and 20.

1.5 CONFIGURATIONS AND CRYSTALLINITY OF
POLYMERIC MATERIALS

So far, we have examined the broader aspects of molecular architecture in chain-

like molecules, along with the relationship between the polymerization mechan-
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ism and the repeat units making up the chain. We have introduced the concept of

distribution of molecular weights and molecular-weight averages.

As expected, the architectural features (branching, extent of cross-linking,

nature of the copolymer) and the distribution of molecular weight play an

important role in determining the physical properties of polymers. In addition,

the geometric details of how each repeat unit adds to the growing chain is an

important factor in determining the properties of a polymer. These geometric

features associated with the placement of successive repeat units into the chain

are called the configurational features of the molecules, or, simply, chain

configuration. Let us consider the chain polymerization of vinyl monomers as

an example. In principle, this reaction can be regarded as the successive addition

of repeat units of the type

CH2 CH

R

(1.5.1)

where the double bond in the vinyl compound has been opened during reaction

with the previously added repeat unit. There are clearly three ways that two

contiguous repeat units can be coupled.

The head of the vinyl molecule is defined as the end bearing the organic group R.

All three linkages might appear in a single molecule, and, indeed, the distribution

of occurrence of the three types of linkage would be one way of characterizing the

molecular structure. In the polymerization of vinyl monomers, head-to-tail

placement is favored, and this structural feature normally dominates.

A more subtle structural feature of polymer chains, called stereoregularity,

plays an important factor in determining polymer properties and is explained as

follows. In a polymer molecule, there is usually a backbone of carbon atoms

linked by covalent bonds. A certain amount of rotation is possible around any of

these backbone covalent bonds and, as a result, a polymer molecule can take

several shapes. Figure 1.3a shows three possible arrangements of the substituents
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of any one carbon atom with respect to those of an adjacent one when viewed

end-on, such that the two consecutive carbon atoms Cn and Cn�1 appear one

behind the other. The potential energy associated with the rotation of the

Cn�Cn�1 bond is shown in Figure 1.3b and is found to have three angular

positions of minimum energy. These three positions are known as the gauche-

FIGURE 1.3 Different conformations in polymer chains and potential energies asso-

ciated with them.
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positive (gþ), trans (t), and gauche-negative (g�) conformations of the bond; the

trans state is the most probable one by virtue of having the lowest potential

energy.

Substituted polymers, such as polypropylene, constitute a very special

situation. Because the polymer is substituted, the conformation of each of the

backbone bonds is distinguishable. Each of the C�C backbone bonds can take up

any one of the three (gþ, t, and g�) positions. Because the polymer is a sequence

of individual C�C bonds, the entire molecule can be described in terms of

individual bond conformations. Among the various conformations that are

possible for the entire chain, there is one in which all the backbone atoms are

in the trans (t) state. From Figure 1.3c, it can be observed that if bonds Cn�Cn

and Cnþ1�Cnþ2 are in the trans conformation, carbon atoms Cn�1, Cn, Cnþ1, and
Cnþ2 all lie in the same plane. By extending this argument, it can be concluded

that the entire backbone of the polymer molecule would lie in the same plane,

provided all bonds are in the trans conformation. The molecule is then in a planar

zigzag form, as shown in Figure 1.4. If all of the R groups now lie on the same

side of the zigzag plane, the molecule is said to be isotactic. If the R groups

alternate around the plane, the molecule is said to be syndiotactic. If there is no

regularity in the placement of the R groups on either side of the plane, the

molecule is said to be atactic, or completely lacking in order. A given vinyl

polymer is never 100% tactic. Nonetheless, polymers can be synthesized with

high levels of stereoregularity, which implies that the molecules have a long

block of repeat units with completely tactic placement (isotactic, syndiotactic,

etc.), separated by short blocks of repeat units with atactic placement. Indeed,

one method of characterizing a polymer is by its extent of stereoregularity, or

tacticity.

FIGURE 1.4 Spatial arrangement of [C2CHR]n when it is in a planar zigzag conforma-

tion: actactic when R is randomly distributed, isotactic when R is either above or below the

plane, and syndiotactic when R alternates around the plane.
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Further, when a diene is polymerized, it can react in the two following ways

by the use of the appropriate catalyst:

The 1,2 polymerization leads to the formation of substituted polymers and gives

rise to stereoregularity, as discussed earlier (Fig. 1.5). The 1,4 polymerization,

however, yields double bonds on the polymer backbone. Because rotation around

a double bond is not possible, polymerization gives rise to an inflexible chain

backbone and the gþ, t, and g� conformations around such a bond cannot occur.

Therefore, if a substituted diene [e.g., isoprene (CH2¼CH�C(CH3)¼CH2)] is

polymerized, the stereoregularity in molecules arises in the following way. It is

known that the double-bond formation occurs through sp hybridization of

molecular orbitals, which implies that in Figure 1.4, carbon atoms Cn�1, Cn,

Cnþ1, and Cnþ2, as well as H and R groups, all lie on the same plane. Two

configurations are possible, depending on whether H and CH3 lie on the same

side or on opposite sides of the double bond. If they lie on the same side, the

polymer has cis configuration; if they lie on opposite sides, the polymer has trans

configuration. Once again, it is not necessary that all double bonds have the same

configuration; if a variety of configurations can be found in a polymer molecule,

it is said to have mixed configuration.

The necessary condition for chainlike molecules to fit into a crystal lattice

is that they demonstrate an exactly repeating molecular structure along the chain.

For vinyl polymers, this prerequisite is met only if they have predominantly head-

to-tail placement and are highly tactic. When these conditions are satisfied,

polymers can, indeed, form highly crystalline domains in the solid state and in

concentrated solution. There is even evidence of the formation of microcrystalline

FIGURE 1.5 Spatial arrangement of diene polymers.
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regions in moderately dilute solutions of a highly tactic polymer. Formation of

highly crystalline domains in a solid polymer has a profound effect on the

polymer’s mechanical properties. As a consequence, new synthesis routes are

constantly being explored to form polymers of desired crystallinity.

A qualitative notion of the nature of crystallinity in polymers can be

acquired by considering the crystallization process itself. It is assumed that a

polymer in bulk is at a temperature above its melting point, Tm. As the polymer is

cooled, collections of highly tactic repeat units that are positioned favorably to

move easily into a crystal lattice will do so, forming the nuclei of a multitude of

crystalline domains. As the crystalline domains grow, the chain molecules must

reorient themselves to fit into the lattice.

Ultimately, these growing domains begin to interfere with their neighbors

and compete with them for repeat units to fit into their respective lattices. When

this begins to happen, the crystallization process stops, leaving a fraction of the

chain segments in amorphous domains. How effectively the growing crystallites

acquire new repeat units during the crystallization process depends on their

tacticity.

Furthermore, chains of low tacticity form defective crystalline domains.

Indeed, after crystallization has ceased, there may be regions of ordered arrange-

ments intermediate between that associated with a perfect crystal and that

associated with a completely amorphous polymer. The extent and perfection of

crystallization even depends on the rate of cooling of the molten polymer. In fact,

there are examples of polymers that can be cooled sufficiently rapidly that

essentially no crystallization takes place. On the other hand, annealing just below

the melting point, followed by slow cooling, will develop the maximum amount

of crystallinity (discussed in greater detail in Chapter 11). Similarly, several

polymers that have been cooled far too rapidly for crystallization to take place can

be crystallized by mechanical stretching of the samples.

1.6 CONFORMATION OF POLYMER MOLECULES

Once a polymer molecule has been formed, its configuration is fixed. However, it

can take on an infinite number of shapes by rotation about the backbone bonds.

The final shape that the molecule takes depends on the intramolecular and

intermolecular forces, which, in turn, depend on the state of the system. For

example, polymer molecules in dilute solution, melt phase, or solid phase would

each experience different forces. The conformation of the entire molecule is first

considered for semicrystalline solid polymers. Probably the simplest example is

the conformation assumed by polyethylene chains in their crystalline lattice

(planar zigzag), as illustrated in Fig. 1.4. A polymer molecule cannot be expected

to be fully extended, and it actually assumes a chain-folded conformation, as
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described in detail in Chapter 11. The most common conformation for amor-

phous bulk polymers and most polymers in solution is the random-flight (or

random-coil) conformation, which is discussed in detail later.

In principle, it is possible for a completely stereoregular polymer in a dilute

solution to assume a planar zigzag or helical conformation—whichever repre-

sents the minimum in energy. The conformation of the latter type is shown by

biological polymers such as proteins and synthetic polypeptides. Figure 1.6

shows a section of a typical helix, which has repeat units of the following type.

The best known example is deoxyribonucleic acid (DNA), which has a weight-

average molecular weight of 6–7 million. Even in aqueous solution, it is locked

FIGURE 1.6 The helical conformation of a polypeptide polymer chain.
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into its helical conformation by intramolecular hydrogen bonds. Rather than

behaving as a rigid rod in solution, the helix is disrupted at several points: It could

be described as a hinged rod in solution. The helical conformation is destroyed,

however, if the solution is made either too acidic or too basic, and the DNA

reverts to the random-coil conformation. The transformation takes place rather

sharply with changing pH and is known as the helix–coil transition. Sometimes,

the energy required for complete helical transformation is not enough. In that

case, the chain backbone assumes short blocks of helices, mixed with blocks of

random-flight units. The net result is a highly extended conformation with most

of the characteristics of the random-flight conformation.

1.7 POLYMERIC SUPPORTS IN ORGANIC
SYNTHESIS [11^13]

In conventional organic synthesis, organic compounds (say, A and B) are reacted.

Because the reaction seldom proceeds up to 100% conversion, the final reaction

mass consists of the desired product (say, C) along with unreacted reactants A and

B. The isolation of C is normally done through standard separation techniques

such as extraction, precipitation, distillation, sublimation, and various chromato-

graphic methods. These separation techniques require a considerable effort and

are time consuming. Significant advancements have been made by binding one of

the reactants (A or B) through suitable functional groups to a polymer support

that is insoluble in the reaction mass. To this, the other reactant (B or A) is

introduced and the synthesis reaction is carried out. The formed chemical C is

bound to the polymer, which can be easily separated.

The polymer support used in these reactions should have a reasonably high

degree of substitution of reactive sites. In addition, it should be easy to handle and

must not undergo mechanical degradation. There are several polymers in use, but

the most common one is the styrene–divinyl benzene copolymer.
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Because of the tetrafunctionality of divinyl benzene, the polymer shown is a

three-dimensional network that would swell instead of dissolving in any solvent.

These polymers can be easily functionalized by chloromethylation, hydrogena-

tion, and metalation. For example, in the following scheme, an organotin reagent

is incorporated:

Ti(OAc)3⋅1.5H2OP

P Br
n-BuLi

in THF
P Li

MgBr2 Etherate

P MgBr

nC4H9SnCl3

P Sn

Cl

Cl

C4H9

LiAlH4

in THF
P Sn

Cl

C4H9

(1.7.2)

Because the cross-linked polymer molecule in Eq. (1.7.1) has several phenyl

rings, the reaction in Eq. (1.7.2) would lead to several organotin groups

distributed randomly on the network polymer molecule.

Sometimes, ion-exchanging groups are introduced on to the resins and

these are synthesized by first preparing the styrene–divinyl benzene copolymer

[as in Eq. (1.7.1)] in the form of beads, and then the chloromethylation is carried

out. Chloromethylation is a Friedel–Crafts reaction catalyzed by anhydrous

aluminum, zinc, or stannous chloride; the polymer beads must be fully swollen

in dry chloromethyl methyl ether before adding the catalyst, ZnCl2. Normally, the

resin has very small internal surface area and the reaction depend heavily on the

degree of swelling. This is a solid–liquid reaction and the formed product can be

shown to be

P
ClCH2OCH3

ZnCl2
P CH2Cl (1.7.3)

This reaction is fast and can lead to disubstitution and trisubstitution on a given

phenyl ring, but monosubstitution has been found to give better results. The
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chloromethylated resin in Eq. (1.7.3) is quaternized using alkyl amines or

ammonia. This reaction is smooth and forms a cross-linked resin having anions

groups within the matrix:

P CH2Cl  +  NH3 CH2NH4
+Cl–P (1.7.4)

which is a commercial anion-exchange resin.

It is also possible to prepare anion-exchange resins by using other

polymeric bases. For example beads of cross-linked polyacrylonitrile are prepared

by using a suitable cross-linking agent (say, divinyl benzene). The polymer bead

can then be represented as �CN, where the cyanide group is available for

chemical reaction, exactly as the phenyl group in Eq. (1.7.3) participated in the

quaternization reaction. The cyanide group is first hydrogenated using a Raney

nickel catalyst, which is further reacted to an alkyl halide, as follows:

CNP
NiH

CH2P NH2
C2H5Br

CH2N+Br–P

C2H5

C2H5

(1.7.5)

Instead of introducing active groups into an already cross-linked resin, it is

possible to polymerize monomeric bases with unsaturated groups or salts of such

bases. For example, we first copolymerize p-dimethyl aminostyrene with divinyl

benzene to form a polymer network as in Eq. (1.7.1):

The resulting network polymer in the form of beads is reacted with dimethyl

sulfonate to give a quaternary group, which is responsible for the ion-exchange

ability of the resin:
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Sometimes, we want to prepare a quaternary salt of the vinyl monomer and then

copolymerize this with divinyl benzene to form the network polymer resin shown

in the following diagram:

Evidently, this polymer resin has a greater number of sites because the quaternary

group is present at every alternate covalent bond on the backbone.

The other support materials that are commonly used are Tenta Gel resins

which are obtained by grafting the styrene–divinyl benzene copolymer [of Eq.

(1.7.1)] with polyethylene glycol (PEG). Due to the grafts of PEG, the support is

polar in nature and it easily swells in water, methanol, acetonitrile, dimethyl

formamide, and dichloroethane. Crowns=pins (CP) are another kind of support

which consists of radiation grafted polyethylene or polypropylene materials.

Polymer formed from monomer polyethylene glycol dimethacrylamide is a

network because of the two acrylamide molecules are chemically bound to the

two ends of polyethylene glycol and is sometimes abbreviated as PEGA support.

This is highly polar, swelling extensively in water, having extremely flexible

interior, and suitable for reactions in which it is desired for large macromolecules

like enzymes to enter into the matrix of the support.

The synthesis using polymer supports can be of the following two types. In

the first one, the catalyst metal is covalently linked to the support and this
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covalently bound metal serves as a catalyst in a given reaction. In the following

example, the supported metal is utilized as a hydrogenation catalyst:

In the second type (called organic synthesis on solid support), one of the reactants

(say, X) is first reacted to the support (say, step a) and then the excess reagent X is

removed (say, step b). The resultant resin is then reacted to the second reactant

(called step c; in this way, X and Y chemically bonding to the support), and after

this, the resultant support is reduced (called step d). This reduction process should

be such that the product of the surface-reacted X and Y cleave efficiently from the

support without affecting the support. Such supports are regenerable and can be

utilized in several cycles of chemical reaction between X and Y. For practical

reasons, such supports have specific functional groups (called linkers) which are

chemically stable during the synthesis of the product X�Y. In addition, the linker

group is spaced from the surface of the support and it could be represented by �
spacer-linkers, whereas the chemical reaction between X and Y can be written as

Principally, the purpose of the spacer is to alter the swelling properties of the

resin, in this way imparting the resin a better solvent compatibility. For example,

in Tenta Gel resin, the graft polyethylene glycol serves as a spacer and makes the

styrene–divinyl benzene copolymer swell in presence of water, which otherwise

would not do.

The organic synthesis on solid support was first carried out by Merrifield in

1963 for synthesis of Peptide with a well-defined sequence of amino acids. As an

example, the support used for the synthesis was the styrene–divinyl benzene

copolymer having the following structure:

where C6H3(NO2)�CH(CH3)Br serves as the integral linker with no spacer. In

order to load the resin with the first amino acid NH2�CH(R1)�COOH, the amino
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group of the latter is first blocked with the benzyloxycarbonyl group (Cbz) and

then reacted to the resin as follows:

For resin 1 to react with another amino acid molecule, NH2�CH(R2)�COOH,
the Cbz�NH� group of the former must be deprotected (using HBr in glacial

acetic acid and then neutralizing) and the amine group of the latter should be

protected using Cbz as follows:

Another very active area of research where polymer supports are utilized is the

combinatorial synthesis methods, applied to the synthesis of biologically active

compounds. The sources of the latter has always been the nature itself and all

natural products are mixture of several compounds. A considerable amount of

work is required to identify and isolate the active component which serves as the

target molecule. Because this is in small amount, invariable having an extremely

complex structure, it cannot be easily synthesized, and therefore, as such, it

cannot be adopted for commercial application. In view of this, a new active

substance, based on the study of the target molecule, is found by trial and error;

this has a comparable biological activity but simpler molecular structure so that it

could be manufactured commercially. The identification of the new active

substance (having simpler molecular structure) evidently requires extensive

organic synthesis followed by purification of the compounds formed and their

identification. After these are synthesized, they are then tested for the biological
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activity and we wish to find that new active substance which has the highest

biological activity. Evidently, in order to achieve this extensive organic synthesis,

traditional procedures of organic synthesis reaches the limit of time and effort.

The speed of synthesis is a new dimension in which many structurally diverse

substances are synthesized and are subjected to high characterization and

screening throughout.

The goal of the combinatorial approach is to produce many different

products with defined structures and bind them chemically with a polymer

support through their linkers. The set of supports storing these chemicals is

known as a library, totally in analogy with a library of books. Suppose that there

is an unknown molecule (assuming that it is available in pure form) whose

molecular structure is to be determined. One determines either its high pressure

liquid chromatography (HPLC) or its mass spectra. One could compare these

with various known compounds from the library as follows. One releases the

bound compound by breaking the bond with the linkers of the support and then

compares the spectra of the unknown compound with the spectra of this. In this

way, one could determine the molecular weight as well as the chemical structure

of the unknown compound. This is also not a simple task, but using the following

scheme (called combinatorial scheme), this task can be considerably simplified as

follows.

Suppose the unknown product is known to be an amide formed by the

reaction of an acyl chloride with an amine. Let us also say that there are 10 types

of acyl chloride (A1 to A10) and 10 types of amine (B1 to B10) and the products

formed are represented by

ðA1 to A10ÞCOClþ ðB1 to B10ÞNH2! ðA1 to A10ÞCNHðB1 to B10Þ
ð1:7:14Þ

In the combinatorial scheme, there are 100 products and they can be carried out in

10 reaction steps as follows. We prepare a mixture of B1�NH2 to B10�NH2 in

equal proportion and this mixture is reacted in 10 broths, each containing

A1COCl to A10COCl. In this way, we generated 10 mixtures which contain

A1B1 þ A1B2 þ A1B3 þ � � � þ A1B10 ð1:7:15aÞ
A2B1 þ A2B2 þ A2B3 þ � � � þ A2B10 ð1:7:15bÞ

..

.

..

.

A10B1 þ A10B2 þ A10B3 þ � � � þ A10B10 ð1:7:15cÞ
These 10 mixtures are then stored (by chemically binding) on 10 different

supports. In this case, the library consists of 10 supports and the compounds

released from the linkers is a mixture of 10 amides. However, there is never a

confusion, simply because the peak positions of the 10 amides in HPLC
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experiments are unique and are known a priori. Similarly in its mass spectra, the

molecular weights of each components and their fragments are precisely known

beforehand. It is thus seen that the unknown compound can be easily identified

precisely with 10 HPLC (or mass spectral) experiments alone.

The success of the combinatorial scheme discussed above lies in the fact

that the mixture could be easily bound to the polymer support covalently as well

as they should easily be cleaved from the linker completely. In addition to this, the

attachment points of the linker (or spacer) with the polymer support should be

chemically stable during the binding and cleaving of the mixture. In past years,

several linkers have been developed allowing many multi step organic synthesis

and cleavage efficiently. The conditions of the reactions are found to depend not

only upon the linker and spacer but also upon the type of resin, its extent of

loading and the nature of compound. In light of this, in the present context, this is

a rapidly growing area of research [11,12].

Example 1.4: Discuss different methods of functionalizing the styrene–divinyl

benzene polymer.

Solution: A wide variety of vinyl-derivitized monomers are available commer-

cially and some of these are 4-vinylimidazole, vinyl pyridines, and acryloyl

morpholine [13]. This can be terpolymerized with styrene and divinyl benzene to

obtain polymer gel having the following structures:

Once the gel is formed, they can be functionalized only through chemical

modification, and normally this is done via chloromethylation using chloromethyl

methyl ether and lithiation by lithium–bromine exchange as follows:
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Chloromethylation is a versatile and reliable reaction, even through chloromethyl

methyl ether is highly carcinogaric reaction.

Example 1.5: Define photoconductivity and how it achieved in polymers.

Solution: Photoconductivity is defined as a significant increase in conductivity

caused by illumination and is attributed to increase in charge carriers (electrons or

holes due to it). For polymers to be photoconductive, mobile charge carriers must

be generated with light. The resulting charge pair may then separate, and either a

positive charge, an electron, or both may migrate in a polarizing electrical field as

follows:

Dþ A ��!hn ½DþA0�� ������!electric field
D�þ þ A��

Polymers are normally insulators with negligible conduction and the latter can be

achieved by (1) addition of a small molecular dopants or (2) chemical modifica-

tion of the polymer.

The dopants (e.g., dyes like rose bengal, methyl violet, methylane blue,

etc.) re charge-transfer agents. The dyes have the ability to absorb light and

sensitize the polymer by the addition of electron transfer. The technique of

chemical modification improves the spectral response, giving a higher speed of

movement of holes.

Example 1.6: Describe the various steps of photocopying.

Solution: There are four steps:

1. The surface of a metal drum is coated with photoconductive material

[selenium or polyvinyl carbazole (PVK)]. This is charged in the dark

by spraying ions under corona discharge. This gives a uniform charge

on the surface.

2. The image to be copied is projected on the drum, and by this, different

areas of the drum are discharged in the light signal. Charge is retained

in areas not illuminated, and in this way, an electrical pattern is

generated on the drum.

3. The developer consists of two components: carrier and toner. The

carrier is metal beads and the toner is a polymer with black dye. On

shaking, the toner becomes positively charged, which, on exposure to

the drum, accumulates around dark areas. The paper is exposed to a

high voltage to make it negatively charged and the toner shifts from the

drum surface to the paper.

4. The image transferred to the paper is fixed by heating the paper, and

the polymer particles of toner are then sintered.
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Example 1.7: After separating gas, gasoline, naphtha, and gas oil from crude

petroleum, the residue is depolymerized and then further distilled for these

materials. Discuss the depolymerization of long-chain hydrocarbon (called

Visbreaking step). Sometimes, a catalytic cracking process is used. Discuss the

difference between the two.

Solution: Under depolymerization, a C�C bond breaks homolytically to give

two radicals:

R1CH2CH2R2! R1CH
?
2 þ R2CH

?
2

They produce ethylene under b-scission:

R1�CH2CH2CH
?
2! RCH?

2 þ CH2¼CH2

The radical need not necessarily be at the chain end alone. For production of

propylene, we need to have the radical at the third carbon and then there is

b-scission reaction:

R1CH2CH2CH2CH3 þ ?CH3! RCH2CH
?CH2CH3 þ CH4

R2CH2CH
?CH2CH3! RCH?

2 þ CH2¼CH�CH3

Catalytic cracking in the petroleum industry is a very important process in which

heavy oils are converted into gasoline and lighter products. This occurs through

carboneum ion formation in the presence of zeolite catalyst (Lewis acid, L) as

follows:

RHþ L �! � LH� þ R?

In the case of Rþ isomerization occurs easily and a shift of the double bond and a

shift of the methyl group are commonly seen. The aromatic formation on zeolite

occurs as follows:

1.8 CONCLUSION

In this chapter, various methods for classifying polymers have been discussed and

basic concepts regarding molecular-weight distribution, mechanism of polymer-
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ization, molecular conformations, configurations, and crystallinity have been

presented. These concepts will be amplified in the rest of the book. It may be

mentioned that synthetic polymers are mainly emphasized in this textbook, but

the concepts developed here can be easily extended to naturally occurring

polymers such as proteins, nucleic acids, cotton, silk, wool, and paper. No

single textbook can do justice to so many fascinating areas of research. This is the

only justification for the exclusion of natural polymers from this book.
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PROBLEMS

1.1. The molecular functionality of real systems is usually expressed by a

fraction in view of the possible occurrence of side processes involving

cyclization, cross-linking, and so forth. When more than one monomer is
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involved, we talk of average functionality �ff defined as

�ff ¼
P

fiNiP
Ni

where fi is the functionality of the ith monomer whose Ni moles are present

in the reaction mixture. Calculate �ff for a mixture of glycerol–phthalic

anhydride in the ratio of 2 : 3. For branched and network polymer, �ff must

be greater than 2.

1.2. In the polymerization of phthalic anhydride with glycerol, one adds

ethylene glycol also. Why? Assuming their concentrations in the ratio of

2 : 3 : 1, find their average functionality. What is the main difference

between this polymer and the one in Eq. (1.22)?

1.3. Methyl methacrylate [CH2¼C(CH3)COOCH3] is randomly copolymerized

with maleic anhydride in the first stage, and the resulting copolymer is

reacted with polyvinyl alcohol [CH2�CH�(OH)]n in the second stage.

Write down all of the chemical reactions involved and the molecular

structure of the resulting polymers in both stages.

1.4. 12-Hydroxystearic acid [CH3�(CH2)5�CH(OH)�(CH2)10�COOH] is

polymerized through the step-growth mechanism (ARB monomer type

reaction) in stage 1. In stage 2, this is reacted with glycidyl methacrylate

½CH2¼CðCH3ÞCOOCH2�CH�CH2; GMA�;
n =
O

which produces the end-capping of the polymer formed at the end of stage

1. In this reaction, the epoxy group of the GMA reacts, keeping the double

bond safe. This is copolymerized with methyl methacrylate in stage 3, and

in this stage, the double bond of the GMA reacts. Write down the structure

of the polymer at the end of each stage.

1.5. A small amount of grafting of polyethylene (PE) changes the properties of

the polymer. The polymer in the molten stage is mixed with a suitable

monomer (e.g., acrylic acid CH2¼CHCOOH, fumaric acid

COOHCH2¼CHCOOH, or maleic anhydride

and an initiator [e.g., dicumylperoxide; C6H5C(CH3)2OOC(CH3)2C6H6].

Explain why the polymer formed would be a mostly grafted one and what

its structure would be. Discuss other possible products.

1.6. Polyvinyl alcohol (PVA) is normally atactic and has a high concentration of

head-to-head defects. However, PVA in the crystalline state is in the all-

trans stage and gives tough fibers. PVA fibers can also absorb water and, in

this way, lose strength. To avoid this, one usually treats the polymer with

formaldehyde and the latter reacts (the reaction is called ketalization) with

the two adjacent hydroxyl groups of the polymer. What changes are

produced in the polymer through this treatment and why?
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1.7. Polyvinyl amine [�CH2�CH(NH2)�]n can be easily prepared through

Hoffmann degradation of polyacrylamide [�CH2�CH(CONH2)�]n. Write

down the basic reactions using sodium hydrochloride (NaCl) in methanol

medium. The modified polymer now is an ammonium chloride salt and has

to undergo an ion exchange to obtain the desired polymer.

1.8. Linear polyacetylene is known to be an intrinsically electrically conductive

polymer. The configuration could be cis, trans, or mixed. Do you think that

the configuration would have any influence on the electrical conductivity?

1.9. Polyphenylene sulfide is an important electronic polymer and can be

synthesized using p-dichlorobenzene with Na2S in n-pyrolidone (Campbell

method). Its initiation step is as follows:

Initiation

Propagation

The termination of the polymer could occur with A (by combination) as

well as B (by transfer reaction) and write these reactions.

1.10. The following polymer poly(glutamic acid) is used as an antitumor agent:

where Ig is a protein immunoglobin. In this polymer molecule, identify

various groups serving as the solubilizer, pharmacon, and the homing

device.
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1.11. Poly(2-vinylpyridine-1-oxide) (PVNO) is a polymer that dissolves in water

and serves as a medicinal drug:

The polymer prevents the cytotoxic action of quartz dust, and its activity is

found for a molecular weight above 30,000. Assuming that the monomer is

available, how would you form the required polymer?

1.12. Penicillin has the following chemical formula:

On binding it to a polymer, the activity of the drug is found to increase.

Suggest a suitable polymer on which this can be bound.

1.13. Heparin is highly acidic dextrorotatory copolymer of glucosamine and

glucuronic acid having the following structure:

It is naturally present in blood and inhibit its clotting. It is desired to use

PVC bags for storing blood and this can be done only if its inner surface is

passivated with heparin. Suggest a method by which it can be done.

1.14. In diabetes (where there is poor insulin delivery by the pancreas in response

to glucose) or Parkinson’s disease (where there is poor release of dopamine

in response to potassium), it has been recommended to transplant encap-

sulated animal cells in the human body to supplement the existing

deficiency. The limitation of this cell transplant is the immune-mediated

rejection, and to overcome this, the cells are microencapsulated with

acrylates and methacrylates, which cannot be penetrated by large anti-

bodies but insulin or dopamine can diffuse out easily. Readily available

methacrylates [CH2¼C(CH3)�C(O)OR] are MAA (methacrylic acid with

R as H), MMA (methyl methacrylate with R as CH3), HEMA (2-hydro-

xyethyl methacrylate with R as �CH2CH2OH), HPMA (2-hydroxy methyl

methacrylate with R as �CH2CH(OH)�CH3), and DMAEMA [dimethyl-
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aminoethyl methacrylate with R as �CH2CH2N(CH3)2]. Find out which

monomer would give acidic, basic, or neutral film.

1.15. When acidic and basic polymeric polyelectrolytes are mixed, they form a

complex which precipitates. Based on this, mammalian cells are coated

with sodium alginate (natural polymer) solution (in water) and then put in a

suitable water-soluble acrylate solution. This forms a hard encapsulation

around the mammalian cell; this is impervious to antibodies. Suggest a

suitable acrylate (as methacrylate) for the encapsulation.

1.16. One of the synthetic blood plasmas is poly[N -(2-hydroxypropyl)] metha-

crylamide:

Suggest some (at least two) plausible ways of making this material.

1.17. In following multifunctional initiators, the azo (at 50�C) and peroxide

groups (at 90�C) decompose at separate temperatures and the monomer M1

is polymerized first:

Considering that polymer radicals due to monomer M1 terminates (say,

PM1
) by recombination alone and that due to M2 (say, PM2

), terminates by

recombination alone, what kinds of polymer that would be formed. What

would be the nature of the polymer if the polymer radicals due to monomer

M2 terminate by disproportionation only.

1.18. Suppose in Problem 1.17 that the polymer radical due to monomer M1

terminate by disproportionation and that due to M2 terminates by combina-

tion, what is the nature of the final polymer? Suppose PM2
terminates by

disproportionation only; what would be the nature of the polymer then?

1.19. Iodine transfer polymerization requires a peroxide (R�O�O�R) and an

alkyl iodide (RFI). The primary radicals are generated and the polymer

radicals (RF ¼ M?
n) undergo transfer reaction as follows:

R�O�O�R ��!heat RO?

RO? þ RF�!Product þ R?
F

RFM
?
n þ RFI�!RFMnIþ R?

F

Assuming termination to occur by combination, give the complete mechan-

ism of polymerization.
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1.20. Synthesis gas is a mixture of carbon monoxide and hydrogen. In the

Fischer–Tropsch process, the formation of alkane, alkene, alcohol of large

chain-length occurs, depending on the catalyst used, as follows:

1. Formation of alkane and alkene of larger chain length:

ðnþ 1ÞH2 þ 2nCO �! � CnH2nþ2 þ nCO2

nH2 þ 2nCO �! � CnH2n þ nCO2

Hydrocarbons up to C20 (e.g., gasoline, diesel, or aviation fuel) are

produced using a (Co, Fe, Ru) catalyst.

2. Alcohol formation:

2nH2 þ nCO �! � CnH2nþ1OHþ ðn� 1ÞH2O

Ethanol using a Co catalyst, higher alcohols using a (Fe, Co, Ni) catalyst,

and ethylene glycol using a Rh catalyst are produced.

In the Fischer–Tropsch process, carbon monoxide is absorbed on a

metal (M) as one of its ligands, as follows:

COþM�!M¼C¼O
M¼C¼OþM�!OM�CþM�O

It is these M�C ligands that give the growth of chains:

M�C�!H2

M¼CH2�!
H2

M�CH3

Now write down the propagation and termination reactions in the Fischer–

Tropsch process.

1.21. Liquid hydrocarbons have been prepared using the ZSM-5 zeolite catalyst.

At 600�C, the following initiation reaction occurs:

With the help of your understanding of Example 1.7, explain the formation

of C3H8, paraffin, paraffin isomers, and aromatics.
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2

E¡ect of Chemical Structure on
Polymer Properties

2.1 INTRODUCTION

In the previous chapter, we discussed different ways of classifying polymers and

observed that their molecular structure plays a major role in determining their

physical properties. Whenever we wish to manufacture an object, we choose the

material of construction so that it can meet design requirements. The latter

include temperature of operation, material rigidity, toughness, creep behavior, and

recovery of deformation. We have already seen in Chapter 1 that a given polymer

can range all the way from a viscous liquid (for linear low-molecular-weight

chains) to an insoluble hard gel (for network chains), depending on how it was

synthesized. Therefore, polymers can be seen to be versatile materials that offer

immense scope to polymer scientists and engineers who are on the lookout for

new materials with improved properties. In this chapter, we first highlight some of

the important properties of polymers and then discuss the many applications.

2.2 EFFECT OF TEMPERATURE ON POLYMERS
[1^4]

We have observed earlier that solid polymers tend to form ordered regions, such

as spherulites (see Chapter 11 for complete details); these are termed crystalline

polymers. Polymers that have no crystals at all are called amorphous. A real
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polymer is never completely crystalline, and the extent of crystallization is

characterized by the percentage of crystallinity.

A typical amorphous polymer, such as polystyrene or polymethyl meth-

acrylate, can exist in several states, depending on its molecular weight and the

temperature. In Figure 2.1, we have shown the interplay of these two variables

and compared the resulting behavior with that of a material with moderate

crystallinity. An amorphous polymer at low temperatures is a hard glassy material

which, when heated, melts into a viscous liquid. However, before melting, it goes

through a rubbery state. The temperature at which a hard glassy polymer becomes

FIGURE 2.1 Influence of molecular weight and temperature on the physical state of

polymers.
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a rubbery material is called the glass transition temperature, Tg (see Chapter 12

for the definition of Tg in terms of changes in thermodynamic and mechanical

properties; there exists a sufficiently sharp transition, as seen in Fig. 2.1a). There

is a diffuse transition zone between the rubbery and liquid states for crystalline

polymers; the temperature at which this occurs is called the flow temperature, Tf .

As the molecular weight of the polymer increases, we observe from Figure 2.1

that both Tg and Tf increase. Finally, the diffuse transition of the rubber to the

liquid state is specific to polymeric systems and is not observed for low-

molecular-weight species such as water, ethanol, and so forth, for which we

have a sharp melting point between solid and liquid states.

In this section, only the effect of chain structure on Tg is examined—other

factors will be discussed in Chapters 10–12. In order to understand the various

transitions for polymeric systems, we observe that a molecule can have all or

some of the following four categories of motion:

1. Translational motion of the entire molecule

2. Long cooperative wriggling motion of 40–50 C�C bonds of the

molecule, permitting flexing and uncoiling

3. Short cooperative motion of five to six C�C bonds of the molecule

4. Vibration of carbon atoms in the polymer molecule

The glass transition temperature, Tg, is the temperature below which the

translational as well as long and short cooperative wriggling motions are frozen.

In the rubbery state, only the first kind of motion is frozen. The polymers that

have their Tg values less than room temperature would be rubbery in nature, such

as neoprene, polyisobutylene, or butyl rubbers. The factors that affect the glass

transition temperatures are described in the following subsections.

2.2.1 Chain Flexibility

It is generally held that polymer chains having �C�C� or �C�O� bonds are

flexible, whereas the presence of a phenyl ring or a double bond has a marked

stiffening effect. For comparison, let us consider the basis polymer as poly-

ethylene. It is a high-molecular-weight alkane that is manufactured in several

ways; a common way is to polymerize ethylene at high pressure through the

radical polymerization technique. The polymer thus formed has short-chain as

well as long-chain branches, which have been explained to occur through the

‘‘backbiting’’ transfer mechanism. The short-chain branches (normally butyl) are

formed as follows:
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and the long-chain branches are formed through the transfer reaction at any

random point of the backbone as

The polymer has a Tg of about �20�C and is a tough material at room

temperature. We now compare polyethylene terephthalate with polyethylene.

The former has a phenyl group on every repeat unit and, as a result, has stiffer

chains (and, hence, higher Tg) compared to polyethylene. 1,4-Polybutadiene has a

double bond on the backbone and similarly has a higher Tg.

The flexibility of the polymer chain is dependent on the free space vf
available for rotation. If v is the specific volume of the polymer and vs is the

volume when it is solidly packed, then vf is nothing but the difference between

the two (v� vs). If the free space vf is reduced by the presence of large

substituents, as in polyethylene terephthalates, the Tg value goes up, as observed

earlier.

2.2.2 Interaction Between Polymers

Polymer molecules interact with each other because of secondary bondings due to

dipole forces, induction forces, and=or hydrogen bonds. The dipole forces arise

when there are polar substituents on the polymer chain, as, for example, in

polyvinyl chloride (PVC). Because of the substituent chlorine, the Tg value of

PVC is considerably higher than that of polyethylene. Sometimes, forces are also

induced due to the ionic nature of substituents (as in polyacrylonitrile, for

example). The cyanide substituents of two nearby chains can form ionic bonds

as follows:

Hydrogen bonding has a similar effect on Tg. There is an amide (�CONH�)
group in nylon 6, and it contributes to interchain hydrogen- bonding, increasing

the glass transition temperature compared to polyethylene. In polytetrafluoroethy-
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lene, there are van der Waals interaction forces between fluorine atoms and, as a

result, it cannot be melted:

Even though the energy required to overcome a single secondary-force

interaction is small, there are so many such secondary forces in the material that it

is impossible to melt it without degrading the polymer.

2.2.3 Molecular Weight of Polymers

Polymers of low molecular weight have a greater number of chain ends in a given

volume compared to those of high molecular weight. Because chain ends are less

restrained, they have a greater mobility at a given temperature. This results in a

lower Tg value, as has been amply confirmed experimentally. The molecular-

weight dependence of the glass transition temperature has been correlated by

Tg ¼ T1g �
K

mn
ð2:2:5Þ

where T1g is the Tg value of a fictitious sample of the same polymer of infinite

molecular weight and mn is the number-average chain length of the material of

interest. K is a positive constant that depends on the nature of the material.

2.2.4 Nature of Primary Bondings

The glass transition temperature of copolymers usually lies between the Tg values

of the two homopolymers (say, Tg1 and Tg2) and is normally correlated through

1

Tg
¼ w1

Tg1
þ ð1� w1Þ

Tg2
ð2:2:6Þ

where w1 is the weight fraction of one of the monomers present in the copolymer

of interest. With block copolymers, sometimes a transition corresponding to each

block is observed, which means that, experimentally, the copolymer exhibits two

Tg values corresponding to each block. We have already observed that, depending

on specific requirements, one synthesizes branch copolymers. At times, the long

branches may get entangled with each other, thus further restraining molecular

motions. As a result of this, Eq. (2.2.6) is not obeyed and the Tg of the polymer is

expected to be higher. If the polymer is cross-linked, the segmental mobility is

further restricted, thus giving a higher Tg. On increasing the degree of cross-

linking, the glass transition temperature is found to increase.

The discussion up to now has been restricted to amorphous polymers.

Figure 2.1b shows the temperature–molecular weight relation for crystalline
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polymers. It has already been observed that these polymers tend to develop

crystalline zones called ‘‘spherulites.’’ A crystalline polymer differs from the

amorphous one in that the former exists in an additional flexible crystalline state

before it begins to behave like a rubbery material. On further heating, it is

converted into a viscous liquid at the melting point Tm. This behavior should be

contrasted with that of an amorphous polymer, which has a flow temperature Tf
and no melting point.

The ability of a polymeric material to crystallize depends on the regularity

of its backbone. Recall from Chapter 1 that, depending on how it is polymerized,

a polymeric material could have atactic, isotactic, or syndiotactic configurations.

In the latter two, the substituents of the olefinic monomer tend to distribute

around the backbone of the molecule in a specific way. As a result (and as found

in syndiotactic and isotactic polypropylene), the polymer is crystalline and gives a

useful thermoplastic that can withstand higher temperatures. Atactic polymers are

usually amorphous, such as atactic polypropylene. The only occasion when an

atactic material can crystallize is when the attached functional groups are of a size

similar to the asymmetric carbon. An example of this case is polyvinyl alcohol, in

which the hydroxyl group is small enough to pack in the crystal lattice.

Commercially, polyvinyl alcohol (PVA1c) is manufactured through hydrolysis

of polyvinyl acetate. The commonly available PVA1c is always sold with the

percentage alcohol content (about 80%) specified. The acetate groups are large,

and because of these residual groups, the crystallinity of PVA1c is considerably

reduced.

It is now well established that anything that reduces the regularity of the

backbone reduces the crystallinity. Random copolymerization, introduction of

irregular functional groups, and chain branchings all lead to reduction in the

crystalline content of the polymer. For example, polyethylene and polypropylene

are both crystalline homopolymers, whereas their random copolymer is amor-

phous rubbery material. In several applications, polyethylene is partially chlori-

nated, but due to the presence of random chlorine groups, the resultant polymer

becomes rubbery in nature. Finally, we have pointed out in Eqs. (2.2.1) and

(2.2.2) that the formation of short butyl as well as long random branches occurs

in the high-pressure process of polyethylene. It has been confirmed experimen-

tally that short butyl branches occur more frequently and are responsible for

considerably reduced crystallinity compared to straight-chain polyethylene manu-

factured through the use of a Ziegler–Natta catalyst.

2.3 ADDITIVES FOR PLASTICS

After commercial polymers are manufactured in bulk, various additives are

incorporated in order to make them suitable for specific end uses. These additives
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have a profound effect on the final properties, some of which are listed for

polyvinyl chloride in Box 2.1. PVC is used in rigid pipings, conveyor belts, vinyl

floorings, footballs, domestic insulating tapes, baby pads, and so forth. The

required property variation for a given application is achieved by controlling the

amount of these additives. Some of these are discussed as follows in the context

of design of materials for a specific end use.

Plasticizers are high-boiling-point liquids (and sometimes solids) that,

when mixed with polymers, give a softer and more flexible material. Box 2.1

gives dioctyl phthalate as a common plasticizer for PVC. On its addition, the

polymer (which is a hard, rigid solid at room temperature) becomes a rubberlike

Box 2.1

Various Additives to Polyvinyl Chloride

Commercial polymer Largely amorphous, slightly branched with

monomers joined in head-to-tail sequence.

Lubricant Prevents sticking of compounds to processing

equipment. Calcium or lead stearate forms a

thin liquid film between the polymer and

equipment. In addition, internal lubricants

are used, which lower the melt viscosity to

improve the flow of material. These are

montan wax, glyceryl monostearate, cetyl

palmitate, or aluminum stearate.

Filler Reduces cost, increases hardness, reduces

tackiness, and improves electrical insulation

and hot deformation resistance. Materials

used are china clay for electrical insulation

and, for other works, calcium carbonate, talc,

magnesium carbonate, barium sulfate, silicas

and silicates, and asbestos.

Miscellaneous additives Semicompatible rubbery material as impact

modifier; antimony oxide for fire retardancy;

dioctyl phthalate as plasticizer; quaternary

ammonium compounds as antistatic agents;

polyethylene glycol as viscosity depressant in

PVC paste application; lead sulfate for high

heat stability, long-term aging stability, and

good insulation characteristics.
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material. A plasticizer is supposed to be a ‘‘good solvent’’ for the polymer; in

order to show how it works, we present the following physical picture of

dissolution. In a solvent without a polymer, every molecule is surrounded by

molecules (say, z in number) of its own kind. Each of these z nearest neighbors

interacts with the molecule under consideration with an interaction potential E11.

A similar potential, E22, describes the energy of interaction between any two

nonbonded polymer subunits. As shown in Figure 2.2, the process of dissolution

consists of breaking one solvent–solvent bond and one interactive bond between

two nonbonded polymer subunits and subsequently forming two polymer–solvent

interactive bonds. We define E12 as the interaction energy between a polymer

subunit and solvent molecule. The dissolution of polymer in a given solvent

depends on the magnitudes of E11, E22, and E12. The quantities known as

solubility parameters, d11 and d22, are related to these energies. Their exact

relations will be discussed in Chapter 9. It is sufficient for the present discussion

to know that these can be experimentally determined; their values are compiled in

Polymer Handbook [4].

We have already observed that a plasticizer should be regarded as a good

solvent for the polymer, which means that the solubility parameter d11 for the

former must be close (¼d22) to that for the latter. This principle serves as a guide

for selecting a plasticizer for a given polymer. For example, unvulcanized natural

rubber having d22 equal to 16.5 dissolves in toluene (d11 ¼ 18:2) but does not

dissolve in ethanol (d11 ¼ 26). If a solvent having a very different solubility

parameter is mixed with the polymer, it would not mix on the molecular level.

Instead, there would be regions of the solvent dispersed in the polymer matrix that

would be incompatible with each other.

Fillers are usually solid additives that are incorporated into the polymer to

modify its physical (particularly mechanical) properties. The fillers commonly

used for PVC are given in Box 2.1. It has been found that particle size of the filler

has a great effect on the strength of the polymer: The finer the particles are, the

FIGURE 2.2 Schematic diagram of the process of polymer dissolution.
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higher the hardness and modulus. Another factor that plays a major role in

determining the final property of the polymer is the chemical nature of the

surface. Mineral fillers such as calcium carbonate and titanium dioxide powder

often have polar functional groups (e.g., hydroxyl groups) on the surface. To

improve the wetting properties, they are sometimes treated with a chemical called

a coupling agent.

Coupling agents are chemicals that are used to treat the surface of fillers.

These chemicals normally have two parts: one that combines with the surface

chemically and another that is compatible with the polymer. One example is the

treatment of calcium carbonate filler with stearic acid. The acid group of the latter

reacts with the surface, whereas the aliphatic chain sticks out of the surface and is

compatible with the polymer matrix. In the same way, if carbon black is to be

used as a filler, it is first mixed with benzoyl peroxide in alcohol at 45�C for at

least 50 h and subsequently dried in vacuum at 11�C [5]. This activated carbon

has been identified as having C�OH bonds, which can lead to polymerization of

vinyl monomers. The polymer thus formed is chemically bound to the filler and

would thus promote the compatibilization of the filler with the polymer matrix.

Most of the fillers are inorganic in nature, and the surface area per unit volume

increases with size reduction. The number of sites where polymer chains can be

bound increases, and, consequently, compatibility improves for small particles.

For inorganic fillers, silanes also serve as common coupling agents. Some

of these are given in Table 2.1. The mechanism of the reaction consists of two

steps; in the first one, the silane ester moiety is hydrolyzed to give

ðC2H5OÞ3�Si�ðCH2Þ3�NH2 þ 3H2O

�! ðOHÞ3�Si�ðCH2Þ3�NH2 þ C2H5OH ð2:3:1Þ

These subsequently react with various OH groups of the surface, Sur-(OH)3:

Silane coupling agents can have one to three of these bonds, and one would

ideally like to have all of them reacted. The reaction of OH groups on Si is a

competitive one; because of steric factors, not all of them can undergo reaction.

The net effect of the reaction in Eq. (2.3.2) is to give chemically bonded silane

molecules on the surface of glass or alumina particles. The amine group now
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bound to the surface is a reactive one and can easily react with an acid or an

aldehyde group situated on a polymer molecule.

Recently, Goddart et al. [6] reported a polyvinyl alcohol–copper(II) initiat-

ing system, which can produce branched polymers on surfaces. The initiating

system is prepared by dissolving polyvinyl alcohol in water that already contains

copper nitrate (or copper chloride). The calcium carbonate filler is dipped into the

solution and dried. If this is used for polymerization of an olefin (say, styrene), it

would form a polymer that adheres to the particles, ultimately encapsulating

them. The mechanical properties of calcium-carbonate-filled polystyrene have

been found to depend strongly on filler–matrix compatibility, which is consider-

ably improved by this encapsulation.

TABLE 2.1 Silane Coupling Agents

Name Formula

g-Aminopropyl triethoxy silane

g-Chloropropyl triethoxy silane

g-Cyanopropyl trimethoxy silane

g-Glycidoxypropyl trimethoxy silane

g-Mercaptopropyl trimethoxy silane

g-Methacryloxypropyl trimethoxy silane

Some Silanization Procedures

Using g-aminopropyl triethoxy silane

Glass. One gram of glass beads is added to 5mL of 10 solution of the coupling agent at

pH 5 (adjusted with acetic acid). The reaction is run for 2 h at 80�C. The silanized glass

beads are then washed and dried at 120�C in an oven for 2 h.

Alumina

One gram of alumina is added to 5mL of the coupling agent in toluene. The reaction

mixture is refluxed for about 2 h. Alumina is washed with toluene, then with acetone,

and finally dried in oven at 120�C for 2 h.

Using g-mercaptopropyl trimethoxy silane

Glass. One gram of porous glass is added to 5mL of 10 solution of the coupling agent at

pH 5 (adjusted with 6N HCl). The mixture is heated to reflux for 2 h. The glass beads

are washed with pH 5 solutions, followed by water, and ultimately dried in an oven for

2 h at 120�C.
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Polymers also require protection against the effect of light, heat, and

oxygen in the air. In view of this, polymers are mixed with antioxidants and

stabilizers in low concentrations (normally less than 1%). If the material does not

have these compounds, a polymer molecule Mn of chain length n interacts with

light (particularly the ultraviolet portion of the light) to produce polymer radicals

Pn, as follows:

Mn �!
hn

Pn ð2:3:3Þ
The polymer radicals thus produced interact with oxygen to form alkyl peroxy

radicals (Pn1�O2) that can abstract hydrogen of the neighboring molecules in

various ways, as shown in the mechanism of the auto-oxidation process of Table

2.2. The formation of hydroperoxide in step C of the sequence of reactions is the

most important source of initiating radicals. In practice, the following three kinds

of antioxidant and stabilizer are used. Peroxide decomposers are materials that

form stable products with radicals formed in the auto-oxidation of Table 2.2;

TABLE 2.2 Mechanism of Auto-oxidation and Role of Antioxidants

Initiation Mn�!
hn

Pn

Pn þ O2 �! Pn�O2

Pn þ O2 þMnH �! MnO2H . . .Mn

Propagation

Termination

Peroxide decomposers Mercaptans, sulfonic acids, zinc alkyl thiophosphate, zinc

dimethyldithiocarbamate, dilauryl thiodipropionate

Metal deactivators Various chelating agents that combine with ions of manganese,

copper, iron, cobalt, and nickel; e.g., N ,N 0,N,N-tetrasalicyli-
dene tetra (aminomethyl) methane, 1,8-bis(salicylidene

amino)-3,6-dithiaoctane

Ultraviolet light

adsorbers

Phenyl salicylate, resorcinol monobenzoate, 2-hydroxyl-4-

methoxybenzophenone, 2-(2-hydroxyphenyl)-benzotriazole,

etc.
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chemical names of some of this class are given therein. Practice has also shown

that the presence of manganese, copper, iron, cobalt, and nickel ions can also

initiate oxidation. As a result, polymers are sometimes provided with metal

deactivators. These compounds (sometimes called chelating agents) form a

complex with metal ions, thus suppressing auto-oxidation. When the polymer

is exposed to ultraviolet rays in an oxygen-containing atmosphere, it generates

radicals on the surface.

The ultraviolet absorbers are compounds that react with radicals produced

by light exposures. In the absence of these in the polymer, there is discoloration,

surface hardening, cracking, and changes in electrical properties.

Once the polymer is manufactured, it must be shaped into finished

products. The unit operations carried out in shaping include extruding, kneading,

mixing, and calendering, all involving exposure to high temperatures. Polymer

degradation may then occur through the following three ways: depolymerization,

elimination, and=or cyclization [7,8]. Depolymerization is a reaction in which a

chemically inert molecule, Mn, undergoes a random chain homolysis to form two

polymer radicals, Pr and Pn�r:

Mn �! Pr þ Pn�r ð2:3:4Þ

A given polymer radical can then undergo intramolecular as well as intermole-

cular transfer reactions. In the case of intramolecular reactions, monomer, dimer,

trimer, and so forth are formed as follows:

In the case of the latter, however, two macroradicals interact to destroy their

radical nature, thus giving polymers of lower molecular weight:

Pr þ Pm �! Mr þMm ð2:3:6Þ

This process is shown in Box 2.2 to occur predominantly for polyethylene.

Elimination in polymer degradation occurs whenever the chemical bonds on

substituents are weaker than the C�C backbone bonds. As shown in Box 2.2, for

PVC (or for polyvinyl acetate), the chloride bond (or acetate) breaks first and HCl

(or acetic acid) is liberated. Normally, the elimination of HCl (or acetic acid) does

not lead to a considerable decrease in molecular weight. However, because of the

formation of double bonds on the backbone, cross- linking occurs as shown.

Intramolecular cyclization in a polymer is known to occur at high temperatures
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Box 2.2

Thermal Degradation of Some Commercial Polymers

Polymethyl methacrylate (PMMA). The degradation occurs around 290–

300�C. After homolysis of polymer chains, the macroradicals depropagate,

giving a monomer with 100% yield.

Polystyrene. Between 200�C and 300�C, the molecular weight of the

polymer falls, with no evolution of volatile products. This suggests that

polymers first undergo homolysis, giving macroradicals, which later

undergo disproportionation.

Above 300�C, polystyrene gives a monomer (40–60%), toluene (2%), and

higher homologs. Polymer chains first undergo random homolytic decom-

position.

Mn�!Pm þ Pn�m

The macroradicals then form monomers, dimers, and so forth, by intramo-

lecular transfer.

Chemical Structure on Polymer Properties 57

Copyright © 2003 Marcel Dekker, Inc.



Polyethylene. Beyond 370�C, polyethylene degrades, forming low-

molecular-weight (through intermolecular transfer) and volatile (through

intramolecular transfer) products.

Hindered phenols such as 2,6-di-t-butyl-4- methylphenol (BHT) are effec-

tive melt stabilizers.

Polyacrylonitrile (PAN). On heating PAN at 180–190�C for a long time

(65 h) in the absence of air, the color changes to tan. If it is heated under

controlled conditions at 1000�C, it forms carbon fibers. The special

properties of the latter are attributed to the formation of cyclic rings

through the combination of nitrile groups as follows:

Polyvinyl chloride (PVC). At 150�C, the polymer discolors and liberates

chlorine. The reaction is autocatalytic and occurs as follows:
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whenever substituents on it can undergo further reactions. The most common

example in which cyclization occurs predominantly is found in nitrile polymers,

whose cyanide groups are shown in Box 2.2 to condense to form a cyclic

structure. The material thus formed is expected to be strong and brittle, a fact

which is utilized in manufacturing carbon fiber used in polymer composites.

Finally, there are several applications in packaging (e.g., where it is

desirable that a polymeric material easily burn in fire). On the other hand, several

other applications, such as building furniture and fitting applications, require that

the material have a sufficient degree of fire resistance. Fire retardants are

chemicals that are mixed with polymers to give this property; they produce the

desired effect by doing any combination of the following:

1. Chemically interfering with the propagation of flame

2. Producing a large volume of inert gases that dilute the air supply

3. Decomposing or reacting endothermally

4. Forming an impervious fire-resistant coating to prevent contact of

oxygen with the polymer

Some of the chemicals (such as ammonium polyphosphate, chlorinated

n-alkanes for polypropylene, and tritolyl phosphate) are used in PVC as fire

retardants.

Example 2.1: Describe a suitable oxidation (or etching) method of polyethylene

and polypropylene surfaces. Also, suggest the modification of terylene with

nucleophilic agents like bases.

The polymer thus formed has several double bonds on the backbone during

HCl loss. It can undergo intermolecular cross-linking through a Diels–

Alder type reaction as follows:

Some of the melt stabilizers for PVC are lead carbonate and dialkyl

carboxylate.
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Solution: A solution of K2Cr2O7 : H2O :H2SO4 in the ratio of 4.4 : 7.1 : 88.5 by

weight at 80�C gave carboxylic groups on the surface which can be further

functionalized as follows:

This surface treatment increases the wettability of polyethylene and can also be

done by a KMnO4, H2SO4 mixture. The hydrazine modified polyethylene can

further be reacted with many reagents.

The polyester can be easily reacted on surfaces with 4% caustic soda

solution at 100�C:

There is 30% loss in weight in 2 h and excessive pitting and roughening of the

surface occurs.

Example 2.2: Fiberglass-reinforced composites (FRCOs) are materials having

an epoxy resin polymer matrix which embeds glass fabric within it. In order to

compatibilize glass fabric, a thin layer of polymer could be chemically bound to it

in order to improve fracture toughness. Suggest a suitable method of grafting

polymer on glass fabric.

Solution: All commercially available glass fabrics are already silanated

using aminopropyl triethoxysilate and can serve as points where initiators can

be chemically bound. For this purpose, we can prepare a dichlorosuccinyl

peroxide initiator starting from succinic anhydride. The latter is first reacted

with hydrogen peroxide at room temperature and then reacted with thionyl
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chloride as follows:

This initiator can be immobilized on glass fabric and the MMA can be easily

polymerized using the modified fabric as follows:

In grafting polymers, we need to covalently bind on suitable initiator on the

surface as it has been done in this example.

2.4 RUBBERS

Natural and synthetic rubbers are materials whose glass transition temperatures

Tg are lower than the temperature of application. Rubber can be stretched up to

700% and exhibit an increase in modulus with increasing temperature.

2.4.1 Natural Rubber

On gouging the bark of Hevea brasiliensis, hevea latex is collected, which has

close to a 33% dry rubber content. Natural rubber, a long-chain polyisoprene,

given by
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is produced by coagulating this latex (e.g., using acetic acid as the coagulating

agent) and is used in adhesives, gloves, contraceptives, latex foam, and medical

tubing. Ribbed smoked sheets (RSSs) are obtained by coagulating rubber from

the latex, passing it through mill rolls to get sheets and then drying it at 43�C to

60�C in a smokehouse. Crepes are obtained by washing the coagulum to remove

color impurity and b-carotene, and then bleaching with xylyl mercaptan.

Comminuted rubbers are produced by drying the coagulum and then storing

them in bales.

Natural rubber displays the phenomenon of natural tack and therefore

serves as an excellent adhesive. Adhesion occurs because the ends of rubber

molecules penetrate the adherend surfaces and then crystallize. The polymer has

the following chemical structure, having a double bond at every alternate carbon

atom:

and it can react with sulfur (in the form of sulfur chloride) to form a polymer

network having sulfur bridges as follows:

This process is known as vulcanization. The polymer thus formed is tough and is

used in tire manufacture.

In ordinary vulcanized rubber used in tire industries, the material contains

about 2–3% sulfur. If this sulfur content is increased to about 30%, the resultant

material is a very hard nonrubbery material known as ebonite or ‘‘hard rubber.’’

The double bonds of natural rubber can easily undergo addition reaction with

hydrochloric acid, forming rubber hydrochloride:
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If natural rubber is treated with a proton donor such as sulfuric acid or stannic

chloride, the product is cyclized rubber (empirical formula of �C5H8�), having
the following molecular structure:

The polymer is inelastic, having high density, and dissolves in hydrocarbon

solvents only. Treatment of natural rubber with chlorine gives chlorinated rubber,

which has the following structure:

Chlorinated rubber is extensively employed in industry for corrosion-resistant

coatings.

There are several other 1,4-polyisoprenes occurring in nature that differ

significantly in various properties from those of natural rubbers. One of these is

gutta percha, which is essentially a nonelastic, hard, and tough material (used for

making golf balls). The stereoisomerism in diene polymers has already been

discussed in Chapter 1; gutta percha has been shown to be mainly trans-1,4-

polyisoprene. Because of their regular structure, the chains can be packed closely,

and this is responsible for the special properties of the polymer.

2.4.2 Polyurethane Rubbers

The starting point in the manufacture of polyurethane rubbers is to prepare a

polyester of ethylene glycol with adipic acid. Usually, the former is kept in excess

to ensure that the polymer is terminated by hydroxyl groups:
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The polyol (denoted OH P OH) is now reacted with a suitable diisocyanate.

Some of the commerciaIly available isocyanates are tolylene diisocyanate (TDI),

diphenylmethane diisocyanate (MDI),

and naphthylene diisocyanate,

When polyol is mixed with a slight excess of a diisocyanate, a prepolymer is

formed that has isocyanate groups at the chain ends:

With the use of P to denote the polyester polymer segment, U to denote the

urethane �CONH linkage, and I to denote the isocyanate �NCO linkage, the

polymer formed in reaction (2.4.5) can be represented by I�PUPUPU�I. This is
sometimes called a prepolymer and can be chain-extended using water, glycol, or

amine, which react with it as
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Experiments have shown that the rubbery nature of the polymer can be attributed

to the polyol ‘‘soft’’ segments. It has also been found that increasing the ‘‘size’’ of

R contributed by the chain extenders tends to reduce the rubbery nature of the

polymer. The urethane rubber is found to have considerably higher tensile

strength and tear and abrasion resistance compared to natural rubber. It has

found extensive usage in oil seals, shoe soles and heels, forklift truck tires,

diaphragms, and a variety of mechanical applications.

2.4.3 Silicone Rubbers

Silicone polymers are prepared through chlorosilanes, and linear polymer is

formed when a dichlorosilane undergoes a hydrolysis reaction, as follows:

Silicone rubbers are obtained by first preparing a high-molecular-weight polymer

and then cross-linking it. For this, it is important that the monomer not have

trichlorosilanes and tetrachlorosilanes even in trace quantity. The polymer thus

formed is mixed with a filler (a common one for this class of polymer is fumed

silica), without which the resultant polymer has negligible strength. The final

curing is normally done by using a suitable peroxide (e.g., benzoyl peroxide, t-

butyl perbenzoate, dichlorobenzoyl peroxide), which, on heating, generates

radicals (around 70�C).

The radicals abstract hydrogen from the methyl groups of the polymer. The

polymer radical thus generated can react with the methyl group of another

molecule, thus generating a network polymer:
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Silicone rubbers are unique because of their low- and high-temperature

stability (the temperature range for general applications is �55�C to 250�C),
retention of elasticity at low temperature, and excellent electrical properties. They

are extremely inert and have found several biomedical applications. Nontacky

self-adhesive rubbers are made as follows. One first obtains an OH group at chain

ends through hydrolysis, for which even the moisture in the atmosphere may be

sufficient:

On reacting this product with boric acid, there is an end-capping of the chain,

yielding the self-adhesive polymer. On the other hand, ‘‘bouncing putty’’ is

obtained when �Si�O�B� bonds are distributed on the backbone of the chain.

2.5 CELLULOSE PLASTICS

Cellulose is the most abundant polymer constituting the cell walls of all plants.

Oven-dried cotton consists of lignin and polysaccharides in addition to 90%

cellulose. On digesting it under pressure and a temperature of 130–180�C in 5–

10% NaOH solution, all impurities are removed. The residual a-cellulose has the
following structure:

Every glucose ring of cellulose has three �OH functional groups that can further

react. For example, cellulose trinitrate, an explosive, is obtained by nitration

of all OH groups by nitric acid. Industrial cellulose nitrate is a mixture of

cellulose mononitrate and dinitrate and is sold as celluloid sheets after it is

plasticized with camphor. Although cellulose does not dissolve in common

solvents, celluloid dissolves in chloroform, acetone, amyl acetate, and so forth.

As a result, it is used in the lacquer industry. However, the polymer is

inflammable and its chemical resistance is poor, and its usage is therefore

restricted.

Among other cellulosic polymers, one of the more important ones is

cellulose acetate. The purified cellulose (sometimes called chemical cellulose)

is pretreated with glacial acetic acid, which gives a higher rate of acetate
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formation and more even substitution. The main acetylation reaction is carried

out by acetic anhydride, in which the hydroxyl groups of cellulose (denoted

X�OH) react as follows:

If this reaction is carried out for long times (about 5–6 h), the product is cellulose

triacetate. Advantages of this polymer include its water absorptivity, which is

found to reduce with the degree of acetylation, the latter imparting higher strength

to the polymer. The main usage of the polymer is in the preparation of films and

sheets. Films are used for photographic purposes, and sheets are used for glasses

and high-quality display boxes.

Cellulose ethers (e.g., ethyl cellulose, hydroxyethyl cellulose, and sodium

carboxymethyl cellulose) are important modifications of cellulose. Ethyl cellulose

is prepared by reacting alkali cellulose with ethyl chloride under pressure. If the

etherification is small and the average number of ethoxy groups per glucose

molecule is about unity, the modified polymer is soluble in water. However, as the

degree of substitution increases, the polymer dissolves in nonpolar solvents only.

Ethyl cellulose is commonly used as a coating on metal parts to protect against

corrosion during shipment and storage.

Sodium carboxymethyl cellulose (CMC) is prepared through an intermedi-

ate alkali cellulose. The latter is obtained by reacting cellulose [X�(OH)3] with
sodium hydroxide as follows:

X�ðOHÞ3 þ 3NaOH�!X�ðONaÞ3 þ 3H2O ð2:5:2Þ

which is further reacted with sodium salt of chloroacetic acid (Cl�CH2COONa),

as follows:

X�½ONa�3 þ 3ClCH2COONa�!X�½OCH2COONa�3 þ NaCl ð2:5:3Þ

Commercial grades of CMC are physiologically inert and usually have a degree

of substitution between 0.5 and 0.85. CMC is mainly used in wallpaper

adhesives, pharmaceutical and cosmetic agents, viscosity modifiers in emulsions

and suspensions, thickener in ice cream industries, and soil- suspending agents in

synthetic detergents.

It has already been pointed out that naturally occurring cellulose does not

have a solvent and its modification is necessary for it to dissolve in one. In certain

applications, it is desired to prepare cellulose films or fibers. This process

involves first reacting it to render it soluble, then casting film or spinning

fibers, and, finally, regenerating the cellulose. Regenerated cellulose (or rayon)
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is manufactured by reacting alkali cellulose [or X�(ONa)3] with carbon disulfide

to form sodium xanthate:

which is soluble in water at a high pH; the resultant solution is called viscose. The

viscose is pushed through a nozzle into a tank with water solution having 10–

15% H2SO4 and 10–20% sodium sulfate. The cellulose is immediately regener-

ated as fiber of foil, which is suitably removed and stored.

2.6 COPOLYMERS AND BLENDS [9^11]

Until now, we have considered homopolymers and their additives. There are

several applications in which properties intermediate to two given polymers are

required, in which case copolymers and blends are used. Random copolymers are

formed when the required monomers are mixed and polymerization is carried out

in the usual fashion. The polymer chains thus formed have the monomer

molecules randomly distributed on them. Some of the common copolymers

and their important properties are given in Box 2.3.

Polymer blends are physical mixtures of two or more polymers and are

commercially prepared by mechanical mixing, which is achieved through screw

compounders and extruders. In these mixtures, different polymers tend to

separate (instead of mixing uniformly) into two or more distinct phases due to

incompatibility. One measure taken to improve miscibility is to introduce specific

interactive functionalities on polymer pairs. Hydrogen-bondings have been shown

to increase miscibility and, as a consequence, improve the strength of the blends.

Eisenberg and co-workers have also employed acid–base interaction (as in

sulfonated polystyrene with polyethylmethacrylate–Co–4-vinyl pyridine) and

ion–dipole interaction (as in polystyrene–Co–lithium methacrylate and polyethy-

lene oxide) to form improved blends.

Commonly, the functional groups introduced into the polymers are

carboxylic or sulfonate groups. The following are the two general routes of

their synthesis:

1. Copolymerization of a low level of functionalized monomers with the

comonomer

2. Direct functionalization of an already formed polymer

Because of the special properties imparted to this new material, called an

ionomer, it has been the subject of vigorous research in recent years. Ionomers are

used as compatibilizing agents in blends and are also extensively employed in

permselective membranes, thermoplastic elastomers, packaging films, and visco-

sifiers. Carboxylic acid groups are introduced through the first synthetic route by
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employing acrylic or methacrylic acids as the comonomer in small quantity.

Sulfonate groups are normally introduced by polymer modification; they will be

discussed in greater detail later in this chapter.

A special class of ionomers in which the functional groups are situated at

chain ends are telechelic ionomers. The technique used for their synthesis

Box 2.3

Some Commercial Copolymers

Ethylene–vinyl acetate copolymer (EVA). Vinyl acetate is about 10–15

surface gloss, and melt adhesive properties of EVA.

Ethylene–acrylic acid copolymer. Acrylic acid content varies between 1

and 10 polymer. When treated with sodium methoxide or magnesium

acetate, the acid groups form ionic cross-linking bonds at ambient condi-

tion, whereas at high temperature these break reversibly. As a result, they

behave as thermosetting resins at low temperatures and thermoplastics at

high temperatures.

Styrene–butadiene rubber (SBR). It has higher abrasion resistance and

better aging behaviour and is commonly reinforced with carbon black. It is

widely used as tire rubber.

Nitrile rubber (NBR). In butadiene acrylontrile rubber, the content of the

acrylonitrile lies in the 25–50 range for its resistance to hydrocarbon oil and

gasoline. It is commonly used as a blend with other polymers (e.g., PVC).

Low-molecular weight polymers are used as adhesives.

Styrene–acrylonitrile (SAN) copolymer. Acrylonitrile content is about 20–

30 grease, stress racking, and crazing. It has high impact strength and is

transparent.

Acrylonitrile–butadiene–styrene (ABS) terpolymer. Acrylonitrile and styr-

ene are grafted on polybutadiene. It is preferred over homopolymers

because of impact resistance, dimensional stability, and good heat-distortion

resistance. It is an extremely important commercial copolymer and, in

several applications, it is blended with other polymers (e.g., PVC or

polycarbonates) in order to increase their heat-distortion temperatures.

When methyl methacrylate and styrene are grafted on polybutadiene, a

methyl methacrylate–butadiene–styrene MBS copolymer is formed.

Vinylidene chloride–vinyl chloride copolymer. Because of its toughness,

flexibility, and durability, the copolymer is used for the manufacture of

filaments for deck chair fabrics, car upholstery, and doll’s hair. Biaxially

stretched copolymer films are used for packaging.
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depends on the functional groups needed; the literature reports several synthesis

routes. The synthesis via radical polymerization can be carried out either by using

a large amount of initiator (sometimes called dead-end polymerization) or by

using a suitable transfer agent (sometimes called telomerization). If a carboxylic

acid group is needed, a special initiator–3,3-azobis (3-cyanovaleric acid) should

be used:

For a hydroxyl end group, 4,4-azobis 2(cyanopentanol) could be employed:

We will show in Chapter 5 that using a large amount of initiator gives polymer

chains of smaller length and is therefore undesirable. Instead, radical polymer-

ization in the presence of transfer agents can be performed. The best known

transfer agent is carbon tetrachloride, which can abstract an electron from

growing polymer radicals, Pn; as follows:

Pn þ CCl4 �! Mn�Clþ Cl3�C? ð2:6:1Þ
The CCl3 radical can add on the monomer exactly as Pn; but the neutral molecule

Mn�Cl is seen to contain the chloride group at one of its ends. This chloride

functional group can subsequently be modified to hydroxy, epoxide, or sulfonate

groups, for example, as follows:

Synthesis of telechelics through anionic polymerization is equivalently conve-

nient; interested readers should consult more advanced texts [11].
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We have already indicated that incompatibility in polymer blends causes

distinct regions called microphases. The most important factor governing the

mechanical properties of blends is the interfacial adhesion between microphases.

One of the techniques to improve this adhesion is to bind the separate micro-

phases through chemical reaction of functional groups. Figure 2.3 shows a

styrene copolymer containing oxazoline groups and an ethylene copolymer

with acrylic acid as a comonomer. These polymers are represented as follows:

The following reaction of functional groups occurs at the microphase boundaries:

The two polymers are blended in an extruder and, due to this reaction, there is

some sort of freezing of the microphases, thus giving higher strength. Another

interesting example that has been reported in the literature is the compatibiliza-

tion of polypropylene with nylon 6. The latter is a polyamide that has a carboxylic

acid and an amine group at chain ends; in another words, it is a telechelic. We

then prepare a copolymer of polypropylene with 3% maleic anhydride. The melt

extrusion of these polymers would lead to a blend with frozen matrices, as shown

in Figure 2.4.

FIGURE 2.3 Polymer compatibilization through chemical reaction of functional groups.
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2.7 CROSS-LINKING REACTIONS

We have already discussed the fact that a polymer generated from monomers

having a functionality greater than 2 is a network. This is called a cross-linking or

curing reaction. The cured polymer, being a giant molecule, will not dissolve in

any solvent. Some of the applications of the polymer that utilize curing are

adhesives, paints, fiber-reinforced composites, ion-exchange resins, and poly-

meric reagents. We will discuss these in the rest of the chapter.

Adhesives are polymers that are initially liquid but solidify with time to

give a joint between two surfaces [12,13]. The transformation of fluid to solid can

be obtained either by evaporation of solvent from the polymer solution (or

dispersion) or by curing a liquid polymer into a network. Table 2.3 lists some

common adhesives, which have been classified as nonreactive and reactive

systems. In the former, the usual composition is a suitable quick-drying solvent

consisting of a polymer, tackifiers, and an antioxidant. Tackifiers are generally

low-molecular-weight, nonvolatile materials that increase the tackiness of the

adhesive. Some tackifiers commonly used are unmodified pine oils, rosin and its

derivatives, and hydrocarbon derivatives of petroleum (petroleum resins). Several

polymers have their own natural tack (as in natural rubber), in which case

additional tackifiers are not needed.

Before adhesion occurs, wetting of the surface must occur, which implies

that the molecules of the adhesives must come close with those of the surface to

interact. After the solvent evaporates, a permanent bond sets between the surfaces

to be joined. Pressure-sensitive adhesives are special nonreacting ones that do not

lose their tackiness even when the solvent evaporates. This is because the

polymer used is initially in the liquid stage and it remains so even after drying.

The most common adhesive used industrially is polymer dispersion of a

copolymer of 2-ethyl hexyl acrylate, vinyl acetate, and acrylic acid in water

FIGURE 2.4 Use of maleic anhydride to compatibilize polypropylene and nylon 6.
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TABLE 2.3 (continued )

Type Structure Remarks

Polyvinyl ether

R: methyl, ethyl, or isobutyl

These polymers are frequently used in

pressure-sensitive adhesive applications, as

in cellophane tapes and skin bandages.

Reactive adhesives

Two-component polyurethane adhesives Prepolymer NCO NCO with polyol OH OH

hardener

Used as structural adhesive. Usually the curing

is slow and the joint has low modules.

Epoxy adhesives Diglycidyl ether of bisphenol-A, Two parts epoxy resins are mixed before use. It

exhibits excellent adhesion to metals,

plastics, woods, glass, ceramics, etc. It is

unaffected by water, and its major use is in

aerospace, automotive, electrical, and

electronics industries.

Anaerobic acrylic Polyethylene glycol

Bismethacrylates

with a hydroperoxide catalyst

It cures at room temperature through a free-

radical mechanism in contact with metal

without air. Originally used as sealant but

now also used as structural adhesive. Curing

is sensitive to substrate.

Cyanoacrylates Methyl or ethyl cyanoacrylates It polymerizes on a surface with a slight

amount of moisture. It joins any surface

except polyethylene, polypropylene, and

Teflon.

7
4

C
h
ap
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2
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prepared through the emulsion polymerization technique. The other polymeric

materials that give permanent tack are natural rubber, polyvinyl ethyl, isobutyl

ethers, and silicone rubbers, all of which are commercially available. The silicone

polymers, in addition, have considerable thermal stability and are known to be

used at low as well as high temperatures (�75�C to 250�C).
Reactive adhesives are those liquid materials that are cured (or cross-

linked) into a solid network in situ. For example, epoxy adhesives consist of two

components, one of which is a prepolymer formed by the reaction of an excess of

epichlorohydrin with bisphenol-A, as follows [14]:

The diglycidyl ether of bisphenol-A is a liquid that is mixed with a polyether

triamine:

The curing reaction occurs at room temperature, and it normally takes around

4–5 h to set into a network.

Anaerobic adhesives are single-component adhesives that are normally

multifunctional acrylates or methacrylates; for example, polyethylene glycol

bismethacrylate:

This adhesive has two double bonds and is therefore tetrafunctional. Its curing

reaction is known to be suppressed by oxygen of the air, but it can undergo redox

reaction with metals. This property leads to its polymerization through the radical

mechanism. As a result, it is used for locking threaded machine parts (e.g., lock-

nuts, lock-screws, pipe fittings, and gaskets). Cyanoacrylates (a variant of the

acrylates) are also room-temperature adhesives, but they polymerize through

anionic mechanism. The initiation of the polymerization occurs through the

surface, and the liquid material turns into a solid quite rapidly.
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Paints are utilized mainly for covering open surfaces to protect them from

corrosion and to impart good finish. They are further classified as lacquers, oil

paints, etc.; their differences are highlighted in Table 2.4. The main property

requirements for these are fast drying, adhesion to the surface, resistance to

corrosion, and mechanical abrasion. Various paints available in industry are based

mainly on (1) alkyd and polyester resins, (2) phenolic resins, (3) acrylic resins,

and (4) polyurethanes, which we now discuss in brief.

Alkyd resins are polyesters derived from a suitable dibasic acid and a

polyfunctional alcohol. Instead of using a dibasic acid, for which the polymer-

ization is limited by equilibrium conversion, anhydrides (e.g., phthalic and maleic

anhydrides) are preferred; among alcohols, glycerine and pentaerythritol are

employed. Drying oils (e.g., pine oil, linolenic oil, linseed oil, soybean oil, etc.)

TABLE 2.4 Common Terminology Used in Paints Industry

Common names Description Remarks

Lacquer Consists of a polymer solution

with a suitable pigment. The

solvent used is organic in

nature, having a high vapor

pressure.

The chosen polymer should form

a tough film on drying and

should adhere to the surface.

Acrylic polymers are preferred

because of their chemical

stability.

Oil paints A suspension in drying oils (e.g.,

linseed oil). Cross-linking of

oil occurs by a reaction

involving oxygen.

Sometimes, a catalyst such as

cobalt naphthenate is used to

accelerate curing.

Varnish A solution of polymer–either

natural or synthetic-in-drying

oil. When cured, it gives a

tough polymer film.

Ordinary spirit varnish is actually

a lacquer in which shellac is

dissolved in alcohol.

Enamel A pigmented oil varnish. It is similar to nature to oil paint.

Sometimes, some soluble

polymer is added to give a

higher gloss to the dried film.

Latex paint Obtained by emulsion

polymerizing. A suitable

monomer in water. The final

material is a stable emulsion of

polymer particles coalesce,

giving a strong film with a

gloss.

To give abrasion resistance to the

film, sometimes inorganic

fillers such as CaCO3 are

added. Because of their

chemical stability, acrylic

emulsions are preferred.
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are esters of the respective acids with glycerine. For example, linolenic acid is

R1�COOH, where R1 is

CH3CH2CH2¼CHCH2CH¼CHCH2CH¼CHðCH2Þ6�CH3

and the linolenic oil is

Evidently, the drying oil has several double bonds, which can give rise to cross-

linking. At times, a hydroperoxide catalyst is added to promote curing of the

drying oil.

Phenolic resins are obtained by polymerizing phenol with formaldehyde.

When polymerized at low pH (i.e., acidic reaction medium), the resultant material

is a straight-chain polymer, normally called novolac. However, under basic

conditions, a higher-branched polymer called resole is formed. To cure novolac,

a cross-linking agent, hexamethylenetetramine, is required, which has the

following chemical formula:

During curing, ammonia and water are released. Because low-molecular-weight

reaction products are formed, the film thickness must be small (< 25 mm);

otherwise, the film would develop pinholes or blisters. The curing of resole, on

the other hand, does not require any additional curing agent. It is heat cured at

about 150�C to 200�C and its network polymer is called resite. Curing at ambient

conditions can be done in the presence of hydrochloric acid or phosphoric acid.

The film of the polymer is generally stable to mineral acid and most of the organic

solvents. It has good electrical insulation properties and is extremely useful for

corrosion-resistant coatings.

Acrylic paints are normally prepared through the emulsion polymerization

of a suitable acrylic monomer. In this process, the monomer (sparingly soluble in

water) is dispersed in water and polymerized through the free-radical mechanism

using a water-soluble initiator such as sodium persulfate. The main advantage of
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emulsion paint is its low viscosity, and after the water evaporates, the polymer

particles coalesce to give a tough film on the surface. In several applications, it is

desired to produce cross-linked film, for which the polymer must be a thermo-

setting acrylic resin. This can be done by introducing functional groups onto

polymer chains by copolymerizing them with monomers having reactive func-

tional groups. For example, acrylic acid and itaconic acids have carboxylic acid

groups, vinyl pyridine has amine groups, monoallyl ethers of polyols have

hydroxyl groups, and so forth.

Composites are materials that have two or more distinct constituent phases

in order to improve mechanical properties such as strength, stiffness, toughness,

and high-temperature performance [15]. Polymer composites are those materials

that have a continuous polymer matrix with a reinforcement of glass, carbon,

ceramic, hard polymeric polyaramid (commercially known as Kevlar) fibers, hard

but brittle materials such as tungsten, chromium, and molybdenum, and so forth.

These can be classified into particle-reinforced or fiber-reinforced composites,

depending on whether the reinforcing material is in the form of particles or long

woven fibers.

In polymer composites, the common reinforcing materials are glass

particles or fibers; we will restrict our discussion to glass reinforcements only

in this chapter. In our earlier discussion of fillers, we recognized that surface

treatment is required in order to improve their compatibility. During the forming

of glass, it is treated with g-amino propyl ethoxy silane, which forms an organic

coating to reduce the destructive effect of environmental forces, particularly

moisture. We have already discussed that the glass surfaces have several �OH
groups that form covalent bonds with the silane compound. The dangling amine

functional groups on the glass later react with the polymer matrix, giving greater

compatibility with the glass and, hence, higher strength.

The cheapest glass-reinforcement material is E-glass, often used as a

roving, or a collection of parallel continuous filaments. Among the polymer

matrices, polyester and epoxy resins, which we discuss shortly, are commonly

employed. An unsaturated polyester prepolymer is first prepared by reacting

maleic acid with diethylene glycol:

The polyester prepolymer is a solid and, for forming the composite matrix, it is

dissolved in styrene, a small amount of multifunctional monomer divinyl

benzene, and a free-radical peroxide initiator, benzoyl peroxide. The resultant
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polymer is a network, and the curing reaction is exothermic in nature. The final

properties of the polyester matrix depend considerably on the starting acid

glycols, the solvent monomer, and the relative amount of the cross-linking

agent divinyl benzene. In this regard, it provides an unending opportunity to

the polymer scientists and engineers to be innovative in the selection of

composition and nature of reactants.

We have already discussed the chemistry of epoxide resins. The properties

of the cured epoxy resin depend on the epoxy prepolymer as well as the curing

agent used. Epoxy resin is definitely superior to polyester because it can adhere to

a wide variety of fibers and has a higher chemical resistance. Polyimides and

phenolic resins have also been used as matrix material. The former has higher

service temperature (250–300�C), but during curing, it releases water, which must

be removed to preserve its mechanical properties. Many thermoplastic polymers

have also been used as matrix material for composites. They are sometimes

preferred because they can be melted and shaped by the application of heat and

can be recycled; however, they give lower strength compared to thermosetting

resins.

Example 2.3: Fiberglass composites are prepared by coating unidirectional

fiberglass with epoxy prepolymer and then heating until it forms a hard matrix.

Present a simple stress analysis of this under loading in the direction of fibers.

Solution: Let us assume that there is perfect bonding between fiber and matrix

with no slippage at the interface:

Due to continuity, strains in the matrix (em) and fibers (ef ) must be equal.

Therefore, forces shared by the matrix (Pm) and the fiber (Pf ) are related to the

stresses sf (in fibers) and sm (in the matrix) through the following relations:

Pf ¼ sf Af ¼ Ef ef Af

Pm ¼ smAm ¼ EmemAm
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where Af (of fibers) and Am (of the matrix) are cross-sectional areas. It has been

assumed that both fibers (of modules Ef ) and the matrix (of modulus Em) behave

elastically. if the composite as a whole has a cross-sectional area of Ac and a stress

sc in it, then

Pc ¼ scAc ¼ sf Af þ smAm

2.8 ION-EXCHANGE RESINS

Ion-exchange materials are insoluble solid materials that carry exchangeable

cations or anions or both [16–18]. Materials having exchangeable cations are

cation exchangers, those having exchangeable anions are anion exchangers, and

those having both are called amphoteric exchangers. These materials have a

porous framework held together by lattice energy, with labile functional groups

that can be exchanged. There are naturally available aluminosilicates with ion-

exchange properties. Commonly called zeolites, these are relatively soft materi-

als. In recent years, several synthetic zeolites (sometimes called molecular sieves)

have been developed that are now available commercially.

Among all exchangers, the most important are organic ion exchangers,

which are cross-linked polymeric gels. When the polymer matrix carries ions

such as �SO1�
3 , �COO1�, PO2�

3 , AsO2�
3 , and so forth, it is called a cation

exchanger; when it has �NH1þ
4 , �NH2þ

2 , �Nþ�, �Sþ, and so forth, it is called

an anion exchanger. The organic material most commonly in use is a copolymer

gel of styrene and divinyl benzene (DVB), and the general-purpose resin contains

about 8–12% of the latter. As the DVB content is reduced, the degree of cross-

linking reduces, and at around 0.25% DVB, the polymeric gel swells strongly to

give a soft, gelatinous material. As DVB is increased (at about 25%), the polymer

swells negligibly and is a mechanically tough material.

The copolymer beads of ion-exchange resins are prepared by the suspen-

sion polymerization scheme [16,19]. In this technique, monomers styrene and

divinyl benzene are mixed with a suitable initiator such as benzoyl peroxide and

suspended in water under constant stirring. This produces small droplets that are

prevented from coagulation by dissolving a suspension stabilizer (e.g., gelatin,

polyvinyl alcohol, sodium oleate, magnesium silicate) in water. The particle size

of the resin depends on several factors—in particular, the choice of the suspen-

sion stabilizer. Normally, a bead size of 0.1–0.5mm is preferred. After the beads

are formed, the polymer can be conveniently sulfonated by concentrated sulfuric

acid or chlorosulfonic acid. The sulfonation starts from the resin surface, and the

reaction front marches inward. It has been shown that this reaction introduces one

group per benzene ring, and more than one group per ring only under extreme
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conditions. Sulfonation is an exothermic process—which means that if the resin

particles are not swollen beforehand, they can crack under the stress generated by

local heating and swelling caused by the substitution of the groups.

Let us now examine the physical nature of the resin beads formed during

suspension copolymerization. Because of stirring and the suspension stabilizer,

the organic phase consisting of monomers and initiator breaks into small droplets.

Under heat, the initiator decomposes into radicals, which gives rise to polymer-

ization as well as cross-linking in the medium of the monomer. As higher

conversion is approached, monomers begin to diminish and the solvation reduces,

ultimately vanishing with the monomers. With the reduction of solvation,

polymer chains start collapsing, eventually forming a dense glasslike resin.

When the cross-link density is small, these glasslike resins can once again

swell with the addition of a good solvent. Such materials are called xerogels. For

styrene–divinyl benzene, the xerogel beads are formed for DVB content less than

0.2%. As the DVB content is increased, the polymer chains, in addition to cross-

linking, start getting entangled; if the gel collapses once, it does not swell again to

the same level. Good solvents for the styrene–DVB system are toluene and

diethyl benzene. If the suspension polymerization is carried out in their presence,

the chains do not collapse. This gives high porosity to the beads, and the resultant

product is called macroporous resin.

Solvents such as dodecane and amyl alcohol are known to mix with styrene

and divinyl benzene in all proportions. However, if polymerization is carried out

in the presence of these solvents, the polymer chains precipitate because of their

limited solubility. Such a system is now subjected to suspension polymerization.

The process of bead formation is complicated due to precipitation, and the

polymer chains are highly entangled. Each resin particle has large pores filled

with the solvent. Unlike macroporous particles, these are opaque and retain their

size and shape even when the diluent is removed. These are called macroreticular

resins and will absorb any solvent filling their voids.

From this discussion, it might appear as if styrene–divinyl benzene

copolymer is the only accepted resin material. In fact, a wide range of materials

have been used in the literature, among which are the networks formed by phenol

and formaldehyde, acrylic or methacrylic acids with divinyl benzene, and

cellulose. Ion-exchange cellulose is prepared by reacting chemical cellulose

with glycidyl methacrylate using hydrogen peroxide, ferrous sulfate, and a

thiourea dioxide system [20]. The grafted cellulose,

is reacted with aqueous ammonia, with which amination, cross-linking, and a

hydrolysis reaction occur, as follows:
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Amination

Cross-linking

Hydrolysis

In several applications, it is desired to introduce some known functional groups

into the ion-exchange resins. Introduction of a halogen group through chloro-

methyl styrene or acenaphthene, carboxylic acid through acrylic or methacrylic

acid, and so forth have been reported in literature [19]. It can be seen that these

functional groups could serve as convenient points either for polymer modifica-

tion or for adding suitable polymer chains.

The classical application of ion-exchange resin has been in the treatment of

water for boilers, for which the analysis of the column has now been standardized

[18]. It is suggested that a packed bed of these resins first be prepared and the

water to be processed pumped through it. Because ion resin particles are small,

the resistance to the flow of water through the colunm is high. It would be

desirable to add these particles into a vessel containing impure water, whereupon

the former would absorb the impurities [21,22]. Because these particles are small,

their final separation from water is difficult; to overcome this handling difficulty,

the exchangeable groups are sometimes attached to magnetic particles such as

iron oxide. These particles are trapped in polyvinyl alcohol cross-linked by

dialdehyde (say, gluteraldehyde). These resin beads are mixed with the water to

be purified and, after the exchange of ions has occurred, are collected by bringing

an external magnet. The bead material is highly porous but has the disadvantage

of its exchanged salt clogging the holes, thus giving reduced capacity to

exchange. An alternative approach that has been taken is to first prepare a

nonporous resin of polyvinyl alcohol cross-linked with a dialdehyde. A redox

initiating system is subsequently used to prepare grafts of copolymer of acrylic

acid and acrylamide. The resultant material, sometimes known as whisker resin

(Fig. 2.5), is known to give excellent results.

82 Chapter 2

Copyright © 2003 Marcel Dekker, Inc.



We have already observed that cation exchange resins have bound ions like

�SO�3 , �COO�, �SO�3 , �COO�, �PO2�
3 , and �AsO�2 . These

are present as salts with sodium counterion. If water has calcium chloride (hard

water) as the impurity to be removed, then calcium ion is exchanged as follows:

It is thus seen that calcium is retained by exchanger resin. The separation, as

shown, can be done for any other salt, as long as it reacts with an SO�3 group and

displaces sodium. The specificity of a resin toward a specific metal ion can be

improved by altering the exchanging ions.

For the separation of metals, organic reagents that form a complex with

them are used, ultimately precipitating from the solution [23–28]. These are

called chelating agents. It is well known that the functional groups are responsible

for their properties. Some of the chelating functional groups are given in Table

2.5. There are several techniques by which these could be affixed on polymer gel:

1. Polymerization of functional monomers

2. Grafting of second functional monomers on already prepared polymer,

followed by second-stage polymerization

3. Immobilization of chelating organic reagents onto polymer

4. Polymerization of a nonfunctional monomer followed by modification

FIGURE 2.5 Two possible forms of ion-exchange resins used for water treatment.
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The preparation of chelating resins is still an area of active research, so it

cannot be discussed in detail in the limited scope of this chapter. However, let us

consider one example to illustrate the technique in which a hydroxamic acid

group has been introduced into the polymer matrix. In terpolymerization of

styrene, divinyl benzene, and acrylic acid, the final polymer is a network resin

with carboxylic acid groups on the chain (represented by [P]�COOH) [16]. This
polymer is subjected to the following modifications:

This resin has been shown to be specific to Fe3þ ions. In an alternative technique

[29], cross-linked polyacrylamide is prepared by maintaining a solution of

acrylamide, N ,N 0-methylenebisacrylamide with ammonium persulfate at 25�C.
A solution of hydroxylamine hydrochloride is added to the gel, and the pH of the

reaction mass is raised to 12 by adding sodium hydroxide. The reaction is carried

out for 24 h, and ammonia is released as the hydroxamic acid groups are formed

on the matrix of the gel. The polyacrylamide gel P�CO�NH2 is modified

through the following mechanism:

In another interesting application of chelating ion-exchange resin, uranium

from seawater can be recovered [30]. Uranium in seawater is present in a trace

concentration of 2.8–3.3mg=cm3. A macroreticular acrylonitrile–divinyl benzene

resin is prepared by suspension polymerization with toluene as a diluent and

benzoyl peroxide as initiator. Within 4 h at 60�C, fine macroreticular beads are

produced. A solution of sodium hydroxide in methanol is added to the solution of
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hydroxyl amine hydrochloride in methanol. This is reacted with the gel and the

resin, forming well-defined pores as follows:

TABLE 2.5 Some Chelating Functional Groups

Name Formula

b-Diketones

Dithiozone

Monoximes

Dioximes

Nitrosophenol

Nitrosoaryl hydroxylamine

Hydroxamic acid

Dithiocarbamates

Amidoxime
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The easily recognized oxime group shown forms a complex with the uranium salt

present in seawater.

Most polymeric surfaces are hydrophobic in nature. In order to improve

adhesion (adhesion with other surfaces, adhesion with paints or heparin for

biomedical applications), this trait must be modified [31]. The most common

method of doing this is by oxidation of the surface, which can be carried out by

either corona discharge, flame treatment, plasma polymerization at the surface,

grafting reactions, or blending the polymer with reactive surfactants that enrich at

polymer interfaces. It has been shown that benzophenone under ultraviolet

irradiation can abstract hydrogen from a polymer surface:

The polymer radical generated at the surface can add on any monomer near the

surface through the radical mechanism, as shown. Figure 2.6 presents the

schematic diagram showing the setup needed for grafting. The chamber is

maintained at around 60�C, at which benzophenone gels into the vapor phase

FIGURE 2.6 Grafting of benzophenone on the surface of polyethylene.
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and interacts with the polymer surface. By this method, it is possible to obtain a

thin layer of the grafted polymer on polyethylene.

Ion-exchange resins have also served as catalysts [32–35]. However, the

resin gets completely deactivated at around 200�C, and the safe working

temperature is around 125�C. Strongly acidic resins are prepared by sulfonation

of polystyrene gels. Strongly basic resins are obtained by the amination of

chloromethylated resins by tertiary amines such as trimethyl amine:

The literature is full of reactions carried out in the presence of polymer

catalysts. A full discussion on this matter is beyond the scope of the present

discussion. It might suffice here to state that virtually all of those organic

reactions that have been carried out in the presence of homogeneous acids or

bases are also catalyzed by polymer catalysts.

Example 2.4: Give the mechanism of esterification reaction with certain

exchanger catalyst and mathematically model the overall heterogeneous reaction.

Solution: The mechanism of esterification of stearic acid with butanol can be

written as

Different intermediate steps involved in the resin catalyzed reaction are as

follows:

1. Diffusion of reactants across the liquid film adhering to the surface

2. Diffusion of reactants to the active sites of the resin

3. Adsorption of reactants to the active sites of the resin

4. Chemical reaction at the active sites of the resin

5. Desorption of the products
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Let us say that the chemical reaction at the active sites is the rate-

determining step, in which case the rate of reaction can be written as

xf ¼ ks COSCBS �
CWSCES

KS

� �
where COS, CBS, CWS, and CES are concentrations of stearic acid, butanol, water,

and the ester at the active sites, respectively. The rest of the above intermediate

steps must be at equilibrium and these can be related to bulk concentration COb,

CBb, CWb, and CEb as follows. Let CL be the total molar concentration and the Cv

of adsorption rA can he written as

vA;O ¼ kACObCv � k 0ACDs ¼ 0

where Cv is yet to be determined. Similarly for other components,

COs ¼ KOCObCv

CBs ¼ KBCBbCv

CWb ¼ KwCWbCv

CEb ¼ KECEbCv

Cv ¼ CL � CvðKOCOb þ KBCBb þ KWCWb þ KECEbÞ
From these equations, one can solve for COS in terms of bulk concentrations:

COS ¼
CLKOCOb

1þ KOCOb þ KBCBb þ KWCWb þ KECEb

Example 2.5: A commercial styrene–divinyl benzene (SFDVB) anion exchanger

has an exchange capacity of 1.69mEq=wet gram having 42% moisture content.

Relate this exchange capacity information to average member exchanging groups

per repeat unit of the resin.

Solution: Anion-exchange resin is prepared by chloromethylating SFDVB resin

using chloromethyl methyl ether (CMME) and then quarternizing it with

trimethyl amine (TMA) as follows:

Here, the exchanging group is Cl�. Let us say that on a given chain there are N0

(this being a very large value for network) repeat units and all repeat units have
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one exchanging group. The molecular weight of the repeat unit is 184.5 and the

molecular weight of the polymer is 184:5N0. If it is assumed that all repeat

units have one exchanging group, its exchange capacity in milliequivalents

per dry gram of the resin would be N0=184:5N0 or 5.42mEq=dry g.
The exchange capacity of commercial resin is 1.69mEq=wet g or 2.91

ð¼ 1:69=0:58ÞmEq=dry g, which suggests that about every second repeat unit

should be having one exchanging group.

Example 2.6: Polymer membranes are commonly used in barrier separation.

Reverse osmosis (RO) and ultrafiltration (OF) both utilize the pressure gradient,

causing separation of solutions (usually water as the solvent). Give a simple

analysis of transport salt (species 1) and solvent (species 2) through membrane

for both these cases.

Solution: In reverse osmosis, the membrane is nonporous in nature. A molecule

is transported across it because a driving force (F) acts on it and the flux is

proportional to it:

Flux ðJ Þ ¼ ½ proportionality ðAÞ�½driving force ðX Þ�
If t is the thickness of the membrane, then across it, there may exist a

concentration (say DC), pressure (say DP), and electrical potential (say DE)
difference. The average driving force (Fav), therefore, would be

Fav ¼
RT

l

DCi

Ci

þ Zix
l
DE þ vi

l
� Dp

where vi is the specific volume of the solute. The first term arises because

chemically potential mi ¼ m0i þ RT lnC1 and D lnC1 ¼ 1=Ci.

As opposed to this, in ultrafiltration, membranes are porous in nature and

the pore diameter varies between 2 nm and 10 mm. The simplest representation of

the membrane would be a set of parallel cylindrical pores, and based on Kozeny–

Carman relationship, the flux could be written as

J ¼ e3

KmS2ð1� e2Þ2
Dp
Dx

where e is the volume fraction of pores, K is a constant, and S is the internal

surface area.

2.9 CONCLUSION

In this chapter, we have examined polymers as useful materials, specifically

focusing on the effect of the chemical structure on properties. Because of their
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high mechanical strength and easy moldability, polymers are used as structural

materials, replacing metals in several applications. Because a polymer can be

dissolved in a suitable solvent, it can be used as a paint. It also forms a network,

for which it conveniently serves the purpose of polymer- supported reagents and a

catalyst.
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PROBLEMS

2.1. In Example 2.4, we have evaluated Cv and COS analytically. In the dual-site

mechanism, the surface reaction between adsorbed A and adsorbed B is the
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rate-determining step. The expression for the rate has been derived to be

r ¼
�kkKAKBðCAiCBi � CRiCzi=KÞ

ð1þ CBiKB þ CAiKA þ CRiKR þ CSiKSÞ2

In a study, oleic acid (109 g) was esterified at 100�C using butanol at three

different concentrations (166 g for Expt. 1, 87 g for Expt. 2, and 31 g for

Expt. 3). The X-8 cation-exchange resin (4 g) has the exchange capacity

of 4.3mEq=g and an average particle diameter of 0.48mm. The dynamic

analysis has yielded some of these constants as follows:

Fractional conversion of oleic acid

Time, min Expt. 1 Expt. 2 Expt. 3

0.00 0.00 0.00 0.00

60.0 0.1419 0.1254 0.1063

120 0.2517 0.2396 0.2068

180 0.3541 0.3411 0.2989

240 0.4410 0.4108 0.3576

300 0.5149 0.4806 0.4081

360 0.5712 0.5399 0.4590

420 0.6271 0.5863 0.5392

480 0.6901 0.6202 0.5783

600 0.7406 0.6907 0.5787

1 0.9129 0.8369 0.7212

KA 8.08 13.76 21.91

KB 22.58 14.78 0.46

KR 12.39 12.03 11.49

Ks 12.39 12.03 11.49

�kk ? ? ?

Plot the kinetic data and determine the initial slope. From these, evaluate

the initial rate r0 and determine the missing constants of the above model.

Show that the model is not consistent and should be rejected.

2.2. The kinetic data of oleic acid esterification in Problem 2.1 is next evaluated

against the single-site model in which the adsorption of B is controlling.

The rate expression can be easily determined to be

r ¼ kBCLðCBi � CRiCSi=CAiKÞ
1þ ðCRiCSiKB=CAKÞ þ CRiKR þ CSiKS
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The fitting of the conversing versus time data has yielded the following:

Expt. 1 Expt. 2 Expt. 3

KA 24.1 20.16 21.62

KR 0.2 0.1 0.3

KS ? ? ?

kBCL 0.081 0.52 0.046

Find the missing constants using the initial rate information of Problem 2.1.

Show whether the model is consistent or not consistent.

2.3. For a surface-reaction-controlling, single-site model, the rate of reaction

can be derived as

r ¼
�kkKAðCBiCAi � CRiCSi=KÞ

1þ CAiKAi þ CSiKS þ CRIKR

The fitting of time-conversion data yield the following constants:

Expt. 1 Expt. 2 Expt. 3

KA 21.56 21.06 21.73

KR 9.63 8.74 8.17

KS 9.63 8.74 8.17

k ? ? ?

Determine the missing rate constant and show that it could serve as a

plausible model for the esterification of oleic acid.

2.4. The oxidative coupling of 2,6-dimethyl phenol (DMP) has been studied by

Challa:
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The catalyst was prepared by first synthesizing a copolymer of styrene and

N -vinyl imidazole. The polymeric catalyst was prepared in situ by dissol-

ving copolymer in toluene and adding CuCl2–isopropanol solution. The

catalyst activity is attributed to the following complex:

The above oxidative coupling reaction has been explained by the following

Michaelis–Menten-type mechanism.

Eþ DMP �! �
k1

k�1
E � DMP �!k2 E*þ PPOþ DPQ

E*þ O2 �!
kreox

Eþ H2O

Derive an expression for the rate of consumption of DMP.

2.5. The cellulose–polyglycidyl methacrylate ðCell�CH�CH2Þn /
O

copolymer

was prepared by grafting glycidyl methacrylate on cellulose using the

hydrogen peroxide–ferrous sulfate thiourea dioxide system as the initiator.

The resultant copolymer is reacted with a mixture of ammonia and ethyl

amine. Write down all possible reactions, including the one leading to

cross-linking. Notice that the reactions are similar to curing of epoxy resin

consisting of amination and hydrolysis reaction with water.

2.6. Polymer surface properties control wettability, adhesion, and friction, and,

in some cases, electronic properties. Gas-phase chlorination of polyethyl-

ene surfaces is done just for this purpose, and the reaction can be followed

using x-ray photoelectron spectroscopy (XPS). The XPS technique can

identify various chemical species within 10–70 mm of the surface. In the

chlorination of polyethylene, the species are �CH2�, �CHC�, �CCl2�,
�CH�CH�, and �CH�CX�. Observe that the chlorination proceeds

through a radical mechanism. The mechanism of polymerization, assuming

that all reaction steps are reversible, can be represented by

Initiation
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Propagation

Termination

Assuming a thin surface layer as a batch reactor, write mole balance for

each species.

2.7. Let us make the following simplifying assumptions regarding Problem 2.6.

1. All intermediate radical species have small but time-invariant

concentrations.

2. Reactions involving (�?CH� and ?Cl) and (�CHCl� and Cl?)

are irreversible.

3. Neglect termination reaction [reactions (8) and (9)] between

(�CH� and Cl?) and (�CCl� and Cl?).

4. Reaction (CH and Cl2) is essentially irreversible (ks � k6,

k9 � k7).

5. The rate of formation of �CCl� controls the �CCl2� formation.

Assuming that the thin layer of the polythene surface could be described by

a batch reactor, find the concentration of [�CH2�], [�CHCl�], and

[�CCl2�] analytically as a function of time.
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2.8. Oxazoline–polystyrene (commercially called OPS) is a copolymer of

styrene and vinyl oxazoline:

Solid polyethylene pieces are mixed with lupersol 130 (LPO) and maleic

anhydride and reacted at 120�C in 1,2- dichlorobenzene (DCB) solvent.

The resultant polymer is then mixed and extruded with OPS. Elaborate

what precisely would happen in the extruder. Write down the mechanism of

the reaction occurring in DCB. The initiator LPO is a solution of 2,5-di(t-

butylperoxy)-2,5-dimethyl-3-hexyne with a half-life of about 12min at

165�C.
2.9. Melt-mixed blends of polyvinyl chloride and carboxylated nitrile rubber

cross-link by themselves. Such blends are found to have good oil

resistance, high abrasion resistance, and high modulus with moderate

tensile and tear strength. Write down all reactions occurring therein.

2.10. A mixture of methyl methacrylate, N -vinyl pyrrolidone [CH2¼CH�
N�(CH2)3C(O)] divinyl benzene, ethyl acrylate and benzoyl peroxide

has been polymerized between two glass plates. The resultant polymer

can incorporate water within its matrix, and because of this property, it is

sometimes called a hydrogel. In order to incorporate a drug into the

hydrogel, the polymer was dipped in a solution of erythromycin estolate.

The hydrogel is transparent initially but becomes opaque on incorporation

of the drug. If this is now kept in physiological saline water (containing

0.9% NaCl and 0.08% NaHCO3), the drug is leached out and the hydrogel

begins to regain its transparency. The release of drug depends on the

diffusion of erythromycin through the matrix. Because the diffusion

coefficient of the drug depends on the matrix property, we can manipulate

the rate of release of drug. Assuming that the entire polymer has uniform

drug concentration, determine the rate of release of the drug. Then, solve

this problem analytically.

2.11. Assume in Problem 2.10 that a quasi-steady-state exists and the concentra-

tion (Cd) profile is time invariant, given by the following diagram where x

is the distance measured from the surface of rectangular hydrogel sheet and

L is the value of x at the center. Find x as a function of time.
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2.12. Polysulfone membranes are commonly used in ultrafiltration and are a

copolymer of bisphenol-A and dichlorophenyl sulfone, having the mole-

cular structure [�OC6H4�SO2�C6H4�OO�C6H4�C(CH3)2�C6H4�
O�]n. In an experiment, five of these membranes having each a dry

mass of 0.763 g were nitrated for different times. These were then aminated

using hydrazine hydrate and the resultant material had �NHþ2 Cl� exchan-

ging groups. The following results were reported:

Duration of 0.5 1.0 2 3 4

modification (h)

Accurate exchange 0.810 1.420 1.723 1.741 1.681

capacity (mEq=dry g)

Determine the average number of NH2 groups per repeat unit (in fractions)

as a function of time of nitration and plot your results.

2.13. Polystyrene pellets have been nitrated using similar procedure and then

aminated:

However, R2 and R1 resins were found to exchange only once and the one-

time capacity of these were 1.63mEq=wet g and moisture content of 40%.

Explain why this is so and find the number of NH2 in the R2 resin per

repeat unit.

In an alternate experiment, the R2 resin is reacted with epichlorohydrin and

the oxirane ring hydrolyzed using NH3. Write down the chemical reactions

and predict their capacity. The resultant resin could be regenerated

repeatedly.
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2.14. The R2 resin of Problem 2.13 is reacted with dichloroethane and then

quarternized using triethyl amine giving R5 resin. The resultant resin (R5)

has an exchange capacity of 5mEq=wet g with 69% moisture. Write down

chemical reactions forming the R5 resin and explain the reason for this

sudden jump in exchange property.

2.15. The cross-linked polymethyl methacrylate–ethylene dimethacrylate

(PMMA–EGDMA) copolymer resin (represented by �CH2C(CH3)�
COOCH3) can be similarly nitrated using NOx and this transformation can

be written as

The R2 resin can similarly be aminated and its exchanging groups are

�NHþ2 Cl�. It has an exchange capacity of 4.6mEq=wet g with 79%

moisture. Calculate the extent of nitration of the R2 resin and suggest

why this has become so highly hygroscopic.

2.16. Polymers can be degraded by thermal, oxidative, chemical, radiative,

mechanical, and biological agents. In the photo-oxidative degradation of

polyethylene (PE), radicals are first formed anywhere on the chain, which

combine with oxygen to give a peroxy radical. This peroxy radical is

converted to a carbonyl group. On further exposure to light, the following

reactions occur:

These are called Narish type I and II (NI and NII) degradations. Develop

the reaction mechanism. Show how an ester group could be formed. You

can see that the photo-oxidation embrittles the polymer and makes the

polymer hydrophilic also.

2.17. The micro-organisms that degrade paraffins (straight-chain polymers) are

mycobacteria, nocardia, candida, and pseudomonas. However, these do not

react with branched polyethylene. In the biodegradation of polyethylene in

the presence of ultraviolet (UV) light seems to proceed as in Problem 2.16,

98 Chapter 2

Copyright © 2003 Marcel Dekker, Inc.



yielding carbonyl groups. As soon as this happens, these are attacked by

micro-organisms that degrade the shorter segments of PE and form CO2

and H2O. Carbonyl groups are converted (unlike in Problem 2.16, where

NI and NII reactions occur) to a carboxylic group, which is attacked by

CoASH enzyme produced by the bacteria. This gives rise to a b-oxidation,
giving a double bond that combines with water, ultimately being converted

to another carbonyl group. In addition, the following additional reaction

occurs:

Write the full mechanism.

2.18. Plastics are reinforced wth fillers to give higher strength and stiffness and

reduced thermal expansion. Leading examples of reinforced polyesters are

sheet-molding compounds (SMC) and bulk-molding compounds (BMC).

Typical SMC consists of filler calcium carbonate (47.5%), chopped glass

rovings (29%), fumerate or malleate polyester (13%), maturation agent

magnesium oxide, catalyst t-butyl perbenzoate, low-profile additive

(PVAc þ styrene, 8%), internal mold-release agent zinc stearate (0.8%),

and carrier resin (PVAc). Write the formation of maleate polyester (and

fumerate polyester) with propylene glycol. Show how branching and

lactone formation can occur.

2.19. Explain the need for various ingredients of SMC polyester described in

Problem 2.18. The maturation agent participates in the polymerization;

some believe it does so as follows:
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However, some scientists feel that there is only coordination complex

formation, as follows:

How would you propose to confirm which mechanism represents the true

configuration?

2.20. We define vf and vm as volume fractions of fibers and the matrix,

respectively, and assume that the fibers are laid parallel longitudinally.

Rewrite sc in Example 2.3 in terms of these. Calculate the fraction of load

carried by the fibers in composites of glass fibers and epoxy resin

containing 16% fibers. Ef ¼ 72GN=m2 and Em ¼ 3:6GN=m2.

2.21. Repeat the earlier problem for carbon fibers which has Ef ¼ 437GN=m2.

In Example 2.3, we assumed only one kind of fiber material. Suppose there

are n materials and a determine relation similar to that in Problem 2.20.

2.22. Consider a transverse loading of unidirectional loading composite as

follows:

In this case, the elongation in the composite (dc) is the sum of the

elongation in the fiber (df ) and the matrix (dm). Determine the transverse

modulus Ec in terms of Em and Ef .

2.23. Unidirectional composites have longitudinal (aL) and transverse (aL)
coefficients of thermal coefficients given by

aL ¼
af Ef vf þ amEmvm

Ec

aT ¼ ð1þ nf Þaf Vf þ ð1þ nmÞamVm � aLnf vf þ nmvmÞ
where af and am are coefficients of thermal expansion for fiber and matrix,

Ec is the elastic modulus of composite in the longitudinal direction, and nf
and nm are the Poisson ratios of the fibers and the composites, respectively.

Plot aL and aT as a function of vf for the following properties:
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af ¼ 0:5� 10�5=�C am ¼ 6:0� 10�5=�C
Ef ¼ 70GN=m2 Em ¼ 3:5GN=m2

nf ¼ 0:20 nm ¼ 0:35

2.24. The thermal conductivities (longitudinal, k4 and transverse kT in W=m �C)
composites are determined using the following relations:

kL ¼ Vf kf þ Vmkm

kT ¼ km
1þ xZVf

1� ZVf

where

Z ¼ kf =km � 1

kf =km þ x

log x ¼
ffiffiffi
3
p

log
a

b

� �
where kf and km are transfer coefficients for the fiber and matrix,

respectively. For Vf ¼ 0:6, km ¼ 0:25W=m �C, and kf ¼ 1:05W=m�C
(for glass fibers), determine kL and kT . What would be their values, if

the carbon fibers (kf ¼ 12:5W=m �C) are used in place of glass fibers.

2.25. The process for reverse osmosis (used to get pure water from sea) can be

schematically shown as

Calculate the osmotic pressure (p, in atmospheres) of the NaCl solution

with C1 ¼ 10 kgNaCl=m3 solution (density r1 ¼ 1004 kg solution=m3)

using the following relation:

p ¼ nRT

Vm

where n is kilogram mole of solute, Vm is the volume of pure solvent water

(in m3), R is the gas constant (82:057� 10�3 m3 atm=kgmolK), and T is

the temperature (in �K). The density of pure water is given as 997.
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2.26. The flux of water, Nw, and solute, Ns (in kg=m2 S) are given by

Nw ¼ AwðDP � DpÞ
Ns ¼ AsðC1 � C2Þ

where Dp ¼ p1 � p2, Aw and As are the solvent and solute permeability

constants, respectively, and for the cellulose acetate membrane, these are

2:039� 10�4 kg solvent=Sm2 atm and 3:896� 10�7 m=sec. Calculate

these fluxes if C1 and C2 are 10 kgNaCl=m3 and 0.39 kgNaCl=m3 and

the applied pressure (DP) is 50 atm.
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3

Step-Growth Polymerization

3.1 INTRODUCTION

As described in the previous chapters, the properties of polymeric materials

depend considerably on their molecular-weight distribution (MWD). This in turn

is completely determined by the mechanism of polymerization. There are various

mechanisms by which polymer chains grow; this chapter focuses on one of them:

step-growth polymerization.

Monomer molecules consisting of at least two functional groups can

undergo step-growth polymerization. In order to keep mathematics tractable,

this chapter will focus on polymerization of bifunctional monomers. The two

reacting functional groups can either be on the same monomer molecule, as in

amino caproic acid, NH2�ðCH2Þ5�COOH, or on two separate molecules, as in

the reaction between ethylene glycol, OH�ðCH2Þ2�OH, and adipic acid,

COOH�ðCH2Þ4�COOH. If they are located on the same monomer molecule,

represented schematically as ARB, the concentrations of the functional groups

remain equimolar throughout the course of the reaction, which can be schema-

tically represented as follows [1–7]:

nðA�R�BÞ ! A�R�B½A�R�B�n�2�A�R�B ð3:1:1Þ
Here, R represents an alkyl or aryl group to which the two functional groups A

and B are attached. In case the functional groups are located on two different

monomers, A�R�A and B�R0�B, an analysis similar to the one for ARB
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polymerization can be conducted. As pointed out in Chapter 1, the overall

reaction represented by Eq. (3.1.1) consists of several elementary reactions,

which can be represented as follows:

Pm þ Pn ��! ��km;n

k 0mþn
Pmþn þW; m; n ¼ 1; 2; . . . ð3:1:2Þ

where Pn represents A�R�B�ðA�R�BÞn�2�A�R�B, Pm represents the

A�R�B�ðA�R�BÞm�2 A�R�B molecule, and W represents the condensation

product. The forward and reverse rate constants km;n and k 0mþn are, in general,

chain-length dependent, as discussed in the following paragraphs.

If two small molecular species, A and B, react as

Aþ B ��! �� Products ð3:1:3Þ

it is evident that the reaction will proceed only after a molecule of A diffuses

close to a molecule of B from the bulk. Thus, the overall reaction between A and

B consists of two consecutive steps: (1) the diffusion of molecules from the bulk

of the mixture to within close proximity of each other and (2) the chemical

interaction leading to product formation. This is represented schematically as

Aþ B �����! �����Diffusion

½A B� �����! �����Chemical

reaction

ABðProductÞ ð3:1:4Þ

However, polymer molecules are very long and generally exist in a highly coiled

state in the reaction mass with the functional groups situated at the chain ends.

Therefore, in addition to the ‘‘bulk’’ molecular diffusion of Pm and Pn, the chain

ends must diffuse close to each other (called segmental motion) before the

chemical reaction can occur. This can be represented schematically as

Pm þ Pn �����! �����Bulk

diffusion

½Pm Pn� �����! �����Segmental

diffusion

½Pm : Pn� �����! �����Chemical

reaction

Pmþn ð3:1:5Þ

Because the bulk and segmental diffusion steps depend on the chain lengths of

the two polymer molecules involved, the overall rate constants in Eq. (3.1.2) are,

in general, a function of m and n. The exact nature of this dependence can be

deduced from the following experiments.
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3.2 ESTERIFICATION OF HOMOLOGOUS SERIES
AND THE EQUAL REACTIVITY HYPOTHESIS
[1,4,5]

The following esterification reactions of monobasic and dibasic acids of homo-

logous series illustrate the effect of molecular size on the rate constants:

H�ðCH2Þn�COOHþ C2H5OH ��!HCl H�ðCH2Þn�COOC2H5 þ H2O

ð3:2:1aÞ

COOH�ðCH2Þn�COOHþ C2H5OH ��!HCl
COOC2H5ðCH2Þn�COOHþ H2O

þ COOC2H5�ðCH2Þn�COOC2H5

þ H2Oþ C2H5OHþ HCl

ð3:2:1bÞ

These reactions have been carried out in excess of ethanol with HCl catalyst, and

the rates of reaction have been measured for various values of the chain length n.

The reaction rate constants are evaluated using the following rate expression:

re ¼
d½COOH�

dt
¼ kA½�COOH�½Hþ� ð3:2:2Þ

where re is the rate of esterification and [ ] represents molar concentrations. The

concentration of ethanol does not enter into Eq. (3.2.2) because it is present in the

reaction mass in large excess.

In Eq. (3.2.2) [�COOH] represents the total concentration of the carboxylic
acid groups in the reaction mass at any time, whether present in the form of a

monobasic of dibasic acid; this is usually determined by titration. ½Hþ� is the

concentration of protons liberated by the hydrochloric acid. Use of the rate

equation in the form shown in Eq. (3.2.2), together with experiments on

monobasic and dibasic acids having different n, makes it possible to isolate the

effect of the size of the molecule on kA.

The rate constants for various values of n are tabulated in Table 3.1. Two

important conclusions can be drawn from the experimental results:

1. The reactivity of larger molecules does not depend on the size of the

molecule for n > 8. [2,7]

2. For larger molecules, the rate constant is independent of whether there

are one, two, or more carboxylic acid groups per molecule.

Similar conclusions have also been obtained on the saponification of esters

and etherification reactions [4,5]. If, in the chemical reaction step of Eq. (3.1.5),
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the reactivity of a �COOH group with an �OH group is assumed to be

independent of n, these observations imply that the rate of diffusion of large

molecules is not affected by the value of n. However, we know intuitively that the

larger the molecule, the slower is its rate of diffusion. Consequently, it is expected

that, as n increases, the diffusional rate should decrease, implying that kA must

decrease with increasing n, a conclusion in apparent contradiction with the

observed behavior.

As shown in Eq. (3.1.5), there are two types of diffusional mechanisms

associated with the reaction of polymer molecules. Although the rate of bulk

diffusion of two molecules decreases with n, the rate of the other step, called

segmental diffusion, is independent of n. The independence of n is due to the fact

that there is some flexibility of rotation around any covalent bond in a polymer

molecule (see Chapter 1), and there is restricted motion of a small sequence of

bonds near the ends, which constitutes segmental diffusion. This brings the

functional groups of two neighboring molecules near each other, regardless of the

chain length of the entire molecule. Thus, with increasing n, two polymer

molecules diffuse slowly toward each other by bulk diffusion but stay together

for a longer time (the two effects canceling out), during which, segmental

diffusion may bring the functional groups together for possible reaction.

Based on the experimental results of Table 3.1, we can postulate a simple

kinetic model for the study of step-growth polymerization in which all of the rate

constants are assumed to be independent of chain length. This is referred to as the

equal reactivity hypothesis. The following section shows that this assumption

leads to a considerable simplification of the mathematical analysis. However,

there are several systems in which this hypothesis does not hold accurately, and

the analysis presented here must be accordingly modified [2,8–14].

TABLE 3.1 Rate Constants for the Esterification of Monobasic

Chain length kA � 104 ð250�CÞa kA � 104 ð250�CÞa
(n) (monobasic acid) (dibasic acid)

1 22.1 —

2 15.3 6.0

3 7.5 8.7

4 7.45 8.5

5 7.42 7.8

6 — 7.3

8 7.5 —

9 7.47 —

Higher 7.6 —

aIn liters per mole (of functional group) second.
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3.3 KINETICS OF A�R�B POLYMERIZATION
USING EQUAL REACTIVITY HYPOTHESIS [2]

A chemical reaction can occur only when the reacting functional groups collide

with sufficient force that the activation energy for the reaction is available. The

rate of reaction, r, can thus be written as proportional to the product of the

collision frequency, omn, between Pm and Pn and the probability of reaction, Zmn
(which accounts for the fraction of successful collisions), as follows:

R ¼ aomnZmn ð3:3:1Þ
where a is a constant of proportionality. According to the equal reactivity

hypothesis, Zmn is independent of m and n and is, say, equal to Z. If the

functional groups of the two molecules Pm and Pn can react in s distinct ways, the

probability of a reaction between Pm and Pn is given by sZ. The collision

frequency omn between two dissimilar molecules Pm and Pn in the forward step is

proportional to ½Pm�½Pn�, whereas that for Pm and Pm is proportional to �½Pm�2=2
(the factor of one-half has been used to avoid counting collisions twice). Thus, if

kp is the rate constant associated with the reaction between functional groups,

then under the equal reactivity hypothesis, km;n, the rate constant associated with

molecules Pm and Pn in the forward step, is given by

km;n ¼

r

½Pm�½Pn�
¼ skp; m 6¼ n;m; n ¼ 1; 2; . . .

r

½Pm�2
¼ skp

2
; m ¼ n; n ¼ 1; 2; . . .

8>><>>: ð3:3:2Þ

For linear chains with functional groups A and B located at the chain ends, there

are two distinct ways in which polymer chains can react, as shown in Figure 3.1.

This fact implies the following for such cases:

km;n ¼
2kp m 6¼ n;m; n ¼ 1; 2 . . .

kp m ¼ n; n ¼ 1; 2; . . .

(
ð3:3:3aÞ
ð3:3:3bÞ

The various (distinct) elementary reactions in the forward step can now be written

as follows:

Pm þ Pn�!
2kp

Pmþn þW ; m 6¼ n; n ¼ 1; 2; 3; . . .

Pm þ Pn�!
kp

P2m þW ; m ¼ n; n ¼ 1; 2; . . .

ð3:3:4aÞ

ð3:3:4bÞ
The reverse step in Eq. (3.1.2) involves a reaction between polymer molecule Pn
and condensation product W; there is a bond scission in this process. It may be

observed that Pn has n� 1 equivalent chemical bonds where the reaction can

occur with equal likelihood. It is thus seen that if k 0p is the reactivity of a bond
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with W, the reactivity of an oligomer Pn is ðn� 1Þk 0p. The mole balance equations

for various molecular species in a constant-density batch reactor can now be

easily written. Species P1 is depleted in the forward step when it reacts with any

other molecule in the reaction mass. However, Pn ðn � 2Þ is formed in the

forward step when a molecule Prðr < nÞ reacts with Pn�r and is depleted by

reaction with any other molecule. In the reverse step Pn is depleted when any of

its chemical bonds are reacted and it is formed whenever a Pq ðq > nÞ reacts at a
specified bond position. For example, if we are focusing our attention on the

formation of P4, a molecule having chain length greater than 4, say, P6, would

lead to the formation of P4 if W reacts at the second or fourth position of P6. The

mole balance relations are therefore given by the following:

d½P1�
dt
¼ �2kp½P1�f½P1� þ ½P2� þ � � �g þ 2k 0p½W�f½P2� þ ½P3� þ � � �g ð3:3:5aÞ

d½Pn�
dt
¼ kp

Pn�1
r¼1
½Pr�½Pn�r� � 2kp½Pn�f½P1� þ ½P2� þ � � �g

� k 0p½W�ðn� 1Þ½Pn� þ 2k 0p½W�f½Pnþ1� þ ½Pnþ2� þ � � �g;
n ¼ 2; 3; 4; . . . ð3:3:5bÞ

There is no factor of two in the first term of Eq. (3.3.5b) because of the symmetry,

as shown through an example of the formation of P6. This occurs at a rate given

by ð2kp½P1�½P5� þ 2kp½P2�½P4� þ 2kp½P3�½P3�Þ. The factor of the first two terms

arises because km;n is 2kp, whereas the factor of the last term, 2kp½P3�=2, arises
because of the fact that two molecules of P3 are consumed simulataneously when

P3 reacts with P3. The first term in Eq. (3.3.5b) for this is kp
P5

r¼1½Pr�½Pn�r�, as
shown.

If the concentration of all the reactive molecules in the batch reactor is

defined as

l0 ¼
P1
n¼1
½Pn� ð3:3:6Þ

FIGURE 3.1 The two distinct ways in which two linear bifunctional chains can react.
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one can sum up the equations in Eq. (3.3.5) for all n to give the following:

dl0
dt
¼ d½P1�

dt
þ d½P2�

dt
þ d½P3�

dt
þ � � �

¼ �2kpl20 þ kpl
2
0 � k 0p½W�

P1
n¼2
ðn� 1Þ½Pn� þ 2k 0p½W�

P1
n¼1

P1
i¼nþ1

½Pi�

ð3:3:7Þ
It is recognized thatP1

n¼1

P1
i¼nþ1

½Pi� ¼ ½P2� þ ½P3� þ ½P4� þ � � � þ ½P3� þ ½P4� þ � � � þ ½P4� þ � � �

¼ ½P2� þ 2½P3� þ 3½P4� þ � � �
¼ P1

n¼1
ðn� 1Þ½Pn�

ð3:3:8Þ
Therefore, Eq. (3.3.7) can be written as

dl0
dt
¼ �kpl20 þ k 0p½W�

P1
n¼1
ðn� 1Þ½Pn� ð3:3:9Þ

It may be observed that
P1

n¼1 ðn� 1Þ½Pn� represents the total number of reacted

bonds in the reaction mass. It is thus seen that the infinite set of elementary

reactions in step-growth polymerization in Eq. (3.1.2) can be represented

kinetically by the following equivalent and simplified equation:

�Aþ�B ��! ��kp

�AB�þW ð3:3:10Þ
where �AB� represents a reacted bond. The representation of an infinite series

of elementary reactions by only one elementary reaction [Eq. (3.3.10)] involving

functional groups is a direct consequence of the equal reactivity hypothesis. This

leads to a considerable simplification of the mathematical analysis of polymer-

ization reactors.

Example 3.1: Consider the ARB step-growth polymerization in which monomer

P1 reacts with Pn (for any n) with a different rate constant, as follows:

P1 þ Pn ��! ��k1

Pnþ1 þW; n ¼ 1; 2; 3 ðaÞ
Pm þ Pn ��! ��kp

Pnþm þW; m; n ¼ 2; 3; ðbÞ
Derive the mole balance relations for the MWD of the polymer in a batch reactor.
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Solution: s in Eq. (3.3.2) is 2 because the polymer chains are linear. Let us first

consider the reaction of P1. In the reactions of P1 with P1, similar molecules are

involved, and the reactivity would be 2k1=2. However, for the reaction of P1 with

any other molecule, the reactivity would be 2k1. Therefore,

k1n ¼ k1 for n ¼ 1

2k1 for n ¼ 1; 2; 3; . . .

�
The other reactivities remain the same as in Eq. (3.3.3):

kmn ¼
kp for m ¼ n

2kp for m 6¼ n;m; n ¼ 2; 3; . . .

�
The mole balance of species P1 is made by observing that two molecules of P1 are

depleted whenever there is a reaction of P1 with itself in the forward step,

whereas only one molecule of P1 disappears in a reaction with any other

molecule. Similarly, in the reverse step, whenever W reacts at the chain ends,

P1 is formed:

d½P1�
dt
¼ �ðForward reaction of P1 with P1Þ
� ðForward reaction of P1 with P2; P3 etc:Þ
þ ðreverse reaction of W at chain ends to give P1Þ
¼ �2k1½P1�½P1� � 2k1½P1�f½P2� þ ½P3� þ � � �g
þ 2k 0p½W�f½P2� þ ½P3� þ � � �g
¼ �2k1½P1�l0 þ 2k 0p½W�

P1
n¼2
½Pn�

The rate of formation of P2 is k1½P1�=2, and P2 is depleted whenever it reacts with

any molecule in the forward step or its bond reacts with W in the reverse step:

d½P2�
dt
¼ ðForward reaction forming P2Þ � ðForward reaction of P2 with P1Þ
� ðForward reaction of P2 with P2 with P2; P3; etc:Þ
� ðReverse reaction of bonds of P2 with WÞ
þ ðreverse reaction of W with P3; P4; etc: to give P2Þ
¼ k1½P1�2 � 2k1½P1�½P2� � 2kp½P2�f½P2� þ ½P3� þ � � �g
� k 0p½W�½P2� þ 2k 0p½W�f½P3� þ ½P4� þ � � �g
¼ k1½P1�2 � 2ðk1 � kpÞ½P2�½P1� � 2kp½P2�l0 � k 0p½W�½P2�
þ 2k 0p½W�

P1
i¼3
½Pi�
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Similarly, the mole balance relaxation for species Pn is given by the following:

d½Pn�
dt
¼ ðForward reaction of P1; P2; etc: with Pn�1; Pn�2; etc:Þ
� ðForward reaction of Pn with P1Þ
� ðForward reaction of Pn with P2; P3; etc:Þ
� ðReverse reaction of W with n� 1 bonds of PnÞ
þ ðReverse reaction of W with Pnþ1; Pnþ2; etc: to give PnÞ

¼ þ2k1½P1�½Pn�1� þ kp
Pn�2
r¼2
½Pr�½Pn�r� � 2k1½Pn�½P1�

� 2kp½Pn�f½P2� þ ½P3� þ � � �g � k 0p½W�ðn� 1Þ½Pn�
þ 2k 0p½W�f½Pnþ1� þ ½Pnþ2� þ � � �g

¼ 2ðkp � k1Þ½Pn�½P1� � 2kp½Pn�l0 þ kp
Pn�1
r¼1
½Pr�½Pn�r�

þ 2ðk1 � kpÞ½Pn�1�½P1� � k 0pðn� 1Þ½W�½Pn� þ 2k 0p½W�
P1

r¼nþ1
½Pr�

The zeroth moment of the MWD can be easily found as follows:

dl0
dt
¼ d½P1�

dt
þ d½P2�

dt
þ � � �

¼ ðk1 � kpÞ½P1�2 � kpl
2
0 � 2ðk1 � kpÞ½P1�l0 þ k 0p½W�

P1
n¼2
ðn� 1Þ½Pn�

3.4 AVERAGE MOLECULAR WEIGHT IN
STEP-GROWTH POLYMERIZATION OF ARB
MONOMERS

Having modeled the rate of step-growth polymerization of ARB monomers, we

can easily derive an expression for the average molecular weight of the polymer

so formed. It is assumed that one starts with pure ARB monomer and that there

are N0 molecules present initially. After polymerization for time t, there would be

fewer, say, N molecules, left in the reaction mass. This number N includes both

unreacted monomer molecules, P1, as well as dimers, trimers, tetramers, and so

forth. In the computation of the average molecular weight for the system at time t,

we could either consider only the dimers, trimers, and all other homologs to

constitute molecules of the polymer, or, alternatively, include monomer molecules

as well. Naturally, the results using the second approach would be lower than that

obtained from the first one. In the following analysis, the monomer is included in
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the computation of the average molecular weight. This is not a drawback because,

for practically important situations, the concentration of P1 is usually negligible.

It may be observed that during polymerization the total number of repeat

units at any time remains unchanged and is equal to the initial number of

monomer molecules, N0. These repeat units, however, are now disturbed over N

polymer molecules at time t, so the average number of repeat units per molecule

is equal to N0=N . This is defined as the number-average chain length, mn
(sometimes called the degree of polymerization), and is given by

mn ¼
N0

N
¼ ½A�0½A� ¼

½B�0
½B� ð3:4:1Þ

where ½A�0, ½B�0, and ½A� and ½B� are the concentrations of the functional groups
A and B at times t ¼ 0 and t ¼ t, respectively. It is convenient to work in terms of

the (fractional) conversion of functional group A (or B), defined as

p 	 ½A�0 � ½A�½A�0
¼ N0 � N

N0

ð3:4:2Þ

which gives

mn ¼
1

1� p
ð3:4:3Þ

Integration of Eq. (3.3.9) can be carried out by observing that for every chemical

bond formed, one molecule of condensation product, W, is formed. If ½P1�0 and

½W�0 moles of monomer and condensation product are initially present in a batch

reactor and W does not leave the reaction mass, then stoichiometry of polymer-

ization gives

½W� þ l0 ¼ ½W�0 þ ½P1�0 ð3:4:4Þ
where [W] and l0 are the concentrations of condensation product and polymer at

any instant of time. We substitute [W] from this equation into Eq. (3.3.9) to

obtain

dl0
dt
¼ �kpl20 þ k 0pf½W�0 þ ½P�0 � log

P1
n¼1

n½Pn� �
P1
n¼1
½Pn�

� �
ð3:4:5Þ

We further observe that
P1

n¼1 n ½Pn� is the first moment of the MWD and is equal

to the total number of repeat units, which means that the first moment, l10, is time

invariant. Therefore, Eq. (3.4.5) becomes

dl0
dt
¼ �kpl20 þ k 0pf½W�0 þ ½P1�0 � l0gðl10 � l0Þ ð3:4:6Þ
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which can be integrated as follows:ð
dl0

�kpg20 þ k 0pf½W�0 þ ½P1�0 � l0gðl10 � l0Þ ¼
Ð
dt

ð3:4:7Þ

where the denominator is a quadratic expression that can be easily factorized and

then written in partial fractions. It can then be integrated to give

q ¼ q0e
�dt ð3:4:8Þ

where

m0 ¼ k 0pð½W�0 þ ½P1�0Þ½P1�0 ð3:4:9aÞ
m1 ¼ k 0pð½W�0 þ 2½P1�0Þ ð3:4:9bÞ
m2 ¼ ðkp � k 0pÞ ð3:4:9cÞ
d ¼ ðm2

1 þ 4m0m2Þ1=2 ð3:4:9dÞ

q ¼ 2m2l0 þ m1 � d
2m2½P1�0 þ m1 þ d

ð3:4:9eÞ

q0 ¼
2m2½P1�0 þ m1 � d
2m2½P1�0 þ m1 þ d

ð3:4:9f Þ

The number-average molecular weight can be easily obtained by multiplying mn
by the molecular weight of ARB (because the molecular weight of W is usually

small).

Example 3.2: Suppose NA0 moles of AR1A monomer are reacted with NB0

moles of BR2B monomer to form the polymer. Derive an expression for the

average molecular weight of the polymer formed.

Solution: We first observe that there are 2NA0 moles of A functional groups and

2NB0 moles of B functional groups present at time t ¼ 0. Whenever a functional

group A (or B) reacts, the total number of molecules in the reaction mass

decreases by 1. Let us, for the moment, assume that NB0 is greater than NA0.

In order to determine the molecular weight, we needed to determine the total

number of molecules at time t when the conversion of A functional groups is pA:

pA ¼
2NA0 � 2NA

2NA0

The total number of moles of unreacted A functional groups at time t is equal to

2NA0ð1� pAÞ
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The total number of moles of unreacted B functional groups at time t is equal to

ð2NB0 � 2NA0pAÞ
At any time t molecules of (A A), (A B), and (B B) types are present, and all of

these are equally likely to occur. If we know the total number of moles of

unreacted A and B functional groups, the total number of moles of polymer is

simply half of this. In other words, the total number of moles of polymer, N , at

time t is equal to 1
2
f2NA0ð1� pAÞ þ 2NB0 � 2NA0pAg. Similarly, the total number

of moles of polymer initially, N0, is equal to NA0 þ NB0:

mn ¼
N0

N
¼ NA0 þ NB0

NA0 þ NB0 � 2pANA0

¼ 1þ r

1þ r � 2rpA

where r ¼ NA0=NB0.

Observe that even when 100% conversion of A functional groups (i.e.,

pA ¼ 1) is achieved, the average chain length mn has a limiting value of

ð1þ rÞ=ð1� rÞ instead of 1, as predicted by Eq. (3.4.3). It is thus seen that

an equimolar ratio (i.e., r ¼ 1) is desirable for the formation of polymer of high

molecular weight.

Example 3.3: The polyester PET, commonly used in the manufacture of

synthetic fibers, is prepared through polymerization of bis-hydroxyethyl

terephthalate (BHET). During polymerization, several side reactions occur, but

if these are ignored, PET formation can be modeled by ARB kinetics as

discussed. Experiments have shown that

kp ¼ 4:0� 104 expð�15� 103=1:98T Þ L=mol min

and the equilibrium constant Kp is

Kp ¼
k 0p
kp
¼ 0:5 ðindependent of temperatureÞ

For the initial monomer concentration, ½P1�0 ¼ 4:58 g mol=L, find the conver-

sion, the average chain length, and the polydispersity index Q after 10min of

polymerization at 280�C and 200�C.

Solution: At 280�C

kp ¼ 4:0� 104 exp
15; 000

1:98ð273þ 280Þ
� �

¼ 4:49� 10�2L=mol min

k 0p ¼ 2:25� 10�2 L=mol min
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Because t ¼ 0, BHET does not have any W,

½W�0 ¼ 0; ½P�0 ¼ ½P1�0 ¼ 4:58 g mol=L

m0 ¼ k 0p½P�20; m1 ¼ 2k 0p½P1�0

m2 ¼ k 0p
1

Kp

� 1

 !

d ¼ ½4k 02p ½P1�20 þ 4k 02p ½P1�20
1

Kp

� 1

 !" #1=2

¼ 2k 0p½P1�0
k
1=2
p

¼ 0:291

q0 ¼
2k 0p½P1�0ð1=Kp � 1Þ þ 2k 0p½P1�0 � 2k 0p½P1�0=K1=2

p

2k 0p½P1�0ð1=Kp � 1Þ þ 2k 0p½P1�0 � 2k 0p½P1�0=K1=2
p

¼ 1=Kp � 1=K1=2
p

1=Kp þ 1=K1=2
p

¼ 1� K
1=2
p

1þ K
1=2
p

¼ 1� 0:71

1þ 0:71
¼ 0:172

q ¼ 2k 0p½P1�0ð1=Kp � 1Þ þ 2k 0p½P1�0 � 2k 0p½P1�0=K1=2
p

2k 0p½P1�0ð1=Kp � 1Þ þ 2k 0p½P1�0 � 2k 0p½P1�0=K1=2
p

¼ l0=½P1�0ð1=Kp � 1Þ þ ð1� 1=K1=2
p Þ

1=Kp � 1=K1=2
p

¼ ð2� 1Þl0=½P1�0 þ ð1� 1:41Þ
2� 1:41

¼ l0=½P1�0 � 0:41

0:59

After 10min,

l0=½P1�0 � 0:41

0:59
¼ 0:172r�2:91

;
l0
½P1�0
¼ 0:41þ 0:172ð0:59Þð0:0545Þ ¼ 0:416

Conversion ¼ 1� l0

½P1�0
¼ 0:584

mn ¼ 2:40; Q ¼ 1þ p ¼ 1:584
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At 200�C,

kp ¼ 4:43� 10�3; k 0p ¼ 2:22� 10�3

d ¼ 2ð2:22� 10�3Þ 4:58

0:71

� �
¼ 0:0287

l0=½P1�0 � 0:41

0:59
¼ 0:172� e�0:287 ¼ 0:7505

l0
½P1�0
¼ 0:41þ 0:59ð0:7505Þ ¼ 0:853

Conversion ¼ 0:147

mn ¼
1

0:853
¼ 1:172; Q ¼ 1þ 0:147 ¼ 1:147

3.5 EQUILIBRIUM STEP-GROWTH
POLYMERIZATION [15^18]

As in chemical reactions of small molecules, condensation polymerizations also

have an equilibrium. In fact, in several cases (e.g., polyethylene terephthalate

polymerization), equilibrium is attained at very low values of mn, and high

vacuum must be applied to drive the reaction in the forward direction to get

polymer of high enough molecular weight to be of commercial interest.

When the reaction mass attains equilibrium, the rates of formation of all

polymeric species in Eq. (3.3.5) are all zero. In other words,

d½P1�e
dt
¼ 0 ¼ �2kp½P1�el0e þ 2k 0p½W�e

P1
i¼2
½Pi�e

d½Pn�e
dt
¼ 0 ¼ �2kp½Pn�el0e þ 2k 0p

Pn�1
r¼1
½Pr�e½Pn�r�e

� k 0p½W�eðn� 1Þ½Pn�e þ 2k 0p½W�e
P1

i�nþ1
½Pi�e; n ¼ 2; 3; . . .

ð3:5:1Þ

We want to find the molecular-weight distribution satisfying Eq. (3.5.1). Let us

assume that it is given by

½Pn�e ¼ xyn�1 ð3:5:2Þ
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where x and y are some parameters that are not dependent on chain length n. We

have already observed that the first moment l1 is time invariant and is the same as

the initial value l10. Therefore, Eq. (3.5.2) must satisfy the following relation:

l10 ¼
P

n½Pn� ¼ xð1þ 2yþ 3y2 þ � � �Þ ¼ x

ð1� yÞ2 ð3:5:3Þ

At equilibrium, the total moles of polymer, l0e, can be obtained by equating

ðdl0e=dtÞ equal to zero in Eq. (3.3.9):

�kpl20e þ k 0p½W�e
P1
n¼1
ðn� 1Þ½Pn� ¼ �kpl20e þ k 0p½W�eðl10 � l0eÞ ¼ 0

ð3:5:4Þ

This is a quadratic equation and can be easily solved. In addition, we can also find

l0e from the assumed form of the MWD in Eq. (3.5.2) as follows:

l0e ¼ xð1þ yþ y2 þ � � �Þ ¼ x

1� y
ð3:5:5Þ

Between Eqs. (3.5.3) and (3.5.5), we get

l0e ¼ l10ð1� yÞ ð3:5:6Þ

and the MWD in Eq. (3.5.2) is given by

½Pn�e ¼ l10
l0e
l10

� �2

1� l0e
l10

� �n�1
ð3:5:7Þ

Now, we show that Eq. (3.5.1) is identically satisfied by Eq. (3.5.2) as follows:

Pn�1
r¼1
½Pr�½Pn�r�e ¼

Pn�1
r¼1

x2yr�1yn�r�1

¼ x2yn�2ðn� 1Þ ð3:5:8ÞP1
i¼nþ1

½Pi�e ¼
P1
n¼1
½Pi�e �

Pn
n¼1
½Pi�e � l0e � x

Pn
i¼1

yi�1

¼ 1

1� y
� xð1� ynÞ

1� y
¼ xyn

1� y
ð3:5:9Þ
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On substituting these in Eq. (3.5.1), we have the following:

� 2kp½Pn�el0 þ kp
Pn�1
r¼1
½Pr�e½Pn�r�e � k 0p½W�eðn� 1Þ½Pn�e

þ 2k 0p½W�e
P1

i¼nþ1
½Pi�e

¼ �2kp
x2

1� y
yn�1 þ kpx

2ðn� 1Þyn�2

þ 2k 0p½W�
xyn

1� y
� k 0p½W�ðn� 1Þyn�1

¼ 2ð�kpxþ k 0pWeyÞxyn�1 þ ðn� 1Þxyn�2f�kpxþ k 0pWeyg

ð3:5:10Þ

However, from Eq. (3.5.4), we have

�kp
x2

ð1� yÞ2 þ k 0p
x

ð1� yÞ2 �
x

1� y

� �
¼ 0 ð3:5:11Þ

or

�kpxþ k 0p½W�ey ¼ 0

which means that Eq. (3.5.10) is identically satisfied by the assumed equilibrium

MWD in Eq. (3.5.2).

3.6 MOLECULAR-WEIGHT DISTRIBUTION IN
STEP-GROWTH POLYMERIZATION

Let us consider step-growth polymerization in a batch reactor having feed of the

following composition. At t ¼ 0,

½Pn� ¼ ½Pn�0; n ¼ 1; 2; . . . ð3:6:1Þ
One of the ways to solve such problems is to utilize the technique of the

generating function, which is described in Appendix 3.1. With the help of the

generating function Gðs; tÞ, the mole balance relations in Eq. (3.3.5) are

combined into one partial differential equation that has a numerical solution

only. However, if the feed to the batch reactor is a pure monomer or has a

distribution given by Eq. (3.5.7), it is possible to obtain an analytical solution.

Let us assume that the feed to the batch reactor is a pure monomer, which

means that the initial condition is given at t ¼ 0 by the following:

½P1� ¼ ½P1�0 ð3:6:2aÞ
½Pn�0 ¼ 0; n ¼ 2; 3; . . . ð3:6:2bÞ
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We guess the form of the MWD as

½Pn� ¼ ½P1�0ð1� pÞ2pn�1 ð3:6:3Þ
where p is the conversion of the functional groups defined in Eq. (3.4.2). We

further observe [steps of the derivation are identical to those in Eqs. (3.5.5) and

(3.5.6)] the following:

l10 ¼ ½P1�0 ð3:6:4aÞ
l0 ¼ ½P1�0ð1� pÞ ð3:6:4bÞ

On substituting these in Eq. (3.3.5), we find

dl0
dt
¼ �kpl20 þ k 0p½W�ðl10 � l0Þ ð3:6:5Þ

which is the same as Eq. (3.3.9), indicating that the assumed form of the MWD is

correct.

The molecular-weight distribution of ARB polymerization was originally

derived by Flory using statistical arguments and is presented here for its historical

significance [17]. A polymer molecule of chain length n has n� 1 reacted A (or

B) groups and one unreacted A (or B). Therefore, the probability of obtaining a

sequence of n� 1 reacted and one unreacted A group in a polymer molecule of

size n would be pn�1ð1� pÞ and the number of molecules of size n, Nn, would be

given by the product of this probability and the total number of molecules present

in the reaction mass at that time; that is,

Nn ¼ Npn�1ð1� pÞ ð3:6:6Þ
Using Eq. (3.4.3), we obtain

Nn

N0

¼ ð1� pÞ2pn�1 ð3:6:7Þ

which is identical to ½Pn�=½P1�0, given by Eq. (3.6.3).

If M1 is the molecular weight of the monomeric repeat unit, the weight

fraction, Wn, of a molecule of size n would be given by

Wn ¼
ðnM1ÞNn

M1N0

¼ nNn

N0

ð3:6:8Þ

and using Eq. (3.6.7),

Wn ¼ nð1� pÞ2pn�1 ð3:6:9Þ
The theoretical number and weight fraction distributions have been plotted in

Figures 3.2 and 3.3, respectively, for several values of the conversion p. This is

sometimes called Flory’s distribution. It is observed from Figure 3.3 that, as time

progresses, the conversion p increases and the molecular-weight distribution not
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FIGURE 3.2 Number fraction distribution in ARB step-growth polymerization in batch

reactors using pure monomer feed. [Reprinted from P. J. Flory, Chem. Rev., 39, vol. 137

(1946) with permission of American Chemical Society.]

FIGURE 3.3 Weight fraction distribution in ARB step-growth polymerization in batch

reactors using pure monomer feed. [Reprinted from P. J. Flory, Chem. Rev., 39, vol. 137

(1946) with permission of American Chemical Society.]
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only shifts to higher and higher molecular weight but also broadens out. Figures

3.2 and 3.3 dictate that even though the concentrations of the low-molecular-

weight homologs P1, P2, and so forth are always the highest, their weight

fractions decrease significantly as p changes from 0.95 to 0.99.

It may be re-emphasized that in deriving Eq. (3.6.3) it is essential to assume

that the feed to the batch reactor is a pure monomer. If higher homologs are

present in the feed, as would be encountered in any intermediate reactor in a

sequence of batch reactors, the molecular-weight distribution would be different

and the polydispersity index (PDI) of the polymer formed would not necessarily

be restricted to the limiting value of 2, as shown in Appendix 3.1. As a matter of

fact, one of the practical methods of achieving a PDI of more than 2 is to partially

recycle a portion of the product stream, as shown in Figure 3.4 [19–22].

Polymerization is carried out in a tubular reactor, and a fraction F of the product

is mixed with the monomer feed. The mole balance equations for tubular reactors

under suitable variable transformations become identical to those for batch

reactors [23]; these must be solved simultaneously, along with mole balance

equations for the mixer. The solution of polymerization with mixing is involved

and has, therefore, been omitted in this book.

Example 3.4: Prove the following summations:

S1 ¼
P1
n¼2

nk
Pn�1
n¼1

PmPn ¼
P1
n¼1

P1
n¼1
ðmþ nÞPnPn ð1Þ

S2 ¼
P1
n¼1

nk
P1

m¼nþ1
Pm ¼ ð2Þ

S2 ¼
P1
n¼2

Pn�1
J¼1

P1
M¼N�Jþ1

PJPM ¼ ð3Þ

Solution: The way of proving these identities is to expand the left-hand side

term-by-term and rearranging. For example,

S1 ¼
P1
n¼2

nk
Pn�1
n¼1

PmPn ¼ 2kðP2P1Þ þ 3kðP3P1 þ P2P2 þ P1P3Þ þ 4kð� � �Þ � � �

¼ P1ð2kP2 þ 3kP3 þ � � �Þ þ P2ð3kP3 þ � � �Þ þ � � �

FIGURE 3.4 Use of recycle and a mixture M to obtain PDIs of values more than 2.
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The general term of this series is ðmþ nÞkPmPn and, therefore, the sum S1 is

given by

S1 ¼
P1
n¼2

P1
n¼1
ðmþ nÞkPmPn

Suppose we are interested in the special case of k ¼ 2, then

S1 ¼
P1
n¼2

P1
n¼1
ðmþ nÞ2PmPn

¼ P1
n¼2

P1
n¼1
ðm2 þ n2 þ 2mnÞPmPn

¼ P1
n¼1
ðm2Pml0 þ 2nl1Pm þ QPmg

2
0Þ ¼ 2l0l2 þ 2l21

In the second summation, we have

S2 ¼
P1
n¼1

nk
P1

m¼nþ1
Pm ¼ 1kðP2 þ P3 þ P4 þ � � �Þ þ 2k

� ðP3 þ P4 þ P5 þ � � �Þ þ 3kðP4 þ P5 þ � � �Þ
¼ ½P2�ð1kÞ þ ½P3�ð1k þ 2kÞ þ � � �

¼ P1
n¼2

Pn�1
m¼1

mk

� �
½Pn�

Let us say that k ¼ 2, in which case

Pn�1
m¼1

nk ¼ ðn� 1Þnð2n� 1Þ
6

¼ ð2h
3 � 3n2 þ nÞ

6

Therefore

S2 ¼
P1
n¼2

2n3 � 3n2 þ n

6
½Pn� ¼

2l3 � 3l2 þ l1
6
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Summation S3 is the kind which appears in redistribution reaction

S3 ¼
P1
n¼2

nk
Pn�1
J¼1

P1
M¼N�Jþ1

½PJ �½PM � ¼ 2k ½P1�ð½P� þ ½P3� þ ½P4� þ � � �Þ

þ 3kP1ðP3 þ P4 þ � � �Þ þ 3k ½P2�ðP2 þ P3 þ P4þÞ þ � � �
¼ ½P1�f½P2� þ ½P3�ð2k þ 3kÞ þ P4ð2k þ 3k þ 4kÞ þ � � �g þ � � �
þ PnfP2ðnþ 1ÞkÞ þ P3fðnþ 1Þ2 þ ðnþ 2Þ2g þ � � �g

¼ P1
n¼1

Pn
P1
j¼2

Pj�1
i¼1
ðnþ iÞkPj

� �
For example, for k ¼ 2, S3 is given by

S3 ¼
P1
n¼1

Pn
P1
j¼2

Pj�1
i¼1
ðnþ iÞ2

� �
Pj

¼ P1
n¼1

Pn
P1
j¼1

Pj�1
i¼1
ðn2 þ 2niþ i2Þ

� �
Pj

¼ P1
n¼1

Pn
P1
j¼1

n2ð j � 1Þ þ 2n
ð j � 1Þ j

2
þ ð j � 1Þ jð2j � 1Þ

6

� �
Pj

¼ P1
n¼1

Pn n2ðl1 � l0Þ þ 2n
l2 � l1

2
þ ð2l3 � 3l2 þ 1Þ

6

� �
¼ ðl1 � l0Þl2 þ ðl2 � l1Þl1 þ

l0
6
ð2l3 � 3l2 þ 1Þ

Example 3.5: Consider the polymerization of AA þ BC monomers where both

B and C react with A at different rates. Determine the number-average molecular

weight of the polymer.

Solution: Let us say that at time t ¼ 0, the concentrations of A, B, and C are

½A�o, ½B�o, and ½C�o, respectively, such that the total number of molecules, N0, per

unit volume is

N0 ¼
½A�0
2
þ ½B�0

and

½B�0 ¼ ½C�0
However, as time progresses, these concentrations become different due to

different reactivities, and the number average molecular weight cannot be

obtained from pure kinetic analysis of functional groups. The analysis presented
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is strictly true for batch reactors where probabilities can be equated to conver-

sions.

Let us define probabilities pA, pB, and pC for finding reacted A, B, and C

functional groups, respectively, at time t. These can be taken as equal conversions

as follows:

pA ¼
½A�0 � ½A�
½A�0

pB ¼
½B�0 � ½B�
½B�0

pC ¼
½C�0 � ½C�
½C�0

Because A can react with B and C functional groups, by stoichiometry, one has

pA ¼
½B�0
½A�0
ð pB þ pCÞ

and in terms of N0, one has

½A�0 ¼
2N0

1þ 2pA=ð pB þ pCÞ
½B�0 ¼ N0 1� 1

2pA=ð pB þ pCÞ
� �

In order to find total number of molecules at time t, Nt, it is observed that the total

number of molecules is reduced by 1 whenever an A functional group reacts

(either with B or C). This gives

Nt ¼ N0 1� 2pA
1þ 2pA=ð pB þ pCÞ

� �
In order to find the total weight, Wt, we define MAA and MBC as the molecular

weights of the repeat units formed through monomers AA and BC, respectively.

Wt is given by

Wt ¼ ðTotal number of molecules and of AA monomerÞ MAA

þ fTotal number of molecules of BC monomer ð½A�0=2ÞMAA

þ ½B�0MBCg
¼ N0

2pA=ð pB þ pCÞ MAA þ
2pA

pB þ pC
MBC

� �
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The number-average molecular weight mA is

mA ¼
Wt

Nt

¼ ð pB þ pCÞMAA þ 2pAmBC

2pA þ pB ¼ pC � 2pAð pB þ pCÞ

3.7 EXPERIMENTAL RESULTS

In previous sections, the set of infinite elementary reactions occurring in step-

growth polymerization was shown to reduce kinetically to a single reaction

involving functional groups. It was essential to assume the equal reactivity

hypothesis in order to achieve this simplification. Thus, tests against various

experimental results are needed to confirm the equal reactivity hypothesis. In this

section, however, experimental results on several important commercial systems

are presented, and we find that the simple model presented earlier needs to be

substantially extended to explain them. In fact, in several situations the equal

reactivity hypothesis itself is inapplicable.

In order to confirm the equal reactivity hypothesis, Flory originally studied

the polymerization of adipic acid with decamethylene glycol in the absence of a

strong acid [4,5]. The course of the polymerization was followed by titrating the

carboxylic end group. Flory assumed that the carboxylic groups act as a catalylst,

and he represented the polymerisations as

O
k

�COOHþ�OH ������!�COOH �C�O�þ H2O ð3:7:1Þ
with the rate of reactions given by

� d½COOH�
dt

¼ kp½�COOH�2½�OH� ð3:7:2Þ

In this experiment, conditions were maintained such that reaction (3.7.1)

remained irreversible during the entire period of study. If the hydroxyl and the

carboxylic acid groups are present in an equimolar ratio, Eq. (3.7.2) can be

integrated to give

1

½�COOH�2 ¼ 2kpt þ const1 ð3:7:3Þ

If the initial concentration of the carboxylic acid group is ½�COOH�0, then its

concentration at any time can be expressed as a function of the conversion, p, as

follows:

½�COOH� ¼ ð1� pÞ½�COOH�0 ð3:7:4Þ
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On substituting this into Eq. (3.7.3), we obtain the following:

1

ð1� pÞ2 ¼ 2kpt½�COOH�20 þ const2 ð3:7:5Þ

A plot of 1ð1� pÞ2 versus time should be linear; in Figure 3.5, it is found to be so

after 1=ð1� pÞ2 values of about 25.7. This means that this kinetic representation

is valid only after 80% conversion. If the reaction is catalysed by a strong acid

FIGURE 3.5 Catalyzed and uncatalyzed polymerization of ethylene glycol–adipic acid

(DE-A) and ethylene glycol–caproic acid (DE-C).
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(e.g., toluene sulfonic acid), the reaction rate represented by Eq. (3.7.2) then has

to be modified to

d½�COOH�2
dt

¼ kp*½Hþ�½�COOH�½�OH� ð3:7:6Þ

where ½Hþ� is the concentration of the acid. Because the concentration of

hydrogen ions remains constant during polyesterification, ½Hþ� can be absorbed

with k*p, and Eq. (3.7.6) can be easily integrated. If the concentrations of

functional groups �COOH and �OH are again equal, the following integrated

form is obtained:

1

½�COOH� ¼ 2kpt þ const1 ð3:7:7Þ

where kp is equal to k*p½Hþ� and is a constant. Equation (3.7.7) can be rewritten as

follows:

mn ¼
1

ð1� pÞ ¼ kp½�COOH�0t þ const2 ð3:7:8Þ

The acid-catalyzed polyesterification of ethylene glycol and adipic acid has been

studied by Flory. The data are plotted in Figure 3.5. This figure also reveals that

Eq. (3.7.8) holds after about 80% conversion. More extensive experimental data

[24–27] do not, however, confirm Flory’s conclusions. It has been argued that

only a limited amount of adipic acid dissociates in ethylene glycol (0.390 moles

per mole ethylene glycol), and only this acid contributes to the catalysis in the

polymerization without strong acid. Hence, instead of Eq. (3.7.2), it has been

proposed that

� d½COOH�
dt

¼ kp½COOH�½OH�2 ð3:7:9Þ

Similarly, for acid-catalyzed polymerization, instead of Eq. (3.7.6),

� d½COOH�
dt

¼ k 00½COOH�2 ð3:7:10Þ

has been proposed. If adipic acid and ethylene glycol are fed at a molar ratio of

1 : r, that is,

½OH�0
½COOH�0

¼ r ð3:7:11Þ

then Eqs. (3.7.9) and (3.7.10) can easily be integrated after using appropriate

stoichiometric relations between ½�COOH� and ½�OH�. The fit of the experi-

mental results for both uncatalyzed and catalysed polymerisations to the theory is

shown in Figures 3.5 and 3.6, where straight-line plots are predicted theoretically

Step-Growth Polymerization 127

Copyright © 2003 Marcel Dekker, Inc.



and p is the conversion of ½�COOH�. It is unfortunate that Eq. (3.7.10) shows k 00
to depend not only on temperature but also on r. A semiempirical method has

been suggested to account for this.

Commercially, the most common polyester in use is polyethylene tereph-

thalate (PET), which is prepared from dimethyl terephthalate (DMT),

in the following three stages [28–30]:

FIGURE 3.6 Uncatalyzed and catalysed polymerization of nonequimolar quantities of

adipic acid and ethylene glycol.
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1. Transesterification of DMT with ethylene glycol to produce bis-

hydroxyethyl terephthalate (BHET):

at about 200�C and 1 atm pressure with continuous removal of

methanol.

2. Polycondensation of BHET at 260–290�C at a vacuum of about

1mmHg, to remove the ethylene glycol produced.

3. Polymerization in the final stage, where special wiped film reactors are

used. Temperatures around 350�C and a vacuum of about 1mmHg are

maintained.

At the usual temperatures of the first and second stages of polymerization, there

are several side reactions that determine the final properties of the polyester.

Therefore, they cannot be ignored and must be accounted for in any realistic

analysis of reactors. The various reactions occurring in the transesterification

stage are summarized in Table 3.2. The only difference in the mechanism between

this stage and the polycondensation stage lies in the fact that, in the latter,

reactions (1) and (2) do not occur. In order to simulate the formation of PET in

commercial reactors, we need to rewrite the rate of polymerization first, which is

done as follows. A careful study of Table 3.2 reveals that the reaction mass

consists of linear polyester molecules having different chain lengths and

functional groups at chain ends. As a first approximation, we assume that a

given functional group reacts with a rate constant that is independent of the

chain length of the polymer molecule on which it is situated. As a result [e.g., in

Eq. (3) of Table 3.2], the rate of formation of Z would be k3½COOH�2�
k3½Z�½G�=K. The analysis of the reactor can be performed only numerically in

view of the set of nonlinear differential equations for the balance of functional

groups.

Polyamides are formed by the polymerization of a diamine and a dicar-

boxylic acid and are commonly known as nylons. Among the various nylons,

nylon 66 and nylon 6 are commercially important polymers. It is shown here that

in these cases the application of the equal reactivity hypothesis is no more than an

approximation. Nylon 66 is prepared in two stages. In the first stage, the

monomers hexamethylene diamine ½NH2�ðCH2Þ6�NH2� and adipic acid

½COOH�ðCH2Þ�COOHÞ� are reacted to form hexamethylene adipamide (some-

times called nylon 66 salt). It is known that the amino and carboxylic groups

ionise in the molten state and the ionised species do not participate in the step-

growth polymerization [7,31–33]. In other words, the polymerization can be
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TABLE 3.2 Various Reactions of Functional Groups in the Transesterification Stage of

PET Formation from DMT

Main reactions

1. Ester interchange 2. Transesterification

Em þ G ��! ��k1

k1=K1

Eg þM Em þ Eg
��! ��k2

k2=K2

ZþM

3. Polycondensation

2Eg
��! ��k3

k3=K3

Zþ G

Important side reactions

4. Acetaldehyde formation 5. Diethylene glycol formation

Eg �!
k4

Ec þ A (a) Eg þ G�!k5 Ec þ D

(b) Eg �!
k6

Ec þ Ed

6. Water formation 7. Vinyl group formation

Ec þ G ��! ��k7

k2=K4

Eg þW (a) Z�!k9 Ec þ Ev

EC þ Eg
��! ��k8

k8=K5

ZþM (b) Eg þ Ev�!
k3

Zþ A

Symbols

A ¼ CH3CHO

G ¼ OH�CH2CH2�OH

D ¼ OHCH2CH2OCH2OH M ¼ CH3OH

W ¼ H2O

Source: Symbols were reprinted from Ref. 2 with the permission of Plenum Publishing Corporation.
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represented as follows:

Two equilibrium relations can be written after some manipulations:

Ki ¼
½�NHþ3 �½�COO��
½�NH2�½�COO��½�NH2�½�COOH�

ð3:7:13aÞ

Ka ¼
kp

k 0p

½�CONH��½H2O�
½�NH2�½�COOH�

ð3:7:13bÞ

The ionisation constant Ki depends upon the dielectric constant of the reaction

mass (and so, on the water concentration) because it involves ionised species. The

dielectric constant of the reaction mass is increased by the addition of water. As a

result, the concentration of the ionised species increases (due to shielding of

charges) and that of the product ½�NH2�½�COOH� reduces, thus lowering the

reaction rate in the forward direction. If one ignores the presence of the ionised

species ½�NHþ3 � and ½�COO�� and correlates the rate of reaction without

correcting for the decrease in the concentrations of �NH2 and �COOH
groups, the effect is the lowering of the apparent rate constant k.

The ionisation constant Ki cannot be measured experimentally since it is

not possible to measure concentrations of ionised species in the reaction mass.

Because of difficulties in experimentally distinguishing these species from the

molecular ones, the ionisation reactions in Eq. (3.7.12) are ignored and K is

calculated by considering the equilibrium of the amino–carboxylic reaction only.

This K would be some combination of Ki and Ka; it is defined by the following

equation,

K ¼ ½�COOH�eq½�NH2�eq
½�H2O�½�CONH��eq

where ½�COOH�eq, ½�NH2�eq, and ½�CONH��eq are the measured concentra-

tions of the species in the reaction mass at equilibrium.

Finally, the effect of pH on the yield of the polymer can be deduced as

follows. A high pH (low ½Hþ�) would suppress the formation of ½�COOH�, with
½�NH2� being limited, and a low pH (high ½Hþ�) would suppress the concentra-

tion of �NH2, with ½�COOH� being limited, as seen from Eq. (3.7.12). There-

fore, there is an optimal pH when the product ½�COOH�½�NH2� is maximum and

the polymer yield measured by ½�CONH��eq in the above equation is maximum.
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The monomer for nylon 6 is e-caprolactam (C1Þ and its polymerization is

much more complicated than the simple polyamidation reaction. Water is the

catalyst by which the caprolactam ring is opened to give aminocaproic acid, P1.

Aminocaproic acid can undergo addition as well as condensation reaction, as

follows [33,34]:

Ring opening

C1 þ H2O ��! ��k1

k 0
1

P1 ð3:7:14Þ

Polycondensation

Pm þ Pn ��! ��k2

k 0
2

Pmþn þ H2O ð3:7:15Þ

Polyaddition

C1 þ Pn ��! ��k3

k 0
3

Pnþ1 ð3:7:16Þ

Industrially, caprolactam ðC1Þ is almost always polymerised with a monofunc-

tional acid (denoted A1) so as to control the molecular weight of the final

polymer. These acid molecules can react with various polymer molecules Pm to

give higher oligomers (denoted An), which are ‘‘capped’’ at one end. In addition

to these reactions, Pn has been known to undergo cyclization reactions, and

higher cyclic oligomers so formed causes problems in the spinning of the nylon.

The complete polymerization mechanism is given in Table 3.3. Once again, as in

the case of PET formation, it is observed that many more reactions must be

incorporated in the kinetic scheme. The only way to analyze the reactor is to solve

for the MWD and calculate the various moments from these. It may be added that,

for nylon 6 polymerization, various rate constants in Table 3.3 are catalysed by

the acid end-group concentrations and are usually expressed as follows:

ki ¼ ki0 exp �
E0
t

RT

� �
þ kic exp �

Ec
i

RT

� �
½�COOH� ð3:7:17Þ

The values of ki0, kic, E
0
i , and Ec

1 used in various simulation studies of nylon 6

have been reviewed and can be obtained from the literature [33,34].

Polyurethanes are polymers with characteristic linkage �NH�C O�O�
and are formed by the step-growth polymerization of a diol and a diisocyanate as

follows:
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TABLE 3.3 The Kinetic Scheme for Nylon 6 Polymerization

1. Ring opening

C1 þW ��! ��k1

k 0
1

P1

2. Polycondensation

Pn þ Pm

2k2 ðn6¼mÞ or k2 ðn¼mÞ
Pnþm þW

P1 þ Pnþm�1
2k 0

2

P2 þ Pnþm�2
2k 0

2

..

.

2PðnþmÞ=2
k 0
2
ðnþm evenÞ

2Pðnþm�1Þ=2 þ Pðnþm�1Þ=2
2k 0

2
ðnþm oddÞ

3. Polyaddition

Pn þ C1
��! ��k3

k 0
3

Pnþ1; n ¼ 1; 2; . . .

4. Reaction with monofunctional acid

Pn þ Am

k2

AnþM þW

P1 þ Anþm�1
k 0
2

P2 þ Anþm�2
k 0
2

..

.

Pnþm�1 þ A1

k 0
2

Forward reaction: n;m ¼ 1; 2; . . .
Reverse reaction: nþ m ¼ 2; 3; 4; . . .

5. Ring opening of cyclic polymer

Cn þW ��! ��k4

k 0
4

Pn; n ¼ 2; 3; . . .

6. Polyaddition of Cr

Pn þ Cr
��! ��k5

k 0
5

Pnþ2; n ¼ 1; 2; . . .

7. Cyclization

Pn
��! ��k6

k 0
6

Pn�r þ Cr
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with no condensation product formed. Industrially, the diisocyanates used are

either 2,4-toluene diisocyanate (TDI) or 4,40-diphenyl methane diisocyanate

(MDI). The diols are polyester diols formed by the polymerization of adipic

acid (or phthalic anhydride) in the presence of an excess of ethylene glycol. The

formation of polyurethanes cannot be represented by the simple scheme of ARB

polymerization because (1) the reaction of a given isocyanate group (i.e., �NCO
group) does not follow second-order kinetics and (2) the ability of a �NCO
group to react depends to a large extent on the linkage of the other isocyanate

group.

In aromatic diisocyanates, such as toluene dissocyanate (TDI), one isocya-

nate group can modify the activity of the other, and the activity of both groups

can depend on the other substituents of the aromatic ring. For a mixture of 2,4 and

2,6 isomers of TDI (industrially, it is difficult to separate the two), 12 reactions

with primary and secondary 1OH groups of the polyols have been identified. The

rate constants for these reactions have been measured experimentally and are

summarized in Table 3.4. Significant differences can be observed in the reactivity

of the two �NCO groups; the equal reactivity hypothesis is definitely not

followed. There have been several fundamental studies to model the unequal

reactivity of functional groups in urethane formation. It has been shown that such

reactivity has considerable influence on the polymer formed.

The usual ingredients for forming urethane polymers are a silicone

surfactant (sometimes called releasing agent), a flame retardant, a polyol, a

diisocyanate, and a suitable catalyst. Polyols used have alcoholic functional

groups and are rarely small molecules like ethylene glycol. The formation of the

polymer is usually fast, even without catalysts, but recent applications such as

reaction injection molding (RIM) require very fast reactions for which a catalyst

TABLE 3.3 (continued )

Symbols

Source: Symbols are reprinted from Ref. 2 with the permission of Plenum Publishing

Corporation.
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must be used. Examples of the latter are tertiaryamines such as triethylene

diamine and triethyl amine. In producing flexible foams, a blowing agent such as

water is used; on reaction with water, the isocyanate group produces carbon

dioxide as follows:

The carbon dioxide thus liberated initially leaves the reaction mass, but with the

progress of polymerization, the viscosity increases and the gas is trapped, giving a

cellular structure. Finally, the urethane formed is not necessarily linear, but

branches are generated through allophenate and biuret linkages:

The kinetics of the step-growth polymerization of formaldehyde with phenol,

urea, and melamine are even more complex [27]. Commercially available

TABLE 3.4 Rate Constants for Various Reactions of 2,4 and 2,6 Toluene Diisocyanates

with Polyols

104 kt
Reactions L equivalent�1 s�1

Nature of OH Location of NCO 25�C 60�C

1 Primary hydroxyl Monomeric para 0.613 4.17

2 Monomeric ortho 0.230 1.67

3 Polymeric para 0.161 1.10

4 Polymeric ortho 0.0605 0.439

5 Secondary hydroxyl Monomeric para 0.204 1.67

6 Monomeric ortho 0.0273 0.333

7 Polymeric para 0.0538 0.439

8 Polymeric ortho 0.00717 0.0877

9 H of �NHCO� bond Monomeric para 0.00307 0.0208

10 Monomeric ortho 0.00409 0.00417

11 Polymeric para 0.000807 0.00548

12 Polymeric ortho 0.000108 0.00110

Source: Data from Refs. 35–37.
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formaldehyde is sold as a 37% solution in water. The following represents the

equilibrium between formaldehyde and water:

and the equilibrium constant is such that, under normal operating conditions,

formaldehyde is present almost entirely as methylene glycol. Therefore, when the

formaldehyde solution undergoes step-growth polymerization, it exhibits a

functionality of 2. Phenol ðOH�Þ reacts with formaldehyde at its two ortho

and one para positions, which means that it has a functionality of 3. Similarly,

urea

O
k

NH2�C�NH2

has four reactive hydrogens and, hence, is tetrafunctional, and melamine, with

three NH2 groups, is hexafunctional.

We have already observed that the polymerization of trifunctional

(and higher-functionality) monomers leads to branched polymers, which

ultimately form network molecules. The main commercial interest in the

polymers of phenol and melamine has been in producing molded objects

that exhibit high chemical and environmental resistance. These are network

polymers and are formed in two stages. In the first step, a prepolymer is

prepared that is, in the second step, cross-linked to the desired shape in a

mold in the presence of a suitable cross-linking agent. The urea formaldehyde

polymer has found extensive use in plywood industries; in its first stage, a

syrupy prepolymer is prepared that is cross-linked between the laminates of the

plywood.

Commercially, two grades of prepolymers (novolacs and resoles) are made

through the polymerization of phenol and formaldehyde. Novolacs are linear

polymer chains with little branching and are formed when the pH of the reaction

mass is low (2 to 3). Resole prepolymers are manufactured at high pH (9 to 11)

and are highly branched. The characteristics of the prepolymer formation are

complex; some of these are given in Table 3.5. The important feature of the

polymerization, as can be seen from the table, is the different reactivities of the

sites.

To model the prepolymer formation, the usual approach taken is to work in

terms of functional groups. These are defined as entities, the use of which

preserves the characteristics of the reaction steps leading to the formation of the
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polymer. For example, let us consider the formation of the urea formaldehyde

prepolymer. The chemical formula of urea is

O
k

NH2�C�NH2

and experiments have shown that the hydrogens of the two amine groups combine

with the hydroxyl groups of the methylene glycol. Even though urea has four

reactive hydrogens, it has been shown that after three of its hydrogens have

reacted, the fourth one remains inert, as mentioned in Table 3.5. The four possible

functional groups A, B, C, and D are shown in Figure 3.7 and are obtained by

assuming bonds at the various reactive sites of the urea molecule. Subsequently,

we observe that methylene glycol molecule has two �OH groups and reacts in

two steps. When it reacts for the first time, it gives rise to �CH2OH groups that

can react further to give a �CH2� methylene bridge. In defining species A to D,

no distinction has been made as to whether the linkages at the reacted sites are a

�CH2� bond or �CH2OH groups.

Species A to D can be used to represent any polymer molecule. For

example,

TABLE 3.5 Polymerization Characteristics of Phenol, Urea, and Melamine with

Formaldehyde

Phenol 1. Trifunctional.

2. Ortho and para positions have different reactivities.

3. In acidic medium, novolacs (essentially linear polymers) are formed. In

basic medium, resoles (essentially branched polymers) are formed.

Urea 1. Tetrafunctional, but only three of its sites participate in polymerization.

2. Polymerization could be acid or base catalysed. The equilibrium constant

is independent of pH.

3 All sites have different reactivities.

Melamine 1. Hexafunctional.

2. Polymerization is reversible. The primary H’s react at different rates

compared to secondary ones.
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can be represented by

Instead of attempting to find the concentration of different isomers in a polymer,

we make an effort here to determine the conversion of urea and formaldehyde in

the reaction mass as a function of time. When polymerization is carried out for

some time, starting with a feed consisting of urea and formaldehyde, polymers of

various lengths and structures are formed. One plausible description of the

progress of reaction might be to follow the concentration of species A to D in

the reaction mass. The overall polymerization represented by the reaction of

functional groups can be written in terms of the following rate constants:

k1 ¼ Rate constant for the reaction of primary hydrogen of urea with the

OH groups

k2 ¼ Rate constant for the reaction of secondary or tertiary hydrogen of

urea with the OH group

k3 ¼ Rate constants for the reverse reaction occurring between a reacted

�CH2� bond (denoted Z) and a water molecule

It is now possible to write the polymerization of urea with formaldehyde as

follows. The forward reactions can be easily written in terms of A to D (the

formation of tetrasubstituted urea does not occur) as follows:

Uþ F�!8k1 Aþ CH2OHþ H2O ð3:7:24aÞ
Uþ CH2OH�!

4k1
Aþ H2Oþ Z ð3:7:24bÞ

Aþ F�!2k2 Bþ CH2OHþ H2O ð3:7:24cÞ
Aþ CH2OH�!

k2
Bþ H2Oþ Z ð3:7:24dÞ

Aþ F�!4k1 Cþ CH2OHþ H2O ð3:7:24eÞ
Aþ CH2OH�!

2k1
Cþ H2Oþ Z ð3:7:24f Þ

Cþ F�!4k2 Dþ CH2OHþ H2O ð3:7:24gÞ
Cþ CH2OH�!

4k2
Dþ H2Oþ Z ð3:7:24hÞ

Bþ F�!2k2 Dþ CH2OHþ H2O ð3:7:24iÞ
Bþ CH2OH�!

2k1
Dþ H2Oþ Z ð3:7:24jÞ

In writing these reactions, it has been assumed that the overall reactivity of a

given reaction is completely governed by the site involved. Therefore, when urea
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consisting of four hydrogens reacts with formaldehyde (or methylene glycol)

having two �OH groups, it forms species A, as in Eq. (3.7.22a), with the overall

reactivity 2 ð4k1Þ, or 8k1. The reactivity of other steps can be decided similarly.

Finally, because species D does not have any reactive site left, it is assumed no

longer to react.

Because in species A to D, the �CH2� bond and the CH2OH linkage have

not been distinguished, it is not possible to write the mechanism of the reverse

reaction exactly. In view of this problem, two extreme possibilities have been

proposed. In the first one (model I), the various linkages of species A to D have

all been assumed to be mainly CH2OH groups. In the second one (model II), the

linkage of species A to D have all been assumed to be mainly reacted �CH2�
bonds. It is assumed that model I is a better representation of the situation in the

initial phases of polymerization, whereas model II gives a better description in the

final stages of polymerization. The mechanism of polymerization for these two

models is as follows.

Reverse reaction for model I. All linkages are assumed to be reacted

�CH2OH groups.

Aþ H2O�!
k3

Uþ F�ðCH2OHÞ ð3:7:25aÞ
Bþ H2O�!

2k3
Aþ F�ðCH2OHÞ ð3:7:25bÞ

Cþ H2O�!
2k3

Aþ F�ðCH2OHÞ ð3:7:25cÞ
Dþ H2O�!

k3
Bþ F�ðCH2OHÞ ð3:7:25dÞ

Dþ H2O�!
2k3

Cþ F�ðCH2OHÞ ð3:7:25eÞ
In Eq. (3.7.25a), when species A reacts, U and F both are formed and a

CH2OH group simultaneously disappears.

Reverse reaction for model II. All linkages are assumed to be �CH2�.

Aþ H2O�!
k3

Uþ ðCH2OHÞ�Z ð3:7:26aÞ
Bþ H2O�!

2k3
Aþ ðCH2OHÞ � Z ð3:7:26bÞ

Cþ H2O�!
2k3

Aþ Fþ ðCH2OHÞ�Z ð3:7:26cÞ
Dþ H2O�!

k3
Bþ Fþ ðCH2OHÞ�Z ð3:7:26dÞ

Dþ H2O�!
2k3

Cþ Fþ ðCH2OHÞ�Z ð3:7:26eÞ
In Eq. (3.7.26a), when species A reacts, U and a CH2OH group is formed

and Z simultaneously disappears.
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3.8 CONCLUSION

In this chapter, we have presented the kinetics of reversible step-growth poly-

merization based on the equal reactivity hypothesis. We have found that the

polymerization consists of infinite elementary reactions that collapse into a single

one involving reaction between functional groups. This kinetic model has been

tested extensively against experimental data. It is found that in most of the

systems involving step-growth polymerization, there are either side reactions or

the equal reactivity hypothesis does not hold well. This chapter presents the

details of chemistry for some industrially important systems; motivated readers

are referred to advanced texts for mathematical simulations.

APPENDIX 3.1: THE SOLUTION OF MWD
THROUGH THE GENERATING FUNCTION
TECHNIQUE IN STEP-GROWTH POLYMERIZATION

The generating function, Gðs; tÞ, is defined as

Gðs; tÞ ¼ P1
n¼1

sn½Pn� ðA3:1:1Þ

where s is an arbitrary parameter whose value lies between 0 and 1. On

multiplying Eq. (3.3.5a) by s and (3.3.5b) by sn and adding the equations for

all values of n, we find that

@Gðs; tÞ
@t
¼ kp

P
n

sn
Pn�1
i¼1
½Pi�½Pn�i� � 2kpl0

P1
n¼1

sn½Pn�

� k 0p½W�
P1
n¼1
ðn� 1Þsn½Pn� þ 2k 0p½W�

P1
n¼1

sn
P1

i¼nþ1
½Pi�

ðA3:1:2Þ
The following can be derived from Eq. (A.3.1.1):

s
@Gðs; tÞ

@t
¼ s

P1
N¼1

nsn�1½Pn� ¼
P1
n¼1

nsn½Pn� ðA3:1:3Þ

P1
n¼1

sn
P1

i¼nþ1
½Pi� ¼ sð½P2� þ ½P3� þ ½P4� þ � � �Þ þ s2ð½P3� þ ½P4� þ � � �Þ

¼ P1
n¼2

Pn�1
i¼1

si
� �

½Pn� ¼
P1
n¼2

ð1� snÞ
ð1� sÞ ½Pn�

¼ sl0 � G

1� s

ðA3:14Þ
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On substituting Eqs. (A3.1.3) and (A3.1.4) into Eq. (2.5.3), we obtain a partial

differential equation governing the time variation of G:

@G

@t
¼ kpG

2 � 2kpl0G þ k 0p½W�
l0 � G

1� s
� k 0½W� @G

@s
� G

� �
ðA3:1:5Þ

For arbitrary feed to batch or semibatch reactors, Eq. (A.3.1.5) has not yet been

solved analytically. If the step-growth polymerization is irreversible, k 0p in Eq.

(A3.1.1) is zero and the time variation of the moment-generating function, Gðs; tÞ,
is as follows [2,5]:

@G

@t
¼ kpG

2 � 2kpGl0 ðA3:1:6Þ

This has been solved in the literature by defining

y ¼ Gðs; tÞ
l0

ð3:1:7Þ

and observing that, for irreversible polymerization,

dl0
dt
¼ �kpl20 ð3:1:8aÞ

@y

@t
¼ kp

G2

l0
� kpG ðA3:1:8bÞ

From these, one obtains

@y

@l0
¼ yð1� yÞ

l0
ðA3:1:9Þ

For any arbitrary feed having a moment-generating function g0ðsÞ at t ¼ 0, Eq.

(A.3.1.9) can easily be integrated to yield

Gðs; tÞ ¼ g0ðsÞðl0=g0ð1ÞÞ
1� ½1� l0=g0ð1Þ�g0ðsÞ=g0ð1Þ

ðA3:1:10Þ

where g0ðsÞ is the value of G for the feed and g0ð1Þ is defined as

g0ð1Þ ¼ lim
s!1

g0ðsÞ ðA3:1:11Þ

If the feed is a pure monomer at concentration ½P1�0, then
g0ðsÞ ¼ ½P1�0s ðA3:1:12aÞ
g0ð1Þ ¼ ½P1�0 ðA3:1:12bÞ
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Equation (A3.1.10) gives

Gðs; tÞ ¼ sfl0=½P1�0g2a
1� f1� l0=½P�0gs

¼ ½P1�0
P1
n¼1

½l0�
½P1�0

� �2

1� ½l0�½P1�0

� �n�1
sn

ðA3:1:13Þ

On comparison of this result with Eq. (A3.1.1), the molecular-weight distribution

(MWD) is obtained as follows:

½Pn� ¼ ½P1�0ð1� pÞ2pn�1 ðA3:1:14aÞ
where

p ¼ 1� l0
½P1�0

ðA3:1:14bÞ

Here, p is the same as the conversion of functional groups defined in Eq. (3.4.2).

It is interesting to observe from these equations that the MWD of the

polymer formed in batch reactors using a pure monomer feed is a function of only

one variable (viz. the conversion, p of functional groups). Thus, an engineer has

only one design variable in his control and cannot choose p as well as the product

MWD independently.

The number-average and weight-average chain lengths, mn and mw, respec-
tively, can be found if Gðs; tÞ is known. We observe that

lim
s!1

Gðs; tÞ ¼ lim
P1
n¼1

sn½Pn� ¼
P1
n¼1
½Pn� ¼ l0 ðA3:1:15Þ

lim
s!1

@G

@s
¼ P1

n¼1
nsn�1½Pn�js¼1 ¼ l1 ðA3:1:16Þ

lim
s!1

s2
@2G

@s2

				
s¼1
¼ P1

n¼1
nðn� 1Þsn�2½Pn�sjs¼1 ¼ l2 � l1 ðA3:1:17Þ

The second moment, l2, is therefore given by the following:

l2 ¼
P1
n¼1

n2½Pn� ¼
@2G

@s2

				
s¼1
þ @G

@s

				
s¼1

ðA3:1:18Þ

Using the expression for Gðs; tÞ given in Eq. (A3.1.13), the number-average and

weight-average chain lengths, mn and mw; respectively, can be obtained as follows:

mn ¼
l1
l0
¼ ½P�01½P� ¼

1

1� p
ðA3:1:19aÞ

mw ¼
l2
l1
¼ lim

s!1

ð@2G=@s2Þ þ ð@G=@sÞ
@G=@s

¼ 1þ 2p

1þ p
ðA3:1:19bÞ
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The polydispersity index (PDI), Q can be derived as

Q 	 mw
mn
¼ 1þ p ðA3:1:20Þ

which implies that at 100% conversion (i.e., p ¼ 1), the polydispersity index for

batch reactors with pure monomer feed attains a maximum value of 2.
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PROBLEMS

3.1. In Eq. (3.3.5), assuming the equal reactivity hypothesis, we derived the

MWD relations. Using these, derive the following generation relations for

l1 to l4. You would require summations derived in Example 3.4.

dl1
dt
¼ 0

dl2
dt
¼ 2kpl

2
1 þ

k 0pW
3
ðl1 � l3Þ

dl3
dt
¼ 6kpl1l2 þ

1

2
k 0pW ðl2 � l4Þ

dl4
dt
¼ kpð8l1l3 þ 6l22Þ �

k 0p
15
ð9l5 � 10l3 þ l1Þ

3.2. Determine expressions for generation of l1 to l4 for the kinetic model of

Example 3.1. Also, for the kinetic model

kp11 ¼ k11

kpmn ¼ 2kp m 6¼ n;m 6¼ n ¼ 1; 2

kpmm ¼ kp; m ¼ 2; 3; . . .

Determine if the following generation relation for Pnðn � 3Þ is valid
dPn
dt
¼ kp

Pn�1
m¼1

PmPn�m � 2kpPnl0 þ 2k 0W
P1

i¼nþ1
Pi � k 0pðn� 1ÞWPn

Write the mole balances for P1 and P2 and determine the following

generation relation for l0:

dl0
dt
¼ �Rpðk � 1ÞP21 � kpl

2
0 � kpl

2
0 þ k 0pWðl1 � l0Þ

3.3. For A–R–B polymerization, we showed that complex polymerization can

be reduced to the reaction of functional groups. It can be shown that under

the equal reactivity hypothesis, even for polymerisations where several side

reactions are involved, this nature of step-growth polymerization is

preserved. For example, let us analyze the polymerization of dimethyl

terephthalate with ethylene glycol, which polymerizes according to the
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mechanism given in Table 3.2.

Derive the mole balance relation for each functional group for

semibatch reactors from which acetaldehyde, ethylene glycol, methanol,

and water are continuously flashing.

3.4. Polyesters undergo a redistribution reaction that involves an interaction of

reacted bonds of one molecule with the OH functional group of the other.

This can be schematically represented as

Px þ Py ! Px�r þ Pyþr

where x can take on any value except x ¼ x� y, when reactants and the

products become identical. We observe that Pn is formed in two distinct

ways: (1) by a process of elimination in which a reacted bond of Px having

chain length greater than n undergoes a redistribution reaction such that

x� r ¼ n and (2) by a process of combination in which a given molecule

Py having chain length less than x combines with a part of chain of the

other molecule such that yþ r ¼ n. If only the redistribution reaction is to

occur, the mole balance of species will be given by the following:

d½P1�
dt
¼ kr �4½P1�

P1
m¼2
ðm� 1Þ½Pm� þ 4

P1
j¼1
½Pj�

P1
m¼2
½Pm�

( )
d½Pn�
dt
¼ kr �4½P1�

P1
m¼2
ðm� 1Þ½Pm� � 4½Pn�ðn� 1Þ P1

m¼1
½Pm�

�
þ 4

P1
m¼1
½Pm�

P1
j¼nþ1
½Pj� þ 4

Pn�1
j¼1

P1
m¼n�jþ1

½Pj�½Pm�
)

Show that the generation of l0 and l1 due to this reaction is zero, but that it
affects the second moment l2 considerably and its generation rate is given

by

1

kr

dl2
dt
¼ 4l0ðl3 � l2Þ þ 4l1ðl2 � l1Þ þ

4

3
l0ð2l3 � 2l2 þ l1Þ

3.5. Sometimes, polyesterificaion of a monomer ðP1Þ is carried out in the

presence of monofunctional compounds such as cetyl alcohol, ethyl

benzoate, or ethyl terephthalate. Let us denote these by MF1. As the

polymerization is carried out, the monomer molecules grow in size to give

Pn. Large-chain monofunctional polymers MFn are formed when Pn and

MFi interact. The overall polymerization can be expressed as follows:

Pi þ Pj ! Piþj þW

Pi þMFj ! MFiþj þW
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Show that the mole balance relation can be derived as

dPn
dt
¼ �4kpPn

P1
m¼1

Pm þ kp
Pn�1
r¼1

PrPn�r � 2k 0mWðn� 1ÞPn

4k 0pW
P1

i¼nþ1
Pi � 2kmPn

P1
m¼1

MFm þ 2kpW
P
nþ1

MFi

dMFn
dt
¼ �2kmMFn

P1
i¼1

Pi þ 2km
Pn�1
m¼1

MFmPn�m � 2k 0mWðn� 1ÞMFn

þ 2k 0mW
P1

m¼nþ1
MFm; n � 2

List your assumptions concerning the reactions of MFn and Pn. Write the

mole balance relations for P1 and MF1 also.

3.6. We expect that the number of monofunctional molecules in Problem 3.5

does not change with time. This would mean that the zeroth moment of

monofunction molecules, lMF0
, must be constant. Show this, and then

derive the following zeroth, first, and second moment-generation relations

from the MWD of Problem 3.5:

dl0MF

dt
¼ 0

dl1MF

dt
¼ 2kml1l0MF � k 0pWðl2MF � l1MFÞ

dl2MF

dt
¼ �2kml0Pl2MF þ 2kmðl2Pl0MF þ l0Pl2MF þ 2l1Pl1MFÞ

� 2k 0mWðl3MF � l2MFÞ þ
1

3
k 0mWð2l3MF � 3l2MF þ l1MFÞ

dl0P
dt
¼ 2kpl

2
0P þ 2k 0pWðl1P � l0PÞ

� 2kml0MFl0P þ 2k 0mWðl1MF � l0MFÞ
dl1P
dt
¼ � dl1MF

dt
dl2P
dt
¼ 4kpl

2
1P � 2k 0pWðl3P � l2PÞ � 2kml2Pl0MF

þ 2

3
k 0pWð2l3P � 3l2P þ l1PÞ

þ 1

3
k 0mWð2l3MF � 3l2MF þ l1MFÞ

3.7. Table 3.3 gives the general mechanism of nylon 6 polymerization. Let us

assume that reaction with monofunctional polymer and cyclization (i.e.,

steps 5, 6, and 7) do not occur. Derive the following mole balance relation
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Pn species for batch reactors, assuming that there is no flashing of

condensation products.

dPn
dt
¼ �2k2Pn

P1
m¼1

Pm þ k2
Pn�1
m¼1

PmPn�m � k 02Wðn� 1ÞPn

þ 2k 02W
P1
m¼1

Pnþm � k3PnC1 þ k 03Pn�1C1 þ k 03Pnþ1

� k3Pnn � 3

Write the mole balance for C1, P1, and P2.

3.7. From the MWD relations derived in Problem 3.7, derive the following

moment-generation relations for nylon 6 polymerization in batch reactors:

dl0
dt
¼ �k2l20 þ k 02Wðl1 � l0Þ þ k1C1W� k 01P1

dl1
dt
¼ k1WC1 � k 01P1 þ k3l0C1 � k 03ðl0 � P1Þ

dl1
dt
¼ k1WC1 � k 01P1 þ 2k2l

2
1 þ

k 02
3
ðl1 � l3Þ þ k3C1ðl0 þ 2l1Þ

þ k 03ðl0 � 2l1 þ P1Þ

Note that we need to know P1, P2, and l3 in order to solve l0, l1, and l2.
However, we also note that the relation for P2 involves P3, the one for l3
involves l4, and so on. This is known as the moment closure problem; it is

present in all reversible polymerization analyses. For nylon 6 polymeriza-

tion, we assume the following relations:

½P3� ¼ ½P2� ¼ ½P1�

l3 ¼
l2ð2l2l0 � l21Þ

l1l0

This equation is known as the Schultz–Zimm relation.

3.9. To recognize asymmetric functional groups in diisocyanates, we use the

notation A1A2. If the diol is denoted by B2; the reaction with hydroxyl
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groups (denoted by B) can be written as follows:

A1A2 þ B!k1 *A2A1B

A1A2 þ B!k2 *A1A2B

A2A1* þ B!k2* A2A1B

A1A2* þ B!k2* A1A2B

where A1* and A2* denote the polymer chain ends to distinguish monomeric

functional groups. Carry out the mole balance for each functional group for

batch reactors.

3.10. In order to produce flexible urethane foam, a blowing agent (e.g., water) is

added to the reaction mass, which reacts with isocyanate functional group,

giving CO2 as follows:

NCO þ H2O! NH2 þ CO2

The CO2 first escapes the reaction mass, but, with progress of the reaction,

the viscosity increases and gas is trapped, giving cellular structure to the

polymer. The amine group produced earlier can react with NCO,

NCO þ NH2! NHCONH

Water is represented, by CD and the reaction of CD can be written as

follows:

A2A1 þ CDR1 ����!R1k1
A2A1CD

A1A2 þ CDR1k2 ����!R1k2*
A1A2CD

A1*þ CDR1 ����!R1k1*
A1CD

A2*CDR1 ����!R1k2*
A2CD

A2A1 þ D ����!R2k1k1
A2D

A1A2 þ D ����!R2R1k1
A1D

A1*þ D ����!R2R1k1*
A1D

A2*þ D1 ����!R2R1k2*
A1D
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The formation of allophanate (M) and biuret (G) linkages can be schema-

tically represented by the following:

A2A1 þ E�!R3k1
Mþ *A2

A1A2 þ E�!R3k2
Mþ *A1

A1*þ E�!R3k1*
M

A2*þ E�!R3k2*
M

A2A1 þ F�!R4k1
*A2 þ G

A1A2 þ F�!R4k2
*A1 þ G

A1 þ F�!R4k1*
G

A2*þ F½R� �!R4k2*
G

Write down the mole balance for each species.

3.11. Write down the mole balance for functional groups in urea formaldehyde

polymerization for models I and II given in Eqs. (3.7.24), (3.7.25), and

(3.7.26).

3.12. Melamine has the formula

and is therefore hexafunctional. Proceeding in the same way as for urea

formaldehyde, we can define 10 functional groups as in Problem 3.11.

What are these functional groups.

3.13. For the following unequal reactivities, write down the kinetic mechanism of

polymerization of melamine.

k1 ¼ Reaction between a CH2OH group and a primary hydrogen.

k2 ¼ Reaction between a CH2OH group and a secondary amide group.

k4 ¼ Reaction between two CH2OH groups giving a methylene

linkage (denoted by z) and a free-formaldehyde molecule.

(Note that this does not change the nature of functional groups.)

k 04 ¼ Reaction involving a bond, Z, and a methylene glycol molecule.

k5 ¼ Reverse reaction involving a bond and a water molecule. Decide

the rate constants for each reaction step in terms of k1 to k5.
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Propose models I and II as we did for the urea formaldehyde system.

3.14. Write down the mole balance for each species in Problem 3.13.

3.15. The epoxy prepolymer is prepared by step-growth polymerization of

epichlorohydrin with a diol ðOH�R�OHÞ, which is normally bisphenol-

A. After some time of polymerization, the reaction mass consists of the

following:

Write the mechanism that explains the formation of these molecules.

Model the reaction kinetics after considering the kind of functional

groups involved in the reaction.

3.16. For the mechanism developed in Problem 3.16, derive the mole balance for

the MWD and functional groups in batch reactors.

3.17. Consider a mixture in which two streams enter and the product is assumed

to be a homogeneous mixture of the two:

Develop a relation between the moment-generating functions Gðs; tÞ at
points 1, 2, and 3.

3.18. Consider a batch reactor for carrying out irreversible step-growth poly-

merization described in Appendix 3.1. Let its feed consist of ½P1�0 þ ½P2�0
instead of the pure monomer in Eq. (A3.1.12a). Find its MWD after

time t.

3.19. Consider the multifunctional polymerization of RAf monomers in batch

reactors. The mole balance relations for various species are given by the
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following:

d½P1�
dt
¼ k

f

2
½P1�

P1
m¼1
ðmf þ 2� 2mÞ½Pm�

d½Pn�
dt
¼ k

2

Pn�1
m¼1
ðmf þ 2� 2mÞ ðn� mÞ f þ 2� 2ðn� mÞ

2

� �
½Pm�½Pn�m�

� kðnf þ 2� 2mÞ½Pn�
P1
m¼1

mf þ 2� 2m

2
½Pm�; n ¼ 2; 3; . . .

Derive generation relations for l0, l1, and l2.
3.20. The analytical solution of the MWD in Problem 3.20 has also been derived

as

½Pn�
½P1�
¼ fnð f � 1Þg! f

n!fnf f � 2Þ þ 2g! p
n�1
A ð1� pAÞnðf�2Þþ2

when the pure monomer feed has been used and pA is the conversion of A

groups given by

pA ¼ 1� ½A�½A�0
Derive expressions for l0, l1, and l2.

152 Chapter 3

Copyright © 2003 Marcel Dekker, Inc.



4

Reaction Engineering of
Step-Growth Polymerization

4.1 INTRODUCTION [1,2]

Vessels in which polymerization is carried out are called reactors; they are

classified according to flow conditions existing in them. Batch reactors (schema-

tically shown in Fig. 4.1a) are those in which materials are charged initially and

polymerization is carried out to the desired time, which in turn, depends on the

properties of the material required. We have already observed that polymerization

is limited in batch reactors by equilibrium conversion. Because we wish to form

polymers of high molecular weights, we can overcome this limitation by applying

high vacuum to the reaction mass. On application of low pressures, the reaction

mass begins to boil and the condensation product is driven out of the reactor, as

shown in Figure 4.1b. Such batch reactors are called semibatch reactors.

Batch and semibatch reactors are ideal when the production rate of the

polymer needed is small. In larger-capacity plants, continuous reactors are

preferred. In these, the raw materials are pumped in continuously while the

products are removed at the other end. One example of these is a tubular reactor

(shown in Fig. 4.1c). It is like an ordinary tube into which material is pumped at

one end. Polymerization occurs in the tubular reactor, and the product stream

consists of the polymer along with the unreacted monomer. Sometimes, a stirred

vessel (shown in Fig. 4.1d) is employed instead of a tubular reactor. The

advantage of such a reactor is that the concentration and temperature variations

153

Copyright © 2003 Marcel Dekker, Inc.



within it are removed due to vigorous stirring, making it possible to control

reactor conditions more easily.

It may be mentioned that batch, semibatch, tubular, and stirred-tank

reactors serve as mere idealizations of actual reactors. Consider, for example,

FIGURE 4.1 Some ideal reactors.
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the industrial V.K. tube (Vereinfacht Kontinuierliches Rohr) reactor, which is used

for nylon 6 polymerization. Its schematic diagram is given in Figure 4.2a, in

which e-caprolactam monomer is mixed with water (serving as the ring opener)

and introduced as feed. In the top region, the temperature is about 220–270�C and

the reaction mass is vigorously boiling. The rising vapors produce intense

agitation of the reaction mass and ultimately condense in the reflux exchanger.

A small amount of e-caprolactam also evaporates in this section of the reactor and

FIGURE 4.2 Schematic diagram of industrial nylon 6 reactors and reactor model.

(Reprinted from Ref. 1 with the permission of Plenum Publishing Corporation.)
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is recycled to the reactor, as shown. As the material moves downward, the reactor

pressure increases due to gravity and the boiling of the reaction mass stops. In the

second stage, most of the e-caprolactam is reacted, and, in order to push the

polymerization to high conversions, it is desired to remove the condensation

product (water) from the reaction mass. To facilitate this, the reaction mass is

purged with a suitable inert gas (say, nitrogen). In the third stage, the viscosity of

the reaction mass is very high and water cannot be removed by purging anymore.

Sufficient residence time is provided so as to achieve the desired molecular

weight of the polymer. Figure 4.1 shows simple reactors and Figure 4.2b models

complex reactors (e.g., V.K. tubes for nylon 6) in terms of a combination of these.

Due to intense agitation existing in the first two stages, the entire V.K. column has

been viewed as a train of two homogeneous continuous-flow stirred-tank reactors

(HCSTRs) followed by a plug flow reactor.

From the example of the V.K. tube for nylon 6, we observe that simple

reactors (Fig. 4.1) are building blocks of more complex ones. This chapter

focuses on analyzing simple reactors carrying step-growth polymerization.

Chapter 3 has already considered polymerization in the batch reactor. We first

study the performance of semibatch reactors and examine the effect of flashing of

the condensation product on it.

4.2 ANALYSIS OF SEMIBATCH REACTORS [1,3]

We have already observed in earlier chapters that engineering materials should

have a large average chain length. Suppose it is desired to have mn equal to 100,

which would imply a 99.9% conversion of functional groups. Step-growth

polymerization is limited by its equilibrium conversion, and there is a need to

push the reaction in the forward direction. This is done in industry by applying

high vacuum to the reaction mass, whereupon the reaction mass begins to boil

under the applied low pressure. We know that polymer chains have very low

vapor pressures and, under normal conditions of operation, they do not vaporize;

however, the monomer can. This clearly means that in the presence of flashing,

the concentration of any given species changes not only by polymerization but

also by change in volume V of the reaction mass. We show the schematic diagram

of the semibatch reactor in Figure 4.3, and in the analysis presented here, we

consider the change in V as an explicit variable. We assume that under the

existing reactor conditions, the condensation product W and the monomer P1 can

flash out of the reactor. In all semibatch reactors, the monomer in the vapor phase

is condensed in a suitable separator and recycled because of its high cost. It is

assumed that the reactor is operating isothermally, at total pressure PT . The

volume of the liquid phase of the reactor, V , changes with time as flashing of W

and P1 occurs. We account for this time dependence as follows. We define pn as
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the total moles of species ðPnðn ¼ 1; 2Þ and w as total moles of W in the liquid

phase. The mole balance relations of these, on the dotted control volume shown

in Figure 4.3, are given by

dp1

dt
¼ � kpl0p1 � k 0pwðl0 � p1Þ

V
ð4:2:1aÞ

dpn ¼ ½�2kppnl0 þ kp
Pn�1
r¼1

prpn�r

� k 0pwðn� 1Þpn þ 2k 0pw
P1
nþ1

pr�V�1; n � 2 ð4:2:1bÞ

dw

dt
¼ kpl

2
0 � k 0pwðl1 � l0Þ

V
� Qw ð4:2:1cÞ

where kp and k 0p are the forward and reverse rate constants, respectively and l0
and l1 the zeroth and first moments, which are defined as follows:

l0 ¼
P

pn ð4:2:2aÞ
l1 ¼

P
npn ð4:2:2bÞ

The zeroth moment l0 gives the total moles of polymer at any time, whereas l1
gives the total count of repeat units, which can be shown to be time invariant.

FIGURE 4.3 Schematic diagram of semibatch reactor with monomer and condensation

product evaporating.
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Equations (4.2.1a) and (4.2.1b) are suitably added to determine the

generation relation of the zeroth moment l0 and first moment l1 as

dl0
dt
¼ � kpl

2
0 � k 0pwðl1 � l0Þ

V
ð4:2:3aÞ

dl1
dt
¼ 0 ð4:2:3bÞ

Equation (4.2.3b) implies that the first moment l1 is time invariant and its value

can be obtained from the feed conditions.

In order to solve for the molecular-weight distribution (MWD) of the

polymer, as given by Eqs. (4.2.1) and (4.2.2), we must know the volume, V , of

the liquid phase of the reactor and the rate of vaporization, Qw. The rate of change

of volume V is given by

dV

dt
¼ �vwQw ð4:2:4Þ

where vw is the molar volume of the condensation product W.

In this development, there are seven unknowns ½ p1, pnðn � 2Þ, W , l0, l1,
V , and Qw], but we have only six ordinary differential equations [(4.2.1a)–

(4.2.1c), (4.2.3a), (4.2.3b), and (4.2.4)] connecting them. Thus, one more

equation is required. This is found by using the appropriate vapor–liquid

equilibrium condition. Herein, to keep the mathematics simple, we assume the

simplest relation given by Raoult’s law.

4.2.1 Vapor^Liquid Equilibrium Governed by
Raoult’s Law

We assume that all the oligomers, pn, n � ¼ 2 are nonvolatile and that the

condensation product W and the monomer P1 can vaporize. If P
0
w and P0

p1 are the

vapor pressures and xw and xp1 are the mole fractions of W and P1 respectively,

then the partial pressures are given by Raoult’s law as follows:

Pw ¼ P0
wxw ð4:2:5aÞ

Pp1
¼ P0

p1
xp1 ð4:2:5bÞ

where

xw ¼
w

l0 þ w
ð4:2:6aÞ

xp1 ¼
p1

l0 þ w
ð4:2:6bÞ
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The total pressure PT is then the sum of partial pressures; that is,

PT ¼
ðP0

0P1 þ P0
wwÞ

l0 þ w
ð4:2:7Þ

4.2.2 Volume of Reaction Mass

The previous chapter shows that the MWD of the polymer obtained from batch

reactors is given by Flory’s distribution. Now, let us show that, in the presence of

flashing, the MWD is still given by a similar relation. Let us assume that the feed

to the semibatch reactor is pure monomer; that is, at t ¼ 0,

p1 ¼ p10; ð4:2:8aÞ
pn ¼ 0 for n � 2 ð4:2:8bÞ

then

l1 ¼ l10 ¼ p10 ð4:2:9aÞ
l00 ¼ p10 ð4:2:9bÞ

We propose that the MWD of the polymer is of the form

pn ¼ xðtÞyðtÞn�1 ð4:2:10Þ
where xðtÞ and yðtÞ are independent of the chain length n. On direct substitution of
Eq. (4.2.10) into Eqs. (4.2.1a) and (4.2.1b), it is seen that the result satisfies the

mole balance relation, no matter what the concentration of W. It is thus seen that

the form of MWD remains unaffected by flashing. The xðtÞ and yðtÞ terms in

Eq. (4.2.11), however, are now independent because of the invariance ofP
Pn ¼

x

x� y
¼ l0 ð4:2:11aÞP

nPn ¼ xð1� yÞ2 ¼ l1 ð4:2:11bÞ
These give

yðtÞ ¼ 1� l0
l10

ð4:3:12aÞ

xðtÞ ¼ l20
l10

ð4:2:12bÞ

The addition of Eqs. (4.2.1c) and (4.2.3a) gives

dðwþ l0Þ
dt

¼ �Qw ð4:2:13Þ
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which, on substitution into Eq. (4.2.4), yields the following on integration:

V � V0 ¼ �vw½ðw0 þ l10Þ � ðwþ l0Þ� ð4:2:14Þ
Herein, w0 is the moles of condensation product in the liquid phase having total

volume V0 at time t ¼ 0.

4.2.3 Performance of the Semibatch Reactors

We rewrite the vapor–liquid equilibrium in Eq. (4.2.7) as follows:

w ¼ P0
Tl0 � P0

p1p1

P0
w � PT

ð4:2:15Þ

However, Eq. (4.2.10) gives p1 as xðtÞ, or l20=p10 [see Eq. (4.2.12)], which on

substituting into Eq. (4.2.15), gives

W
PT

P0
w � PT

� �
l0


 �
� ½P

0
p1
=ðP0

w � PT Þ�l20
p10

¼D a1l0 � a2l
2
0 ð4:2:16aÞ

where

a1 ¼
P0
p1

ðP0
w � PT Þp10

ð4:2:16b

a2 ¼
P0
p1

ðP0
w � PT Þp10

ð4:2:16cÞ

Between Eqs. (4.2.14) and (4.2.16), it is thus possible to explicitly relate V to l0:

V ¼ b0 þ b1l0 � b2l
2
0 ð4:2:17aÞ

where

b0 ¼ V0 � vwðw0 þ p10Þ ð4:2:17bÞ
b1 ¼ vwða1 þ 1Þ ð4:2:17cÞ
b2 ¼ vwa2 ð4:2:17dÞ

We can now substitute Eq. (4.2.16a) for w and Eq. (4.2.17a) for V into Eq.

(4.2.3a) to obtain the following:

ðb0 þ b1l0 � b2l
2
0Þ
dl0
dt
¼ kpl

2
0 þ k 0pðl00 � l0Þða1l0 � a2l

2
0Þ ð4:2:18Þ

This can be integrated with the initial condition that l0 at t ¼ 0 is the same as

p10 and the final result can be derived as

A1 ln
l0
l00

� �
þ A2 ln

l0 � d1

l00 � d1

� �
� A3 ln

l0 � d2

l00 � d2

� �
¼ t ð4:2:19Þ
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where

d1 ¼
g2 þ ðg22 � 4g1g3Þ0:5

2g1
ð4:2:20aÞ

d2 ¼
g2 � ðg22 � 4g1g3Þ0:5

2g1
ð4:2:20bÞ

A1 ¼
b0

d1d2g1
ð4:2:20cÞ

A2 ¼
b0 þ b1d1 � b2d

2
1

d1g1ðd1 � d2Þ
ð4:2:20dÞ

A3 ¼
b0 þ b1d2 � b2d

2
2

g1d2ðd1 � d2Þ
ð4:2:20eÞ

g1 ¼ kpa
2 ð4:2:20f Þ

g2 ¼ k 0p þ l10k
0
pa2 þ k 0pa1 ð4:2:20gÞ

g3 ¼ k 0pa1l10 ð4:2:20hÞ
When monomer P1 has very low volatility and only water flashes,

a2 ¼ b2 ¼ 0 ð4:2:21aÞ
then

w ¼ PTl0
P0
w � PT

	 a1l0 ð4:2:21bÞ

V0 ¼ b0 þ b1l0 ð4:2:21cÞ
Equation (4.2.18) then becomes

ðb0 þ b1l0Þ
dl0
dt
¼ �kpl20 þ k 0pðl00 � l0Þa1l0 ð4:2:22Þ

which can be integrated to

A4 ln
l0
l00

� �
� A5

g2

� �
ln½ðg2l0 � g3Þ=ðg2l00 � g3Þ� ¼ t ð4:2:23Þ

where

A4 ¼
b0

g3
ð4:2:24aÞ

A5 ¼
g2b0 þ b1g3

g3
ð4:2:24bÞ

Let us consider that some moles of monomer (say, p10) are mixed with some

moles (say, w0) of condensation product before the mixture is charged to the
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reactor. As long as the constraint of vapor–liquid equilibrium [given in Eq.

(4.2.7)] is not satisfied, there is no flashing of W and P1, and the system behaves

like a closed reactor. During polymerization, w increases and l0 decreases, and

there is a time when the condensation product begins to evaporate. This time can

be determined as follows. We observe that there is no flashing for closed reactors,

Qw ¼ 0 ð4:2:25aÞ
and Eqs. (4.2.13) and (4.2.14) reduce to

wþ l0 ¼ p10 þ w0 ð4:2:25bÞ
V ¼ V0 ð4:2:25cÞ

Substituting these into Eq. (4.2.3a) gives

V0

dl0
dt
¼ �kpl20 þ k 0pðw0 þ p10 � l0Þð p10 � l0Þ ð4:2:26Þ

which can be easily integrated to give l0 from

q

q0
¼ exp � dt

V0

� �
ð4:2:27Þ

where

d ¼ ðm2
1 þ 4m0m2Þ1=2 ð4:2:28aÞ

q ¼ 2m2l0 þ m1 � d
2m2l0 þ m1 þ d

ð4:2:28bÞ

q0 ¼
2m2p10 þ m1 � d
2m2p10 þ m1 þ d

ð4:2:28cÞ

m0 ¼ k 0pðw0 þ p10Þp10 ð4:2:28dÞ
m1 ¼ k 0pðw0 þ 2p10Þ ð4:2:28eÞ
m2 ¼ ðkp � k 0pÞ ð4:2:28f Þ

Two situations are possible, relating to whether the monomer is flashing or not.

When only W is evaporating, Eq. (4.2.21) holds for thermodynamic equilibrium

and the intersection point is given by

lc10 ¼
w0 þ l00
1þ a1

ð4:2:29Þ

where superscript c1 stands for this evaporation condition (called case 1). This is

now substituted into either Eq. (4.2.27) or Eq. (4.2.24). When P1 as well as W
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evaporates (case 2), Eq. (4.2.25) is used to eliminate w from Eq. (4.2.16a), and lc20
for this situation is determined from

lc20 ¼
½ða1 þ 1Þ � 4a2ðw0 þ l00Þ�1=2

2a2
ð4:2:30Þ

This is, once again, substituted into Eq. (4.2.19) to get the time of transition.

Example 4.1: ARB polymerization is being carried out in a semibatch reactor.

The feed is assumed to consist of 10 mol of monomer ðw0 ¼ 0Þ. At the reactor

temperature, let us assume that the reactor pressure is 5mmHg and the vapor

pressure of the condensation product is 38.483mmHg.

1. Determine the time of flashing.

2. Determine the values of l0 and w in the reactor at equilibrium and the

moles of w flashed.

3. Calculate time taken to reach 101% of the equilibrium l0. Assume

kp ¼ 1 and k 0pðbÞ ¼ 0:1.

Solution: In normal conditions, the number of moles of monomer evaporating is

usually small. If the evaporation of P1 is small, a2 
 0 and l0 at the transition is

calculated from Eq. (4.2.25). Once this is known, the time when the flashing starts

can be calculated from either Eq. (4.2.8) or (4.2.20).

The equilibrium in the presence of flashing is reached when dl0=dt ¼ 0 or

�kpl20 þ k 0pwðl10 � l0Þ ¼ 0

where w is governed by Eq. (4.2.16a). On eliminating w here, we get

�kpl20eq þ k 0pa1l0eqðl10 � l0Þ ¼ 0

which gives l0eq as

l0eq ¼
ak 0pl10
k 0p þ ak 0p

Let us assume that the units of kp and k 0p are liters moles per hour. Calculations

reveal that flashing starts at 0.015 h and l0 at this transition point is 8.7mol=L.
The equilibrium values of l0 and w are determined to be 0.1471 and 0.022mol=L
and 101% of this l0 is 0.1486mol=L. In order to reach this value, the time needed

is 16.62 h and the condensation product flashed is 8.5mol.

Example 4.2: A mixture of monomer AR1B is polymerized by the step-growth

mechanism with a monofunction compound AR2B in a batch reactor. The

Reaction Engineering of Step-Growth Polymerization 163

Copyright © 2003 Marcel Dekker, Inc.



reaction mass consists of two molecules:

Pn : A½BA�n�1B

and

Pnx ¼ A½BA�n�1X

Determine the MWD of the polymer formed in a batch reactor.

Solution: In reactor applications, recycling is common (see Problem 4.5) and

monofunctional compounds are added to control the molecular weight of the

formed polymer. The overall polymerization is assumed to be irreversible and can

be written as

Pm þ Pn�!
2kp

Pmþn

Pm þ Pn�!
kp

Pzm

Pm þ Pnx�!
kp

PðmþnÞx

The MWD relations for constant reactor volume can be written as

d½P1�
dt
¼ �kp½P1�lPO � kp½P1�lx0

d½P1x�
dt
¼ �kp½P1x�lP0

d½Pn�
dt
¼ kp

Pn�1
r¼1
½Pr�½Pn�r� � kp½Pn�f2lP0 þ lx0g

d½Pnx�
dt
¼ kp

Pn�1
r¼1
½Prx�½Pn�r� � kp½Pnx�lP0

where

lP0 ¼
P1
n¼1
½Pn�

and

lX0 ¼
P1
n¼1
½Pnx�
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Let us define G ¼P sn½Pn� and Gx ¼
P

sn½Pnx�, and with the help of the MWD

relations, their time variation can be written as

dG

dy
¼ �ð2lP0 þ lx0ÞG þ G2

dGx

dy
¼ �lP0Gx þ G þ Gx

where

y ¼ kpt:

These equations for s! 1 also yield

dlP0
dy
¼ �lP0ðlP0 þ lx0Þ

and

dlx0
dy
¼ 0

that is, the monofunctional monomers grow in molecular weight but do not

increase (or decrease) in total number of moles.

In line with the procedure given in Eq. (A3.1.7), for the solution of these

equations, we define

y ¼ G

lP0

and

yx ¼
Gx

lx0

In terms of these,

@y

dy
¼ 1

lP0

@G

@y
� G

l2P0

dlP0
dy
¼ lP0yð1� yÞ

and

@yx
dy
¼ lP0ðy� 1Þlx0

These can be integrated to give

y

y� 1
¼ y0

y0 � 1

l0 þ l0x
l00 þ l0x

¼D y0

y0 � 1
ð1� pAÞ
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or

yð y0 � 1Þ ¼ y0ð y� 1Þð1� pAÞ
or

yf y0 � 1� y0ð1� pAÞg ¼ y0ð1� pAÞ
where

1� pA ¼
l0 þ l0x
l00 � l0x

or

y ¼ y0ð1� pAÞ
1� y0 pA

Similarly,

dyx

dy
¼ yx

y

ln
yx

yx0

� �
¼ ln

y

y0

� �
¼ ln

1� pA

1� y0 pA

� �
or

yx ¼
yx0ð1� pAÞ
1� pA y0

4.3 MWD OF ARB POLYMERIZATION IN
HOMOGENEOUS CONTINUOUS-FLOW
STIRRED-TANK REACTORS [4]

Chapter 3 derived the MWD of the polymer in batch reactors; Section 4.2 has

shown that the flashing of condensation product does not affect the distribution.

We have already observed that an HCSTR is a continuous reactor that is

employed when large throughputs are required.

The HCSTR shown in Figure 4.1d or 4.1e is assumed to be operated

isothermally and under steady-state conditions. For a general feed, there could be

higher homologs in addition to the monomer and the product stream consists of

various homologs. In an HCSTR, the concentration of various species in the exit

stream is equal to the concentration inside the reactor because of its well-mixed

condition. As observed earlier, polymerization is, in general, reversible, and

depending on the reactor condition existing, the condensation product can flash.

In the following, we assume the polymerization to be reversible. The mole
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balance equations for various oligomers can be derived using the following

general relation:

V
d½species�

dt
¼ ðspecies inÞ � ðspecies outÞ þ VrB

¼ 0 ð4:3:1Þ

where V is the volume of the reactor and rB is the rate of formation of the species

by chemical reaction. Using this equation, it is possible to derive the following

mole balance relations for all oligomers—assummg steady state and no change in

density:

½P1� � ½P1�0
y

¼ �2kp½Pn�l0 þ kp½W�
P1
i¼2
½Pi� ð4:3:2aÞ

½Pn� � ½Pn�0
y

¼ �2kp½Pn�l0 þ kp½W�
Pr¼1
r¼1
½Pr�½Pn�r� � k 0pðn� 1Þ½W�½Pn�

þ 2k 0p½W�
P1

i¼nþ1
½P1�; n ¼ 2; 3; 4 ð4:3:2bÞ

½W� � ½W�0
y

¼ �Fwl

V
þ kpl

2
0 � k 0p½W�ðl10 � l0Þ ð4:3:2cÞ

Here, Fw1 is the rate of flashing of the condensation product from the HCSTR.

The parameter y is known as the reactor residence time and is equal to V=F,
where F is the volumetric flow rate of the feed. We have already shown that, for

batch reactors, the first moment, l1, of the MWD is time invariant. It can similarly

be proved using Eqs. (4.3.2a) and (4.3.2b) that the same is true for HCSTRs. This

fact means that

l1;feed ¼ l1;product ¼ l10 ðsayÞ ð4:3:3Þ
If we add Eqs. (4.3.24a) and (4.3.2b) for all n, we get

1

y
P1
n¼1
½Pn� �

P1
n¼1
½Pn�0

� �
¼ �2kpl0

P1
n¼1
½Pn� þ kp

P1
n¼2

Pn�1
r¼2
½Pr�½Pn�r�

¼ �k 0p½W�
P1
n¼2
ðn� 1Þ½Pn�

þ 2k 0p½W�
P1
n¼2

P1
i¼nþ1
½Pi�

or

l0 � l00
y

¼ �kpl20 þ k 0p½W�ðl10 � l0Þ ð4:3:4Þ

It can be seen that Eqs. (4.3.2) representing the MWD are nonlinear, coupled

algebraic equations, which means that they must be solved simultaneously by trial

and error. This problem has been solved in the literature—it has been found that
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their numerical solution is usually slow and cumbersome. These can, however, be

decoupled as follows:P1
i¼nþ1
½Pi� ¼ l0 � ½Pn� �

Pn�1
i¼1
½Pi� for n ¼ 1; 2; 3 . . . : ð4:3:5Þ

Substituting this result into Eqs. (4.3.2) yields the following:

½P1�
1

y
þ 2kpl0 þ 2k 0p½W�

� �
¼ ½P1�0

y
þ 2k 0p½W�l0 ð4:3:6aÞ

½Pn�
1

y
þ 2kpl0 þ k 0p½W�ðn� 1Þ

� �
¼ ½P1�0

y
þ 2k 0p½W�l0 þ kp

Pn�1
r¼1
½Pr�½Pn�r�

� 2k 0p½W�
Pn�1
i¼1
½Pi� for n � 2

ð4:3:6bÞ
These equations are now in the decoupled form because ½Pn� can be precisely

calculated if ½P1�, ½P2�; . . . ; ½Pn�1� are known. A sequential computation of the

MWD starting from ½P1� is possible now, provided the concentration of the

condensation product, ½W�, and l0 within the reactor are known. These are

determined as follows.

Let us first assume that the condensation product, W, is not flashing from

the reactor. This means that in Eq. (4.3.2c), therefore, Fw1 is zero. On adding this

with Eq. (4.3.4), we obtain

l00 þ ½W�0 ¼ l0 þ ½W� ð4:3:7Þ
This result is the same as Eq. (4.2.25b) and can be directly derived from the

stoichiometry of polymerization. If [W] is eliminated between Eqs. (4.3.4) and

(4.3.7), we obtain a quadratic expression in l0:

l0 ¼
�e2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e22 þ 4e2e3

p
2e1

ð4:3:8Þ

where

e1 ¼ kp � k 0p ð4:3:9aÞ

e2 ¼ �
1

y
þ k 0pðl10 þ l00 þ w0


 �
ð4:3:9bÞ

e3 ¼
l00
y
þ k 0pðl00 þ w0Þ ð4:3:9cÞ

However, if the condensation product is flashing, there will be a vapor–liquid

equilibrium within the reactor. For simplicity, it is assumed that the reaction mass
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is binary mixture consisting of polymer and condensation product. Their mole

fractions, xp and xw, are given by

xp ¼
l0

l0 þ ½W�
ð4:3:10aÞ

xw ¼ 1� xp ð4:3:10bÞ

If PT is the reactor pressure and Pr* is the vapor pressure of W, then the Raoult’s

law (assuming the polymer cannot be in the vapor phase),

Aeq ¼
Pt

P r*
¼ ½W�

l0 þ ½W�
ð4:3:11Þ

From this, [W] can be solved in terms of l0:

½W� ¼ Aeq

1� Aeq

l0	D Axl0 ð4:3:12Þ

In this relation Aeq greater than or equal to unity implies that the vapor pressure of

W is less than the applied pressure, PT . This means that the condensation product

would not flash from the reactor, and l0 is given y Eq. (4.3.8). Otherwise, Eq.

(4.3.12) is used to eliminate [W] in Eq. (4.3.4), and l0 is solved. The moles of the

condensation product, Fw1, can be calculated from Eq. (4.3.2) as

Fw1

V
¼ ½W� � ½W�0

y
þ kpl

2
0 � k 0p½W�ðl10 � l0Þ ð4:3:13Þ

Consider the following computational scheme to find the MWD of the polymer

formed in HCSTRs. First, we find out whether the condensation product is

evaporating. If it is, [W] and l0 in the product stream are determined and Fw1
is

calculated using Eq. (4.3.14). However, if Fw1
is zero or negative, there is no

flashing of the condensation product, and we evaluate l0 and [W] using Eqs.

(4.3.8) and (4.3.7). Once these are known, the MWD is determined through

Eq. (4.3.6) by sequential computations.

4.4 ADVANCED STAGE OF POLYMERIZATION
[5^11]

In several cases (e.g., in the manufacture of polyethylene terephthalate), the

equilibrium constants of the reactions are such that one must remove the volatile

condensation products by application of a vacuum in order to obtain a polymer
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having long chain lengths. Because the desired degree of polymerization is about

100 for PET, the conversion of over 99% of the functional group must be attained.

Under such conditions, the viscosity of the reaction mass is very high and the

diffusivities of the volatile condensation product are very low. Special wiped-film

reactors operating under high vacuum are then required in order to increase the

surface area and reduce the resistance to diffusion. The analysis presented in this

section can be contrasted with that in Section 4.2, wherein the mass transfer

resistance was assumed to be negligible.

One design of a wiped-film reactor is shown schematically in Figure 4.4, in

which the reaction mass in the molten state flows downstream. The reactor is

partially full and a high vacuum is applied inside. Inside the reactor, there is a

rotating blade (not shown) that continually spreads the molten liquid as a thin film

on the reactor wall and, after a certain exposure time, another set of blades scrape

it off and mix it with the bulk of the liquid. It is expected that most of the

condensation product, W, is removed from the film because it is thin and its area

is large. If it is assumed that the material in the bulk is close to equilibrium

conditions, the W removed from the film would perturb this equilibrium and, on

mixing, the reaction in the bulk would be pushed in the forward direction. This

physical picture of the wiped-film reactor suggests that the polymerization in the

bulk is different from that occurring in the film. It is necessary that appropriate

balance equations for the bulk and the film be written and solved. The solution is

usually obtained numerically.

FIGURE 4.4 Schematic diagram of a wiped-film reactor. (Reprinted from Ref. 1 with

the permission of Plenum Publishing Corporation.)
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Depending on the relative amount of material in the film compared with

that in the bulk, two models are possible for the wiped-film reactor. In one model,

it is assumed that the entire reaction mass is applied as a thin film and there is no

separate bulk phase present in Figure 4.4. This would mean that after some time

of exposure, the entire film is well mixed instantaneously and applied once again

with the help of the rotating blades. In the second model, it is assumed that the

relative amount of material in the film is negligible compared with that in

the bulk. Because the removal of condensation product in the film occurs by the

mechanism of diffusion in a stationary film, the governing transport equations in

the film are partial differential equations (see Appendix 4.1). On the other hand,

in the bulk, where there is chemical reaction along with axial transport, the

transport equations are ordinary differential equations. The performance of an

actual wiped-film reactor lies between these two limiting models. Fortunately, the

two limiting models give results that are not significantly different; thus, only one

of them (the latter), which is more realistic, is described.

A differential element of the reactor is considered as shown in Figure 4.4.

Mole balance equations on the condensation product W and the polymer

molecules Pn are written as follows. The moles of W entering this element

per unit time are Q½W� and those leaving are Qð½W� þ d½W�Þ. Meanwhile,

rwAb dx mol=sec are produced by polymerization (it is assumed that poly-

merization occurs primarily in the bulk) and nwas dx mol=sec are removed by

evaporation from this differential element (through the film). Thus,

�Qd½W� ¼ rwAb dx� nwas dx ¼ 0 ð4:4:1Þ
In Eq. (4.4.1), rw is the molar rate of production of the condensation product in

the bulk, nw is the time-average removal rate of W from the film at position x, and

as is the film surface area per unit reactor length. The actual mechanism of mass

transfer in the film is extremely complex. Small bubbles are nucleated near the

drum surface within the film. As shown in Figure 4.5, there is a diffusion of W

into these, and the bubbles grow in size. For simple ARB reversible polymeriza-

tion, it is observed that every functional group reacted produces a molecule of W.

Hence, rw can be written with the help of Eq. (2.4.4) as

rw ¼ kpl
2
0 �
½W�ðl10 � l0Þ

K
ð4:4:2Þ

where

K ¼ kp

k 0p
ð4:4:3Þ

l10 is the feed concentration of total �A or �B groups (i.e., both reacted and

unreacted), so the term ðl10 � l0Þ is the concentration of the reacted �AB�
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groups. Similarly, it is possible to derive the mole balance equation for Pn in the

bulk as

�Qd½Pn� þ rPnAb dx ¼ 0; n ¼ 1; 2; 3 ð4:4:4Þ

where rPn is the rate of formation of Pn in the bulk, given by

rPn ¼ �2kpl0½Pn� þ kp
Pn�1
r¼1
½Pr�½Pn�r� ð4:4:5Þ

� k 0pðn� 1Þ½W�½Pn� þ 2k 0p½W�
P1

i¼nþ1
½Pi�

Equations (4.4.1) and (4.4.4) can be solved numerically using the Runge–Kutta

technique when nw is known. In order to do so, the mass transfer problem in the

film is first solved. This is discussed in Appendix 4.1, where an analytical

solution is developed using a similarity transformation. From these results, it is

possible to prepare a computer program that gives nw.

The numerical solution of wiped-film reactors has been obtained by several

researchers. It is well recognized that the most important parameter affecting the

reactor performance is the film surface area, as, in Eq. (4.4.1). Qualitatively, a

large as would give a higher rate of removal of the condensation product, which

would, in turn, push the polymerization in the forward direction. Results of mn
versus as at the reactor outlet are given in Figure 4.6, which shows the increasing

trend. However, this increase in mn with as does not occur for all values of as
because, beyond a critical value, the rate of mass transfer of W is no longer

limiting, and the mn versus as curve begins to flatten out where the polymer

formation is once again overall reaction controlled.

FIGURE 4.5 Diffusion of condensation product, W, toward bubbles moving in the film.

172 Chapter 4

Copyright © 2003 Marcel Dekker, Inc.



Example 4.3: Write material balance equations in terms of Eq. (4.1.6) and solve

for l00 at the interface.

Solution: The concentrations of [W] and l0 can be written as

½W� ¼ ½W�0 ¼ wZð½W�e � ½W�0Þ

and

l0Z ¼ l*00 þ l0Zðl0e � l*00Þ

where the subscript e denotes the equilibrium values. Then

@W

@y
¼ ð½W�e � ½W�0Þ

@w

dZ
�y
d2

� �
dd
dy

¼ ð½W�e � ½W�Þ
Z
d
@wZ

@Z
dd
dy

FIGURE 4.6 Average chain length mn at the end of the reactor versus surface area, as in

the film.
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Similarly

@o
@y
¼ ð½W �e � ½W �0Þ

1

d
@wZ

@Z

and

@2w

@y2
¼ ð½W �e � ½W �0Þ

1

d2
@2wZ

dy2

@l0
@y
¼ �ðl0e � l00Þ

Z
d

� � @l0Z
@Z

dd
dy
þ ð1� l0ZÞ

dl00
dy
¼ �Rw

Note that the value of l00 of the interface cannot be time independent if w0 at the

point is assumed to be fixed. Because the variation of l0 [i.e., Eq. A4.1.1b) is

governed by a partial differential equation which does not have any derivative

with respect to y, the time variation of l*00 at the interface is given by

dl*00
dt
¼ �Rwjy¼y0 ¼ �kpl�200 þ k 0pðl10 � l*00Þ½W �0

If ½W�0 ¼ 0, the above differential equation can be easily integrated as

l*00 ¼
l0e

1þ yl0e

The balance relation for the condensation product becomes

�ð½We� � ½W�0Þ
Z
d

� � dwZ

dZ
dd
dy
¼ D

d2

� �
ð½We� � ½W�0Þ

d2wZ

dZ2
þ rw

4.5 CONCLUSION

This chapter has discussed the analysis of reactors for step-growth polymerization

assuming the equal reactivity hypothesis to be valid. Polymerization involves an

infinite set of elementary reactions; under the assumption of this hypothesis, the

polymerization can be equivalently represented by the reaction of functional

groups. The analysis of a batch (or tubular) reactor shows that the polymer

formed in the reactor cannot have a polydispersity index (PDI) greater than 2.

However, the PDI can be increased beyond this value if the polymer is recycled or

if an HCSTR is used for polymerization. A comparison of the kinetic model with

experimental data shows that the deviation between the two exists because of (1)

several side reactions that must be accounted for, (2) chain-length-dependent

reactivity, (3) unequal reactivity of various functional groups, or (4) complica-

tions caused by mass transfer effects.
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In the final stages of polymerization, in fact, mass transfer of the

condensation product must always be considered. Commercially, the reaction is

then carried out in special wiped-film reactors. The final transport equations can

be numerically solved, and among the various reaction parameters, the film

surface area as is found to be the most important. The average chain length, mn; at
the end of the reactor is found to increase with increasing as up to some critical

value beyond which the overall polymerization becomes reaction controlled.

APPENDIX 4.1 SIMILARITY SOLUTION OF
STEP-GROWTH POLYMERIZATION
IN FILMS WITH FINITE MASS
TRANSFER [12]

In wiped-film reactors, thin films are generated in order to facilitate mass transfer

of the condensation product. Because the diameter of the drum in which the film

is generated is usually large, we can ignore its curvature, treating it approximately

as a flat film.

It may be observed that the flat films in commercial reactor operation are

normally heterogeneous in nature. This heterogeneity arises because of the way

the condensation product W travels from inside the film to the interface. Bubbles

of W are nucleated at the metallic wall of the reactor, and these slowly travel

toward the interface. W from the adjoining area diffuses to these, as shown in

Figure 4.5. The diffusion of W into a single bubble has been the subject of several

studies, but it is difficult to apply this concept to wiped-film reactors. This is

because we must know the size and the number density of these bubbles, which is

not easily amenable to either experimental measurements or theoretical calcula-

tions. In view of this difficulty, it would be erroneous to estimate the surface S per

unit area in Eq. (4.4.1) as the wall area as shown in Figure 4.3. In fact, the surface

per unit area has been treated as an adjustable parameter, assuming that the film is

homogeneous.

For a given level of vacuum applied, the interfacial concentration of W is

given by vapor–liquid equilibrium relationships. To keep the mathematics simple,

here we assume that ½W�s is governed by Raoult’s law. It is further assumed that

polymer molecules cannot volatilize and, if the stationary film is treated as a flat

plate, the film equation at the axial position x will be given by

@½W�
@t
¼ D*

@2½W�0
@y2

þ kpl2*� k 0p � ðl*10 � l*0ÞW ðA4:1:1aÞ
@l0*
@t
¼ �k0l�20 þ k 0pðl*10 � l0*ÞW ðA4:1:1bÞ
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In Eq. (A4.1.1), D* represents the diffusivity of the condensation product and l0*
and l1* are the zeroth and first moments, defined as

l0* ¼
P1
n¼1
½Pn�; l1* ¼

P1
n¼1

n½Pn� ðA4:1:2Þ

Because the wall is impervious to w and l0* and there is a vapor–liquid

equilibrium existing at the interface, it is possible to write the boundary

conditions for Eq. (A4.1.1) as follows:

@½W�
@y

				
y¼y0
¼ 0;

½W�
½W� þ l0*

				
y¼0
¼ PT

P0
w

ðA4:1:3Þ

Becaue the entire film is initially at equilibrium, the initial conditions at t ¼ 0 and

at all positions y are given by

½W� ¼ ½W�e; l0* ¼ l*0e ðA4:1:4Þ
Note that l1* represents the concentration of repeat units in the reaction mass and

is time and space invariant.

There is no analytical solution to Eq. (A4.1.1); it can only be solved

numerically. In these computations, it has been found that, for short times, the

film can always be divided into interfacial and bulk regions, as shown in Figure

4.7. The bulk region is the region where the diffusion of W has not had any effect.

The thickness of the interfacial region, d, can be numerically determined by

observing that the concentrations of W and polymer P have flat spatial profiles. In

FIGURE 4.7 Schematic diagram shown the interfacial and bulk regions within the films.

(Reprinted from Ref. 11 with the permission of VCH Verlagsgesellschaft mbH.)
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general, the thickness of the interfacial region for W, dw, and that for polymer P,

dl0, are expected to be different. However, computations have shown that they are

equal, as follows:

dw ¼ dl0 ¼ d ðsayÞ ðA4:1:5Þ
On application of vacuum in the gas phase, the interface concentrations of W and

P, ½W�0 and l*00, respectively, both change with time. However, due to thermo-

dynamic equilibrium, they are constrained to satisfy Eq. (A4.1.3). We now define

the following dimensionless variables:

wZ ¼
½W� � ½W�0
½W�e � ½W�0

l0Z ¼ ðl0*� l*00Þðl*0e � l*00Þ and Z ¼ y

d

ðA4:1:6Þ

Results for w as a function of Z are shown in Figure 4.8; these have been

computed numerically according to Eq. (A4.1.6). Similar results are obtained for

l0Z. We find that the results are time invariant. For long times, the interfacial

FIGURE 4.8 Similarity profile of condensation product, W, for different dimensionless

time y. (Reprinted from Ref. 11 with the permission of VCH Verlagsgesellschaft.)
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region grows up to the wall, and after that, it becomes equal to the film thickness

y0.

In most applications, the film thickness y0 is large and the situation of the

growing interfacial region is more realistic. Based on the previous observations,

let us now develop an analytical expression for d as a function of time and then

obtain an expression for the rate of removal of the condensation product.

A.4.1.1 Polynomial Approximation for wh and l0h

The time invariance of wZ and lZ suggest a solution scheme for which the

following polynomial approximations are proposed:

wZ ¼ a11Zþ a12Z
2 þ a13Z

3

l0Z ¼ a21Zþ a22Z
2 þ a23Z

3 þ a24Z
4

ðA4:1:7Þ

These are chosen such that all boundary conditions on wZ and l0Z are rigorously
satisfied. At Z ¼ 0,

wZ ¼ l0Z ¼
@l0
@Z
¼ 0 ðA4:1:8Þ

At Z ¼ 1,

wZ ¼ l0Z ¼ 1;
@lwZ
@Z
¼ @l0Z

@Z
¼ 0

On satisfaction of these boundary conditions, we have the following:

wZ ¼ 3Z� 3Z2 þ Z3 and l0Z ¼ 6Z2 � 8Z2 þ 3Z4 ðA4:1:9Þ

A.4.1.2 Governing Ordinary Di¡erential
Equations for wh and l0h

The time invariance of wZ and lZ is exploited in rewriting the invariant, as shown

in Eq. (A4.1.1). When this is done, we find that ordinary differential equations

govern wZ and l0Z. These involve time variation of interface concentrations of

condensation product ð¼ ½W�0Þ and polymer ð�l*0eÞ.
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To avoid giving excessive mathematical detail here, we refer interested

readers to the literature [12]. To give an outline, we define the following

dimensionless variables:

y ¼ kpl*10t; b ¼ k 0p
kp

; D ¼ D*

kpl1*

w0 ¼
½W�0
l1*

; wy ¼
½W�0
l1*

; l0 ¼
l0*
l1*

; l0e ¼
l*0e
l1*

TABLE A4.1 Various Constants and Relations Governing Film Thickness

Constants arising from averaging of profiles:
a0 ¼ �3 a1 ¼ 0:75 a2 ¼ 0:6

a3 ¼ �0:4536 a4 ¼ 2:4857 a5 ¼ 0:25
ðA1Þ

Time variation of zeroth moment, l00, at the interface:

aw ¼ PT=ðP0
w � PT Þ

b ¼ k 0p=kp
ai ¼ ð1þ bawÞl000
bi ¼ baw
ci ¼ ðai � biÞ

l00 ¼
bil

0
00

ai � ci expð�biyÞ

ðA2Þ

Film thickness as a function of l00:
a ¼ ð1� 2a2 þ a4Þ þ awbð1� a1 � a2 þ a5Þ
b ¼ ab½l0eða2 � a3Þ � ð1� a1Þ� þ bweða1 � a2Þ þ 2l0eða2 � a4Þ
c ¼ ða3l0e � a1Þbwe þ a4l

2
0e

ðA3Þ

an1 ¼ 2½aþ ð1þ biÞð1� a1Þaw�=a5
bn1 ¼ 2½b� bið1� a1Þaw�=a5
cn1 ¼ 2c=a5
ad1 ¼ awð1þ bawÞ
bd1 ¼ �ð1þ bawÞwe þ ba2w
cd1 ¼ bawwe

ðA4Þ

f1ðl00Þ ¼
an1l

2
00 þ bn1l00 þ cn1

l00fad1l200 þ bd1l00 þ cd1g

g1ðl00Þ ¼
½ðawl00Þ � we�ð2Da0=a5Þ

l00ðad1l200Þ
þ bd1l00 þ cd1

dd2

dl00
þ f1ðl00Þd2

ðA5Þ
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The resultant ordinary differential equations involve interfacial concentrations l00
and w0, which are known precisely. When the assumed profiles of Eq. (A4.1.7)

are substituted in these equations, we obtain the film thickness d as a function of

l00 and various parameters governing it. These all are given in Table A4.1.

Analytical solution of film thickness. The relation governing film thickness

ð¼ dÞ involves d2 and is a nonlinear first-order ordinary differential equation. The

following series solution can easily be developed:

d2 ¼P1
i¼1

riðl00 � l000Þi

The coefficients ri can easily be obtained by substituting into Eq. (A3) of Table

A4.1; these are given in Eq. (A6). Once d is determined, the rate of removal of the

condensation product, nw, can be evaluated from

nw ¼ 3Dðwe � w0Þ=d

On request the authors can provide a computer program that can be copied

onto any personal computer. The program is efficient and always gives a

convergent solution.

TABLE A4.1 (continued )

Solution of film thickness, d, in terms of l00:
u ¼ l00 � l000

d2 ¼Pnc
i¼1

riu
i where nc !1

an2 ¼ an1; bn2 � bn1 þ 2an1l
0
00; cn2 ¼ an1l

02
00 þ bn1l

0
00 þ cn1

ad2 ¼ ad1; bd2 ¼ bd1 þ 3ad1l
0
00; cd2 ¼ 3ad1l

0
00 þ 2bd1l

0
00 þ cd1

dd2 ¼ ad1l
03
00 þ bd1l

02
00 þ cd1l

2
00; dn2 ¼

2Da0aw
a5

; en2 ¼
2Da0ðawl000 � weÞ

a5
r1 ¼ en2=dd2

r2 ¼ ðdn2 � cn2r1 � cd2r1Þ=2dd2
r3 ¼ �½ðbn2r1 þ cn2r1Þ þ ðbd2r1 þ 2cd2r2Þ�=3dd2

rnþ1 ¼ �f½an2 þ ðn� 2Þad2�ri�2 þ ½bn2 þ ðn� 1Þbd2�ri�1
þ ½cn2 þ ncd2�rig=½ðnþ 1Þdd2�; i � 3

Rate of evaporation of W at the interface:

nw ¼ D
dw

dy

				
y¼0
¼ 3D

we � w0

d
ðA6Þ
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PROBLEMS

4.1. Analyze step-growth polymerization in a tubular reactor and develop

relations for the MWD. Carry out a suitable transformation to show that

the MWD has the same form as for batch reactors.

4.2. Suppose the vapor–liquid equilibrium in Section 4.2 is governed by the

following Flory–Huggins equations:

Pw ¼ P0
waffw

Pp1
¼ P0

p1
affp1
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where yw and yp1 are the volume fractions given by

fo ¼
wvw
V

fp1
¼ p1vp1

V

and af is the activity coefficient, which for a high-molecular-weight

polymer is

af ¼ expð1þ wÞ

The term w is a constant and is normally known. Proceed as in the text and

develop the complete solution using the following steps:

(a) Develop an expression for V ; similar to Eqs. (4.2.14) and

(4.2.17).

(b) Find w similar to Eq. (4.3.15).

(c) Substitute this to get ðdl0=dtÞ similar to Eq. (4.2.18).

4.3. In Problem 4.2, assume that P1 does not flash. Now, solve the differential

equation governing l0 [similar to Eq. (4.2.18)].

4.4 In Problem 4.3, find the transition time [as in Eq. (4.2.29)] from the closed

reactor operation to the semibatch reactor operation. Subsequently, develop

a similar program on your personal computer.

4.5. Assume irreversible step-growth polymerization in a tubular reactor with

recycle as follows:

where F is the fraction recycled. Let us say that the feed consists of

monomer AR1B and monofunctional monomer AR2X in the ratio 1 : r. We

define conversion pB of the B functional group as follows:

pB¼D ð1� f Þ ¼ 1� lP04
lP01

Find the total flow rate ðm3=secÞ, moles of B per second, moles of AR2X

per second, and concentrations l0P and l0Px at the five points in the figure.
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4.6. Carry out the time-dependent mole balance of an irreversible step-growth

polymerization in HCSTRs. Derive the following MWD relations:

dC1

dt
¼ 1� C1 � C1l0t*

dCn

dt
¼ �Cn þ

1

2
t*
P

CrCn�r � Cnl0t*

where

Cn ¼
½Pn�
½P1�0

; n ¼ 1; 2

t ¼ t

V=Q
¼ t

y

t* ¼ 2kp½P1�0
4.7. Under unsteady-state operation of an HCSTR in Problem 4.6, the following

two common initial conditions arise:

IC1: At t ¼ 0;

Cn ¼ 0; n ¼ 1; 2

IC2: At t ¼ 0;

C1 ¼ 1; Cn ¼ 0; n ¼ 1; 2

Derive the following general relation for l0ð¼
P1

I¼1 CiÞ and show that the

following is its solution:

dl0
dt
¼ 1� l0 �

1

2
t�2l20

l0 ¼
y0 � 1

t*
1� e�yt

1� de�yt
for IC1

l0 ¼
y0 � 1

t*
1� ðb=dÞe�y0t
1� de�y

0t
for IC2

where

y0 ¼ ð1þ 2t*Þ1=2

d ¼ 1� y0

1þ y0

b ¼ 1� y0 þ t*
1þ y0 þ t*
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4.8. Suppose the HCSTR of Problem 4.7 is operating at steady state. Show that

the entire MWD could be obtained successively. Through successive

elimination, the following solution has been derived in the literature:

Cn ¼ gn
ðt*=2Þn�1
ðy0Þ2n�1 ; n ¼ 1; 2; . . .

where

g1 ¼ 1

gn ¼
Pn�1
r¼1

grgn�r; n ¼ 2; 3

Find gn up to n ¼ 11. Note that gn is independent of conditions existing in

the reactor.

4.9. For Problem 4.8, derive expressions for l0, l1, and l2. Solve these for

the steady state and determine the following chain length ðmnÞ and

weight-average ðmnÞ molecular weights and the polydispersity index Q.

mns ¼
t*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4t�2 þ 1
p � 1

; mws ¼ 1þ t*;

Q ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t�2 þ 1

p
� 1Þð1þ t*Þ

Note that Q can take on any value in HCSTRs during irreversible

polymerization. It is not limited to a value of 2, as found for batch rreactors.

4.10. Design a computer program implementing Eqs. (4.3.5)–(4.3.13) for rever-

sible step-growth polymerization in HCSTRs. Using the program, evaluate

the entire MWD for given kp, k
0
p, and y. From this MWD, evaluate l0 and

l2 and show that the polydispersity index Q for reversible polymerization

does not increase forever, as predicted by Problem 4.9.

4.11. Consider the one-dimensional diffusion of condensation product through a

film described in Appendix 4.1. The MWD of the polymer would be given

by the following:

@½W�
@t
¼ D*

@2½W�
@y2
þ kpl

�2
0 � k 0pðl1*� l0*Þ½W�

@½P1�
@t
¼ �2kp½P1�l0*þ 2k 0p½W�

P1
i¼2
½Pi�

@½Pn�
@t
¼ �2kp½Pn�l0*þ kp

Pn�1
i¼1
½Pr�½Pn�r� � k 0pðn� 1Þ½W�½Pn�

þ 2k 0p½W�
P1
i¼1
½Pi�; n � 2
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Rewrite these partial differential equations using the following dimension-

less variables:

l0 ¼
l0*
l1*

; y ¼ kpl1*t

W ¼ ½W�
l1*

b ¼ k 0p
kp

Pn ¼
½Pn�
l1*

; D ¼ D*

kpl1*

Also derive expressions for l0 in Eq. (A4.1.1b) starting from these MWD

relations. Plausible initial and boundary conditions on the film are as

follows:

1. Bulk at equilibrium with reaction and diffusion at the interface

2. Reaction and diffusion in the entire film

Write these initial and boundary conditions mathematically.

4.12. Suppose that we propose that the solution of the MWD in the film is

Pnðy; yÞ ¼ X ðy; yÞY ðy; yÞn�1

Show that the MWD relations are satisfied by equations of Pb4.11. Also

suggest the simplest form of X ðy; yÞ and Y ðy; yÞ. Also demonstrate that this

form is consistent with the equilibrium of polymerization. Try the form

given in Eq. (3.5.2) first.

4.13. The rate of evaporation, Nw, of condensation product at y ¼ 0 in the film of

Figure 4.7 is given by

�NNw ¼
ðtf
t¼0
�D @W

@y
jy¼0 dt

Also note that the film at y ¼ y0 is impervious [i.e., ð@w=@yÞy¼y0 ¼ 0�. If we
add a governing relation for l0 and w in Problem 4.11 and integrate with

respect to y, we can determine Nw as

Nw ¼
1

tf

ðtf
0

Dw

ðy0
y¼0

@

@t
ðwþ l0Þ dy dt

¼ 1

tf

ðy0
y¼0
½ðW þ l0Þjt¼0 � ðW þ l0Þtf � dy

Change the order of integrate first and then complete the above derivation.

4.14. Let us assume that the film is initially at equilibrium and that at y ¼ 0

(where vacuum has been applied), the concentration of condensation
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product is fixed at w0. We define the following variables:

wZ ¼
w� w0

we � w0

l0Z ¼
l0 � l00
l0e � l00

Z ¼ y

dðyÞ
where dðyÞ is the thickness of the interfacial region (as shown in Fig. 4.7),

which is time dependent. Rewrite the balance relations for w and l0 in

Problem 4.13.

4.15. If we fix the concentration of the condensation product at w0 in Problem

4.14, l00 cannot be kept time invariant. At the interface, l00 and w0 satisfy

the following differential equation:

dl00
dy
¼ �l200 þ bw0ð1� l00Þ

Find the reason for this and integrate this equation.

4.16. An ARB monomer is distributed uniformly in the form of droplets in a

medium of high viscosity (such as an agar–agar solution). These droplets

would therefore be almost immobile. Assuming the droplets to be of

uniform size, obtain the rate of polymerization. If the polymerization is

carried out to complete conversion, the resultant polymer would be in the

form of beads.

4.17. In Example 3.2, the mn for 100% conversion is as follows:

mn ¼
1þ r

1� r
¼ NA0 þ NB0

NA0 � NB0

at p ¼ 1

This equation will be valid if the two monomers, A and B, are completely

mixed and reacted to 100% conversion. Now, consider the flow reactor,

where vA and vB are the flow rates of the monomers (mol=sec) into the

reactor. Show that the molecular weight of the resultant polymer for 100%

conversion is given by

mn ¼
vA þ vB
vA � vB
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4.18. In Problem 4.17, if the reactor size is such that it is not possible to obtain

100% conversion, find the mn.
4.19. Consider the condensation polymerization of two monomers A and B that

do not mix. In such cases, the monomers diffuse to the interface and

polymerize there. Find the molecular weight of the polymer in terms of the

diffusivities DA and DB if the interfacial reaction rate is very rapid.
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5

Chain-Growth Polymerization

5.1 INTRODUCTION

In step-growth polymerization, reactive functional groups are situated on each of

the molecules, and growth of polymer chains occurs by the reaction between

these functional groups. Because each molecule has at least one functional group,

the reaction can occur between any two molecules. In chain-growth polymeriza-

tion, on the other hand, the monomer polymerizes in the presence of compounds

called initiators. The initiator continually generates growth centers in the reaction

mass, which add on monomer molecules rapidly. It is this sequential addition of

monomer molecules to growing centers that differentiates chain growth from

step-growth polymerization.

Growth centers can either be ionic (cationic or anionic), free radical, or

coordinational in nature—depending on the kind of initiator system used. Based

on the nature of the growth centers, chain-growth polymerization is further

classified as follows [1–3]:

1. Radical polymerization

2. Cationic polymerization

3. Anionic polymerization

4. Coordination or stereoregular polymerization

Initiators for radical polymerization generate free radicals in the reaction

mass. For example, in a solution of styrene and benzoyl peroxide, the latter
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dissociates on heating to benzoyloxy radicals, which combine with the styrene

monomer to give growth centers as follows:

It is clear from Eqs. (5.1.1) that there are two types of radicals in the reaction

mass:

1. Primary radicals which are generated by the initiator molecules

directly, for example,

2. Growing chain radicals; for example,

These are generated by the reaction between the primary radicals and the

monomer molecules. Growing-chain radicals continue to add monomer mole-

cules sequentially; this reaction is known as propagation. Reaction between a
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primary radical and a polymer radical or between two polymeric radicals would

make polymer radicals unreactive by destroying their radical nature. Such

reactions are called termination reactions. Thus, there are five kinds of species

in the reaction mass at any time: initiator molecules, monomer molecules,

primary radicals, growing-chain radicals, and terminated polymer molecules.

Cationic polymerization occurs in a similar manner, except for the fact that

the initiator system produces cations instead of free radicals. Any catalyst system

in cationic polymerization normally requires a cocatalyst. For example, protonic

acid initiators (or catalysts) such as sulfuric acid, perchloric acid, and trifluoro-

acetic acid require a cocatalyst (e.g., acetyl perchlorate or water). Together, the

two generate cations in the reaction mass. The reaction of boron trifluoride with

water as the cocatalyst and styrene as the monomer is an example:

BF3 þ H2O �! � ðBF3OHÞ�Hþ ð5:1:2aÞ

The growth of the polymer chain occurs in such a way that the counterion

(sometimes called a gegen ion) is always in the proximity of the growth center.

Anionic polymerization is caused by compounds that give rise to anions in

the reaction mass. The compounds normally employed to initiate anionic

polymerization are Lewis bases (e.g., primary amines or phosphenes), alkali

metals (in the form of suspensions in hydrocarbons), or some organometallic
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compounds (e.g., butyl lithium). Sodium metal in the presence of naphthalene

polymerizes styrene according to the following scheme:

As in cationic polymerization, there is a gegen ion in anionic polymerization, and

the nature of the gegen ion affects the growth of the polymer chains significantly.

Coordination or stereoregular polymerization is carried out in the presence

of special catalyst–cocatalyst systems, called Ziegler–Natta catalysts. The catalyst

system normally consists of halides of transition elements of groups IV to VIII

and alkyls or aryls of elements of groups I to IV. For example, a mixture of TiCl3
and AlEt3 constitutes the Ziegler–Natta catalyst system for the polymerization of

propylene.

In all of the four classes of chain-reaction polymerization, the distinguish-

ing feature is the existence of the propagation step between the polymeric

growing center and the monomer molecule. This chapter discusses in detail the

kinetics of these different polymerizations and the differences between the four

modes of chain growth polymerization.
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5.2 RADICAL POLYMERIZATION

In order to model radical polymerization kinetically, the various reactions—

initiation, propagation, and termination—must be understood.

5.2.1 Initiation

By convention, the initiation step consists of two elementary reactions:

1. Primary radical generation, as in the production of

in Eqs. (5.1.1)

2. Combination of these primary radicals with a single monomer mole-

cule, as in the formation of

The molecules of the initiator can generate radicals by a homolytic decomposition

of covalent bonds on absorption of energy, which can be in the form of heat, light,

or high-energy radiation, depending on the nature of the initiator employed.

Commercially, heat-sensitive initiators (e.g., azo or peroxide compounds) are

employed. Radicals can also be generated between a pair of compounds, called

redox initiators, one of which contains an unpaired electron. During the initiation,

the unpaired electron is transferred to the other compound (called the acceptor)

and the latter undergoes bond dissociation. An example of the redox initiator is a

ferrous salt with hydrogen peroxide:

Feþþ þ H2O2 ���������!Low temperature
OH� þ Feþþþ þ ?OH ð5:2:1Þ

This section focuses on heat-sensitive initiators, primarily because of their

overwhelming usage in industry. The homolytic decomposition of initiator

molecules can be represented schematically as follows:

I2�!
k1

2I ð5:2:2Þ
where I2 is the initiator molecule [benzoyl peroxide in Eq. (5.1.1a)] and I is the

primary radical [e.g.],
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in Eq. (5.1.1a)]. The rate of production of primary radicals, r0i, according to Eq.

(5.2.2), is

r01 ¼ 2kI½I2� ð5:2:3Þ
where [I2] is the concentration of the initiator in the system at any time. The

primary radicals, I, combine with a monomer molecule, M, according to the

schematic reaction

IþM�!k1 P1 ð5:2:4Þ
where P1 is the polymer chain radical having one monomeric unit [e.g.,

in Eq. (5.1.1b)] and k1 is the rate constant of this reaction. The rate of production,

r1, of the polymer radicals, P1, can be written as

r1 ¼ k1½I�½M� ð5:2:5Þ
where [I] and [M] are the concentrations of the primary radical and the monomer

in the reaction mass, respectively.

Equations (5.2.2) and (5.2.4) imply that all the radicals generated by the

homolytic decomposition of initiator molecules, I2, are used in generating the

polymer chain radicals P1, and no primary radicals are wasted by any other

reaction. This is not true in practice, however, and an initiator efficiency is defined

to take care of the wastage of the primary radicals.

The initiator efficiency, f, is the fraction of the total primary radicals

produced by reaction (5.2.2) that are used to generate polymer radicals by

reaction (5.2.4). Thus, the rate of decomposition of initiator radicals is given by

ri ¼ �2fkI½I2� ð5:2:6Þ
Table 5.1 gives data on fkI for the two important initiators, benzoyl peroxide and

azobisdibutyronitrile, in various reaction media. If pure styrene is polymerized

with benzoyl peroxide, the value of fkI for styrene as the reaction medium must be

used to analyze the polymerization. However, if a solvent is also added to the

monomer (which is sometimes done for better temperature control), say, toluene

in styrene, it is necessary that the fkI corresponding to this reaction medium be

determined experimentally.

The effect of the reaction medium on the initiator efficiency as shown in

Table 5.1 has been explained in terms of the ‘‘cage theory.’’ After energy is

supplied to the initiator molecules, cleavage of a covalent bond occurs, as shown

Chain-Growth Polymerization 193

Copyright © 2003 Marcel Dekker, Inc.



in Eq. (5.2.2). According to this theory, the two dissociated fragments are

surrounded by the reaction mass, which forms a sort of cage around them. The

two fragments stay inside the cage for a finite amount of time, during which they

can recombine to give back the initiator molecule. Those fragments that do not

recombine diffuse, and the separated fragments are called primary radicals.

Various reactions can now occur: The primary radicals from different cages can

either recombine to give an initiator molecule or react with monomer molecules

to give P1. If the monomer molecule is very reactive, it can also react with a

TABLE 5.1 Typical Rate Constants in Radical Polymerizations

Initiation rate constants

Initiator Reaction medium Temp. (�C) fkI (sec
�1)

Benzoyl peroxide Benzene 70.0 1:18� 10�5

Toluene 70.3 1:10� 10�5

Styrenea 61.0 2:58� 10�6

Polystyrene 64.6 1:47� 10�6

56.4 3:8� 10�7

Polyvinyl chloride 64.6 6:3� 10�7

Azobisdibutyronitrile Benzene 69.5 3:78� 10�5

Toluene 70.0 4:0� 10�5

Styreneb 50.0 2:79� 10�6

2-Ethyl hexylperoxy

dicarbonatea (used for

polyvinyl chloride formation) 50.0 4.049� 10�5

Initial rate constants kp and kt

Monomer Temp. (�CÞ kp (L=mol sec)

kt � 10�6

(L=mol sec)

Acrylic acid 25 13.0 0.018

(n-butyl ester) 35 14.5 0.018

Methacrylic acid 30 369.0 10.2

(n-butyl ester)

Styreneb 60 176.0 72.0

30 55.0 50.5

Vinyl acetate 25 1012.0 58.8

Vinyl chloridea 50 1717.9 1477.0

Vinylidene 35 36.8 1.80

chloride 25 8.6 0.175
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fragment inside a cage. The cage effect can therefore be represented schemati-

cally as follows:

I2 �! � I : I Cage formation recombination ð5:2:7aÞ
I : I �! � Iþ I Diffusion out of cage ð5:2:7bÞ
IþM �! P1 Formation of primary radicals with

monomer ð5:2:7cÞ
I : I þM �! P1 þ I Reaction with cage ð5:2:7dÞ

The characteristics of the reaction medium dictate how long the dissociated

fragments will stay inside the cage: the medium affects the first and second

reactions of Eq. (5.2.7) most significantly. It is therefore expected that, if all other

conditions are equal, a more viscous reaction mass will lead to a lower initiator

efficiency. This can be observed in Table 5.1 by comparing the values of fkI of

benzoyl peroxide in styrene and the more viscous polystyrene.

5.2.2 The Propagation Reaction

Polymer chain radicals having a single monomer unit, P1, are generated by the

initiation reaction as previously discussed. The propagation reaction is defined as

TABLE 5.1 (continued )

Transfer rate constants

ðktrS=kpÞ � 104

Transfer agent 60�C 100�C

Cyclohexane 0.024 0.16

Benzene 0.018 0.184

Toluene 0.125 0.65

Ethylbenzene 0.67 1.62

Iso-propylbenzene 0.82 2.00

Vinyl chloridea (in polymerization of vinyl chloride) 14.19 34.59

a Calculated from

kd1 ¼ 1:5� 1015 expð�14554=T Þ
kp ¼ 5� 107 expð�3320=T Þ
kt ¼ 1:3� 1012 expð�2190=T Þ
ktrM1=kp ¼ 5:78 expð�2768=T Þ
PVC prepared by suspension polymerization

b More comprehensive rate constants valid in the entire domain of polymerization of styrene and

methylmethacrylate are given in Tables 6.2 and 6.3. These are needed for detailed simulation of

reactors. Notice that they are conversion dependent.

Source: Ref. 4.
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the addition of monomer molecules to the growing polymer radicals. The reaction

mass contains polymer radicals of all possible sizes; in general, a polymer radical

is denoted by Pn, indicating that there are n monomeric units joined together by

covalent bonds in the chain radical. The propagation reaction can be written

schematically as follows:

Pn þM �!kpn Pnþ1; n ¼ 1; 2; . . . ð5:2:8Þ
where kpn is the rate constant for the reaction between Pn and a monomer

molecule. In general, the constant depends on the size of the chain radical. It is

not difficult to foresee the increasing mathematical complexity resulting from the

multiplicity of the rate constants. As a good first approximation, the principle of

equal reactivity is assumed to be valid, even in the case of polymer radicals,

which means that

kp1 ¼ kp2 ¼ kp3 ¼ kp ð5:2:9Þ
and Eq. (5.2.8) reduces to

PnþM �!
kp

Pnþ1; n ¼ 1; 2; 3; . . . ð5:2:10Þ
We learned in Chapter 3 that the principle of ‘‘equal reactivity’’ holds well for

molecules having reactive functional groups. Even though the nature of the

growth centers is different in addition polymerization, segmental diffusion is

expected to play a similar role here, justifying the use of equal reactivity for these

cases also. The results derived using Eq. (5.2.10) explain experimental data very

well, further justifying its use.

5.2.3 Termination of Polymer Radicals

The termination reaction is the one in which polymer chain radicals are destroyed.

This can occur only when a polymer radical reacts with another polymer radical

or with a primary radical. The former is called mutual termination and the latter is

called primary termination. These reactions can be written as follows:

Pm þ Pn �!
kt

Mnþm ð5:2:11aÞ
Pm þ I �!kt;I Mm; m; n ¼ 1; 2; 3; . . . ð5:2:11bÞ

The term Mmþn signifies a dead polymer chain; that is, it cannot undergo any

further propagation reaction. In the case of mutual termination, the inactive

polymer chains can be formed either by combination or by disproportionation. In

combination termination, two chain radicals simply combine to give an inactive

chain, whereas in disproportionation, one chain radical gives up the electron to
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the other and both the chains thus become inactive. These two types of

termination can be symbolically written as

Pm þ Pn �!
ktc

Mmþn ðcombinationÞ ð5:2:12aÞ
Pm þ Pn �!

ktd
Mm þMn ðdisproportionationÞ ð5:2:12bÞ

where Mm has the saturated chain end and represents the inactive polymer chain

to which the electron has been transferred; Mn represents the inactive chain with

an unsaturated chain end; ktc is the termination rate constant for the combination

step, and ktd is the rate constant for the disproportionation step. Once again, the

principle of equal reactivity is assumed to be valid in writing Eq. (5.2.12).

Transfer agents (denoted S) are chemicals that can react with polymer

radicals, as a result of which S acquires the radical character and can add on the

monomer exactly as P1. The polymer radical thereby becomes a dead chain. The

transfer reaction can be represented by

PnS ���!ktrS Mn þ P1; n � 2

Similar reactions are found to occur quite commonly in radical polymerization

with monomer as well as initiator. These are written as follows:

Pn þM ���!ktr M Mn þ P1

Pn þ I2 ���!ktr M Mn þ P1

5.3 KINETIC MODEL OF RADICAL
POLYMERIZATION [5,6]

If the transfer reaction to the initiator and monomer is neglected, the overall

mechanism of polymerization can be expressed as follows:

Initiation

I2 ���!kI 2I ð5:3:1aÞ
IþM ���!k1 P1 ð5:3:1bÞ
Propagation

Pn þM ���!ktrS Pnþ1; n ¼ 1; 2; . . . ð5:3:1cÞ
Termination
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Chain transfer:

Pn þ S ���!ktrS Mn þ P1 ð5:3:1dÞ
Combination:

Pn þ Pm ���!ktc Mmþn ð5:3:1eÞ

Disproportionation:

Pn þ Pm ���!ktd Mn þMm ð5:3:1f Þ
The mole balance equations for batch reactors are written for the species I2, I, P1,

P2; . . . ; Pn, as follows:

d½I2�
dt
¼ �kI½I2� ð5:3:2Þ

d½I�
dt
¼ 2fkI½I2� � k1½I�½M� ð5:3:3Þ

d½P1�
dt
¼ k1½I�½M� � kp½P1�½M� þ ktrSðlP0 � ½P1�Þ½S�

� ðktc þ ktdÞlP0½P1� ð5:3:4Þ
d½Pn�
dt
¼ kp½M� ½Pn�1� � ½Pn�

� 
� ktrS½S�½Pn�

� ðktc þ ktdÞlP0½Pn�; n � 2 ð5:3:5Þ

where lP0 is the total concentration of growing polymer radicals ð¼P1n¼1 ½Pn�Þ
and f is the initiator efficiency. Similar balance equations can be written for the

monomer and the dead polymer:

d½M�
dt
¼ �k1½I�½M� � kp½M�lP0 ð5:3:6Þ

d½Mn�
dt
¼ ktrS½S�½Pn� þ ktd½Pn�lP0

1

2
ktc

Pn�1
m¼1
½Pm�½Pn�m� ð5:3:7Þ

Assuming that the quasi-steady-state approximation (QSSA) is valid, the concen-

tration of the intermediate species I can be found from Eq. (5.3.3):

½I� ¼ 2fkI½I2�
k1½M�

ð5:3:8Þ
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Under QSSA, Eqs. (5.3.4) and (5.3.5) are summed for different values of n to

obtain

d½lP0�
dt
¼ d

dt

P1
n¼1
½Pn� ¼ k1½I�½M� � 2ðktc þ ktdÞl2P0 ¼ 0 ð5:3:9Þ

In radical polymerization, the slowest reaction is the dissociation of initiator

molecules. As soon as a primary radical is produced, it is consumed by the

reactions of Eq. (5.3.1). Thus, the concentration of I is expected to be much less

than that of P; that is,

½M� � lP0 � ½I� ð5:3:10Þ
To determine the rate of monomer consumption rp for radical polymerization,

observe that the monomer is consumed by the second and third reactions of Eq.

(5.3.1). Therefore,

rp ¼ � k1½I�½M� þ kp½M�lP0
� 
 ð5:3:11Þ

From Eq. (5.3.10), this can be approximated as

rp ffi �kp½M�lP0 ð5:3:12Þ
To find lP0, consider the following equation, where [I] in Eq. (5.3.9) is eliminated

using Eq. (5.3.8):

lP0 ¼
fkI½I2�
kt

� �1=2

ð5:3:13Þ

The rate of propagation is thus given by

rp ¼ kp
fkI½I2�
kt

� �1=2

½M� ð5:3:14Þ

where

kt ¼ ktc þ ktd ð5:3:15Þ

5.4 AVERAGE MOLECULAR WEIGHT IN RADICAL
POLYMERIZATION

The average molecular weight in radical polymerization can be found from the

kinetic model, Eq. (5.3.1), as follows. The kinetic chain length, n, is defined as

the average number of monomer molecules reacting with a polymer chain radical

during the latter’s entire lifetime. This will be the ratio between the rate of
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consumption of the monomer (i.e., rp) defined in Eq. (5.3.12) and the rate of

generation of polymer radicals,

n ¼ rp

ri
ð5:4:1Þ

where ri is the rate of initiation given by

ri ¼ k1½I�½M�
From the QSSA, the rate of initiation ðriÞ should be equal to the rate of

termination ðrt ¼ ktl
2
P0Þ. If transfer reactions are neglected,

n ¼ rp

rt
¼ kp½M�lP0

2ktl
2
P0

¼ kp½M�
2ktlP0

¼ kp½M�
2ktlP0

ð5:4:2Þ

Eliminating lP0 with the help of Eq. (5.3.14),

n ¼ kp

2ðfkI Þ1=2
½M�

2ktlP0k
1=2
t

ð5:4:3Þ

Equation (5.4.3) shows that the kinetic chain length decreases with increasing

initiator concentration. This result is expected, because an increase in [I2] would

lead to more chains being produced. The quantity that is really of interest is the

average chain length, mn, of the inactive polymers. Average chain length is

directly related to e; the former gives the average number of monomer molecules

per dead polymer chain, whereas e gives the average number of monomer

molecules per growing polymer radical. To be able to find the exact relationships

between the two, the mechanism of termination must be carefully analyzed. If the

termination of polymer chain radicals occurs only by combination, each of the

dead chains consists of 2e monomer molecules. If termination occurs only by

disproportionation, each of the inactive polymer molecules consists of e monomer

molecules; that is,

mn ¼
2n when termination is by combination only

n when termination is by disproportionation only

an when there is mixed termination; 1 � a � 2

8<: ð5:4:4Þ

As the initiator concentration is increased, the rate of polymerization increases

[Eq. (5.3.14)], but e (and therefore mn) decreases [Eq. (5.4.3)]. Therefore, control
of the initiator concentration is one way of influencing the molecular weight of

the polymer.

Another method of controlling the molecular weight of the polymer is by

use of a transfer agent. In the transfer reaction, the total number of chain radicals

in the reaction mass is not affected by Eq. (5.3.14). It therefore follows that the

presence of a transfer agent does not affect rp. However, the kinetic chain length,
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e, does change drastically depending on the value of ktrS and [S]. Equation (5.4.2)

can easily be modified to account for the presence of transfer agents:

n ¼ rp

2kt½P�2 þ ktrS½P�½S�
ð5:4:5Þ

or, taking the reciprocal,

1

n
¼ ktrS½S�

kp½M�
þ 2ðkt fkIÞ1=2

kp

½I2�1=2
½M� ð5:4:6Þ

Equation (5.4.6) predicts a decrease in mn with increasing concentration of the

transfer agent.

5.5 VERIFICATION OF THE KINETIC MODEL
AND THE GEL EFFECT IN RADICAL
POLYMERIZATION

To verify the kinetic model of radical polymerization presented in the last section,

the following assumptions must be confirmed:

1. rp should be independent of time for a given [M] and [I2] to verify the

steady-state approximation.

2. rp should be first order with respect to monomer concentration.

3. rp should be proportional to ½I2�1=2 if the decomposition of the initiator

is first order.

The validity of the steady-state approximation has been shown to be

extremely good after about 1–3min from the start of the reaction [1,3]. The

polymerization of methyl methacrylate (MMA) has been carried out to high

conversions, and the plot of the percent polymerization versus time is displayed in

Figure 5.1 [2]. In Figure 5.2, the corresponding average chain length of the found

polymer is shown as a function of time [7–10]. The behavior observed in these

figures is found to be typical of vinyl monomers undergoing radical polymeriza-

tion. On integrating Eq. (5.3.14), we obtain for constant [I2]

� lnð1� xÞ ¼ kp
fkI

kt

� �1=2

½I2�1=2t ð5:5:1Þ

where the conversion x is defined as

x ¼ ½M�0 � ½M�½M�0
ð5:5:2Þ

According to this equation, the plot relating the monomer conversion and time

should be exponential in nature and independent of ½M�0. Because ½M�0 depends
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FIGURE 5.1 Polymerization of methyl methacrylate at 50�C with benzoyl peroxide

initiator at various monomer concentrations (benzene is the diluent). (From Schultz and

Harbart, Makromol. Chem., 1, 106 (1947) with permission from Huthig & Wepf Publish-

ers, Zug, Switzerland.)

FIGURE 5.2 Experimental results on average molecular weight (measured using intrin-

sic viscosity) versus monomer conversion for the near-isothermal cases of Figure 5.9.

½I�0 ¼ 25:8 mol=m3. Solid curves are model predictions. (Data from Refs. 7–10.)
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on the concentration of the solvent in the reaction mass, Eq. (5.5.2) implies that

the plot of conversion versus time should be independent of the solvent

concentration. In Figure 5.1, this is found to be so only in the early stages of

polymerization. The rate of consumption of the monomer, rp0, for conversion

close to zero (<10%) has been plotted in Figures 5.3 and 5.4 for several cases,

and it is found to be consistent with Eq. (5.3.14).

The proportionality of mn to the kinetic chain length e has also been tested

by various researchers of radical polymerization [2]. Equation (5.4.2) can be

combined with Eq. (5.4.4) to give

mn ¼ an ¼ a
rp

ri
¼ a

k2p ½M�2
2ktrp0

ð5:5:3Þ

According to this equation, m�1n (at low conversion) should be proportional to rp0
for constant monomer concentration. Figure 5.5 shows that this proportionality

[2,3] is followed extremely well for benzoyl peroxide and azobisdibutyronitrile

(AZDN) initiators with the methyl methacrylate monomer. The agreement is very

poor, however, for other systems, because a transfer reaction occurs between the

FIGURE 5.3 Dependence of initial rates of polymerization on monomer concentration:

(1) MMA in benzene with benzoyl peroxide (BP) initiator at 50�C; (2) styrene in benzene

with benzoyl peroxide initiator at 60�C. (From Ref. 2.)
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initiator and the polymer radicals. This process leads to a larger number of

inactive polymer chains than predicted by Eq. (5.5.3).

The decomposition of initiators invariably releases gaseous products; for

example, benzoyl peroxide liberates carbon dioxide, whereas AZDN liberates

nitrogen. In the polymerization of various monomers with benzoyl peroxide, the

initial rate of monomer consumption is found to be affected by shear rate [11,12].

Recent experiments have shown that rp0 for acrylonitrile increases by as much as

400% in the presence of shear, as seen in Figure 5.6. This phenomenon has been

attributed to the mass transfer resistance to the removal of carbon dioxide from

the reaction mass [13,14]. It may be recognized that the usual geometry of

industrial reactors is either tubular or a stirred-tank type, wherein the shear rate

varies from point to point. This can profoundly affect the reaction rate; such

fundamental information is clearly essential to a rational design of polymerization

reactors.

FIGURE 5.4 Log-log plot of r2p0 versus ½I2�0 for constant [M] for styrene with benzoyl

peroxide initiator at 60�C. (Compiled from F. R. Mayo, R. A. Greg, and M. S. Matheson, J.

Am. Chem. Soc., 73, 1691 (1951).)
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The considerable increase in the rate of polymerization in Figure 5.1 and

the average chain length mn in Figure 5.2 is a phenomenon common to all

monomers undergoing radical polymerization. It is called the autoacceleration or

gel effect and has been the subject of several studies [15–27]. The gel effect has

been attributed to the fall in values of the rate constants kp and kt (as shown for

methyl methacrylate in Fig. 5.7) in the entire range of polymerization.

During the course of free-radical polymerization from bulk monomer to

complete or limiting conversion, the movement of polymer radicals toward each

other goes through several regimes of changes. To demonstrate, consider first a

solution consisting of dissolved, nonreacting polymer molecules. When the

solution is very dilute, the polymer molecules exist in a highly coiled state and

behave like hydrodynamic spheres. In this regime, polymer molecules can

undergo translational motion easily and the overall diffusion is completely

governed by polymer–solvent interactions. As the polymer concentration is

increased (beyond a critical concentration c*), the translational motion of a

molecule begins to be affected by the presence of other molecules. This effect,

absent earlier, constitutes the second regime. On increasing the concentration of

the polymer still further (say, beyond c**), in addition to the intermolecular

FIGURE 5.5 Average chain length ð1=mn0Þ versus rp0 at 60�C for methyl methacrylate

(shown by s) and styrene (shown by d) for initiators azobisdibutyronitrile (AZO) and

benzoyl peroxide (Bz2O2). Rates are varied by changing initiator concentration. Data for

styrene are calculated from 104=mno ¼ 0:6þ 12:05� 104rp0 þ 4:64� 108r2p0 given in

Ref. 2.
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interactions in translational motion, polymer chains begin to impose topological

constraints upon the motion of surrounding molecules due to their long-chain

nature. In other words, polymer molecules become entangled; de Gennes has

modeled the motion of polymer chains in this regime through a ‘‘tube’’defined by

the points of entanglement. A polymer molecule can move through this tube only

by a snakelike wriggling motion along its length; this mode of motion is

sometimes called reptation. Finally, at very high concentrations (say, beyond

c***), polymer chains begin to exert direct friction upon each other. The values of

c*; c**, and c*** have been found to depend on the molecular weight of the

polymer. These various regimes are shown schematically in Figure 5.8. As can be

seen, for extremely low molecular weights of the polymer, there may not be any

entanglement at all.

Demonstrating the correspondence between the polymer solvent system

just described and free-radical polymerization, research has shown that gelation

starts at the polymer concentration of c**. In fact, it has been shown that kt
changes continuously as the polymerization progresses, first increasing slightly

but subsequently reducing drastically at higher conversions [28].

One of the first models (based on this physical picture) was proposed by

Cardenas and O’Driscoll, in which two populations of radicals are assumed to

exist in the reaction mass [18]. The first are these that are physically entangled

FIGURE 5.6 Effect of shear rate _gg on the rate of solution polymerization of acrylonitrile.

Y ¼ rp=½M�½I2�, and Y0 is the value of Y in the absence of shear. (From Ref. 10.)
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(denoted Pne) and therefore have a lower termination rate constant, kte, than that

ðktÞ of the second (denoted Pn), which are unentangled. Whenever a polymer

radical grows in chain length beyond a critical value nc, it is assumed that it

becomes entangled and its termination rate constant falls from kt to kte. If it is

assumed that the propagation rate constant, kp, is not affected at all, the overall

mechanism of radical polymerization can then be represented by the following:

Initiation

I2 ���!2k1 2I ð5:5:4aÞ
IþM ���!k1 P1 ð5:5:4bÞ

FIGURE 5.7 Bulk polymerization of MMA at 22:5�C with AZDN. The rate of initiation

is 8:36� 10�9 mol=L sec. (From Ref. 23, with the permission of ACS, Washington)
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Propagation

Pn þM ���!kp Pnþ1 ð5:5:5aÞ

Pne þM ���!kp Pðnþ1Þe ð5:5:5bÞ
Termination

Pm þ Pn ���!kte Mm þMn ð5:5:6aÞ
Pm þ Pne ���!kte Mm þMn ð5:5:6bÞ
Pme þ Pne ���!kte Mm þMn ð5:5:6cÞ

where the reaction between the entangled and the unentangled radicals is assumed

to occur with rate constant ktc lying between kt and kte. It is possible to derive

expressions for rp and average molecular weight; their comparison with experi-

mental data has been shown to give an excellent fit.

More recently Gupta et al. have used the kinetic scheme shown in Eqs.

(5.5.4)–(5.5.6) and modeled the effect of diffusional limitations on f ; kp; and kt
[6–10]. Figures 5.2 and 5.9 show some experimental results on monomer

conversion and average molecular weight (as measured using intrinsic viscosities)

FIGURE 5.8 Molecular-weight-concentration diagram illustrating the dynamic behavior

of a polymer–solvent system.
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under near-isothermal conditions in a 1-L batch reactor. The agreement between

the theoretical predictions and experimental data is excellent. Similar agreement

between predictions and experimental results has been observed for MMA

polymerization with intermediate addition of a solution of initiator (AIBN) in

monomer.

Example 5.1: Retarders are molecules which can react with polymer radicals Pn
as well as monomer M and slows down the overall rate as follows:

Pn þ Z ���!kZ ZR

ZR þM ���!kZp PA

and

ZR þ ZR ���!kZt Nonradical species

where ZR is a reacted radical and has lower reactivity and because

½Z� � ½ZR� � lP0, we neglect the reaction between ZR and Pn. Determine rp
and mn in the presence of a retarder.

FIGURE 5.9 Experimental monomer conversion histories for the bulk polymerization of

methyl methacrylate using AIBN, for two near-isothermal (NI) temperature histories.

½I�0 ¼ 25:8 mol=m3. Solid curves are model predictions. (Data from Refs. 6–10.)
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Solution: Let us say the rate of initiation, rI ¼ ð fkI½I2�Þ is constant and the mole

balances of lP0 and ZR are (assuming QSSA)

dlP0
dt
¼ Ri ¼ kZlP0½Z� þ kZp½M�½ZR� ¼ 0

and

dZR

dt
¼ kZlP0½Z� � kZp½ZR�½H� � 2kZt½ZR�2 ¼ 0

These give lP0 as

lP0 ¼
Ri þ kZpðRi=2ktZÞ1=2½M�
� 


kZ½Z�

½Zr� ¼
Ri

2ktZ

� �1=2

The rate of polymerization, rp

Rp ¼ kp½M�lP0
and the kinetic length, n, is given by

n ¼ kp½M�lP0 þ kZp½ZR�½M�
kZ½Z�lP0 þ kZt½ZR�2

5.6 EQUILIBRIUM OF RADICAL
POLYMERIZATION [29]

As for step-growth polymerization, the presentation of the kinetics of radical

polymerization must be followed by a description of its equilibrium. The Gibbs

free energy, G, for any system at temperature T is defined as H � TS, where H

and S are the enthalpy and entropy of the system, respectively. The change in

Gibbs free energy, DGp, for the formation of a polymer

nM! Mn ð5:6:1Þ
per monomeric unit, can be written as

DGp ¼
1

n
Gpolymer � Gmonomer

¼ 1

n
Hpolymer � Hmonomer

� �
� T

1

n
Spolymer � Smonomer

� �
	 DHp � TDSp ð5:6:2Þ
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where DHp and DSp are the enthalpy and entropy of polymerization per monomer

unit, respectively. There are four possibilities in Eq. (5.6.2):

1. DHp and DSp are both negative.

2. DHp is negative and DSp is positive.

3. DHp is positive and DSp is negative.

4. DHp and DSp are both positive.

From thermodynamics, we know that a process occurs spontaneously only

when DGp is negative and, at equilibrium, DGp is zero. In case 1, DGp would be

negative below a certain temperature and positive above it. This implies that the

reaction would occur only below this temperature, which is called the ceiling

temperature. In case 2, DGp is always negative and, therefore, the polymerization

occurs at all temperatures. In case 3, DGp is always positive and therefore the

reaction does not go in the forward direction. In case 4, the reaction would occur

only when the temperature of the reaction is above a certain value, called the floor

temperature.

Almost all radical polymerizations are exothermic in nature. Polymerization

is the process of joining monomer molecules by covalent bonds, which might be

compared to the threading of beads into a necklace. The final state is more

ordered and, consequently, has a lower entropy. Thus, DSp is always negative. The
reaction of small molecules differs from polymerization reactions in that the DS
of the former is invariably negligibly small. However, DS is normally a large

negative quantity for polymerization and it cannot be neglected. Therefore, most

of the monomers undergoing radical polymerization correspond to case 1 and

have a ceiling temperature Tc. At this temperature, the monomer and the polymer

are in equilibrium:

DGp ¼ 0 at Tc ð5:6:3Þ
From Eq. (5.6.2), it follows that

DHp ¼ TcDSp ð5:6:4Þ
or

Tc ¼
DHp

DSp
ð5:6:5Þ

It may be pointed out that, in general, DSp is a function of the monomer

concentration in the system, so the ceiling temperature (or the equilibrium

temperature) also depends on the monomer concentration. This dependence is

written as

DSp ¼ DS�p þ R ln½M� ð5:6:6Þ
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where DS�p is the entropy change when the polymerization is carried out at the

standard state. The standard state of a liquid monomer is defined as that at which

the monomer concentration is 1M at the temperature and pressure of polymer-

ization. The standard state for other phases is as conventionally defined in

classical thermodynamics. Equation (5.6.5) is now rewritten as

Tc ¼
DH�p

R ln½M� þ DS�p
ð5:6:7Þ

where DHp is the same as DHp from its definition. If ½M�e is the concentration of

the monomer at equilibrium, then

½M�e ¼
DH�p
RTc
� DS�p

R
ð5:6:8Þ

The data on Tc for several polymerizations are given in the literature for

½M�e ¼ 1M . For example, DH (in kcal=mol), DS (cal=molK), and Tc (K at

½M�e ¼ 1M ) for styrene–polystyrene are �16:7; �25, and 670; for ethylene–

polyethylene, they are �25:5; �41:5, and 615; and for a-methyl styrene, they are

�8:4; �27:5, and 550, respectively [4].

Equation (5.6.8) represents a very important result in that it has an extra,

non-negligible term, DSp=R, which is not present in the corresponding reaction of

small molecules. From this equation, we can find the equilibrium monomer

concentration at the temperature at which the polymerization is being carried out.

It turns out that the equilibrium concentration of monomer is very low at normal

temperatures of polymerization that are far below Tc: For example, for styrene at

60�C, ½M�e is obtained using values of DHp and DSp found in Ref. 4 (for liquid

styrene and solid amorphous polystyrene) as

½M�e ¼ exp � 16;700

1:987� 333
þ 25

1:987

� �
¼ 3:7� 10�6 mol=L ð5:6:9Þ

It is thus seen that at 60�C, the equilibrium conversion of styrene is close to

100%. In the practical range (25–100�C) of temperatures used, similar computa-

tions show that ½M�e is close to 0% for most other systems. However, experi-

mental data of Figures 5.7 and 5.9 show that the terminal monomer conversion is

close to 90%, which is far less than values predicted by Eq. (5.6.8). Thus, it is

usually not necessary to incorporate reverse reactions in the kinetic mechanism

for chain-reaction polymerization.

It has already been observed that there is considerable change in physical

properties of the reaction mass as the liquid (or gaseous) monomer is polymerized

to the solid polymer. If the temperature of polymerization, T, is greater than the

glass transition temperature of the solid polymer (Tg), the terminal conversion is

the same as that given by Eq. (5.6.8) [22]. If the temperature of polymerization is
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less than the glass transition temperature of the solid polymer, the terminal

conversion of the monomer is governed by physical factors. When a solvent is

mixed with an amorphous polymer, the glass transition temperature of this

mixture is known to decrease. It has been demonstrated experimentally that

polymerization stops at the moment when the glass transition temperature of the

reaction mass is equal to the polymerization temperature. The reaction stops

because, at this temperature, molecular motions stop in the matrix of the reaction

mass.

Example 5.2: Suppose that there is free-radical equilibrium polymerization with

termination by disproportionation alone.

I2�! �
kd

k 0
d

2I; Kd ¼
kd

k 0d

IþM�! �
k1

k 0
1

P1; K1 ¼
k1

k 01

Pn þM�! �
kp

k 0p
Pnþ1; n � 1; Kp ¼

kp

k 0p

Pn þ Pm�! �
ktd

k 0
td

Mn þMm; n; m � 1; Ktd ¼
ktd

k 0td

Establish the molecular-weight distribution (MWD) of Pn and Mn under equili-

brium and determine the first three moments of these MWDs.

Solution: From the equilibrium of termination step, one has

MnlM0 � ktdPnlP0 ¼ 0 ð1Þ

The mole balance relations for polymers and radicals under equilibrium are

dI

dt
¼ 2fkI½I2� � k1½I�½M� þ k1½P1� ¼ 0

d½P1�
dt
¼ k1½I�½M� � k 01½P1� � kp½M�½P1� þ k 0p½P2�
� ktd½P1�lP0 þ k 0d ½M1�lM0 ¼ 0

d½Pn�
dt
¼ kp½M�½Pn¼1� � k 0p½Pn� � kp½M�½Pn� þ k 0p½Pnþ1�
� ktd½Pn�lP0 þ k 0td½Pnþ1� ¼ 0; n � 2
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With the help of Eq. (1), one has

½P2� � kp½P1� þ
k1

k 0p
½I�½M� � k 01

k 0p
½P1� ¼ 0 ð2Þ

½Pnþ1� � kpM½Pn� � ½Pn� þ kpM½Pn�1� ¼ 0 ð3Þ

Eq. (3) is an index equation satisfied by

½Pn� ¼ ðKp½M�Þ½Pn�1� ¼ ðKp½M�Þn�1½P1�

which is the MWD of polymer radicals. The first three moments are easily

obtained by directly summing the geometric senes as

lP0 ¼
½P1�

1� Kp½M�

lP1 ¼
½P1�

ð1� Kp½M�2

lP2 ¼
½P1�f1þ Kp½M�g
ð1� Kp½M�Þ3

Equation (1) gives

lM0 ¼ KtdlP0
lM1 ¼ KtdlP0lP1

and

lM2 ¼ KtdlP0�lP2

From these, one can determine the member and weight average molecular weights

mn ¼
lM1

lM0

¼ 1

1� Kp½M�

and

mw ¼
lm2
lM0

¼ 1þ Kp½M�
1� Kp½M�
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5.7 TEMPERATURE EFFECTS IN RADICAL
POLYMERIZATION

In the initial stages of polymerization, the temperature dependence of the rate

constants in Eq. (5.3.14) can be expressed through the Arrhenius law:

kI ¼ kI0e
�EI=RT ð5:7:1aÞ

kp ¼ kp0e
�Ep=RT ð5:7:1bÞ

kt ¼ kt0e
�Et=RT ð5:7:1cÞ

This representation is completely parallel to the temperature dependence of rate

constants for reactions of small molecules. EI; Ep, and Et are, therefore, the

activation energies for initiation, propagation, and termination reactions, respec-

tively. The values are tabulated extensively in the Polymer Handbook [4]. The

temperature dependence of rp and mn can be easily found by substituting Eq.

(5.7.1) in Eqs. (5.3.14) and (5.4.4) to get

rp ¼
kp0k

1=2
I0

2k
1=2
t0

ð f ½I2�Þ1=2½M� exp
�
� Ep � 0:5Et þ 0:5EI

RT

�
ð5:7:2Þ

mn ¼ a
kp0

2k
1=2
I0 k

1=2
t

exp

�
Ep � 0:5Et � 0:5EI

RT

�
ð5:7:3Þ

The activation energies are such that the overall polymerization for thermally

dissociating initiators is exothermic (i.e., Ep � 0:5Et þ 0:5EIÞ is normally

positive, so the rate increases with temperature. On the other hand,

Ep � 0:5Et � 0:5EI is usually negative for such cases and mn decreases with

increasing temperature.

After the gel point sets in, the temperature dependence of kp and kt is as

follows [14]:

1

kt
¼ 1

kt0
þ yt

lm0
expf2:303fm=½AðT Þ þ Bfm�g

ð5:7:4aÞ
1

kp
¼ 1

kp0
þ yp

lm0
exp 2:303fm=½AðT Þ þ Bfm�

� 
 ð5:7:4bÞ
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where

fm ¼
1� x

1þ ex
ð5:7:5aÞ

yp ¼ yp exp

 
Eyp

RT

!
ð5:7:5bÞ

yt ¼ fy�1½I2�0g exp
 
Eyt

RT

!
ð5:7:5cÞ

AðT Þ ¼ C1 � C2ðT � TgpÞ2 ð5:7:5dÞ
The terms Eyp and Eyt are parameters to be determined from the data on gel

effect.

5.8 IONIC POLYMERIZATION

As discussed earlier, ionic polymerization can be categorized according to the

nature of the growing polymer centers, which yields the classifications cationic

polymerization and anionic polymerization

5.8.1 Cationic Polymerization

The growth center in this class of ionic polymerizations is cationic in nature. The

polymer cation adds on the monomer molecules to it sequentially, just as the

polymer radical adds on the monomer in radical polymerization. The initiation of

the polymerization is accomplished by catalysts that are proton donors (e.g.,

protonic acids such as H2SO4). The monomer molecules act like electron donors

and react with the catalyst, giving rise to polymer ions. The successive addition of

the monomer to the polymer ion is the propagation reaction. These two

elementary reactions are expressed schematically as follows:

Initiation

Propagation

216 Chapter 5

Copyright © 2003 Marcel Dekker, Inc.



The presence of the gegen ion in the vicinity of the growing center differentiates

cationic from radical polymerization. Other common reactions in cationic

polymerization include the following.

Transfer reactions. The positive charge of polymer ions is transferred to

other molecules in the reaction mass. These could be

impurity molecules or monomer molecules them-

selves. Because of these reactions, the resulting

polymer has a lower molecular weight. As in the

case of radical polymerization, the transfer reactions

do not affect the overall reaction rate.

Chain termination. No mutual termination occurs in cationic polymer-

ization because of the repulsion between the like

charges on the two polymer ions—a phenomenon

absent in radical polymerization. However, the

neutralization of the polymer ion can occur by the

abstraction of a proton from the polymer ion by the

gegen ion, as follows:

Such neutralization can also occur by molecules of impurities present in the

reaction mass.

The true initiating species is AþX� (not AX), as shown in Eq. (5.8.1a). The

neutral catalyst molecules must, therefore, ionize in the reaction mass before the

polymer ion is formed. This implies that the initiation reaction is a two-step

process:

AX ���!ki AþX�

Either of these steps could have a lower rate of reaction and thus be the rate-

determining step. If ionization is the slower of the two steps, the rate of initiation

is given as

ri ¼ k1½I2� ð5:8:4Þ
where ½I2 is the concentration of AX and ki is the ionization rate constant. If the

formation of the carbonium ion is the slower step, then ri is

ri ¼ k1½I2�½M� ð5:8:5Þ
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Once again, the equal reactivity hypothesis is assumed and the kinetic model is

expressed as follows:

Initiation

AX ���!ki AþX� ð5:8:6aÞ
AþX� þM ���!k1 P ð5:8:6bÞ

Propagation

Mþ P ���!kp P ð5:8:6cÞ

Termination

P ���!kt Md þ HX ð5:8:6dÞ

Transfer to monomer

PþM ���!ktrM Md þ P ð5:8:6eÞ

The rate of consumption of the monomer is given by

rp ¼ kp½P�½M� ð5:8:7Þ

where [P] is the total concentration of the polymer ions in the reaction mass. In

writing Eq. (5.8.7), the contributions of reactions (5.8.6a) and (5.8.6b) have been

neglected. On application of the steady-state approximation to the polymer ion

concentration,

dlP0
dt
¼ �ktlP0 þ kj½I2�½M�a�1 ¼ 0 ð5:8:8Þ

where a ¼ 1 and kj ¼ ki if ionization is the rate-determining initiation step, and

a ¼ 2 and kj ¼ k1 if the formation of the polymer ion is the rate-determining

initiation step. This gives

lP0 ¼
kj

kt
½I2�½M�a�1 ð5:8:9aÞ

rp ¼
kjkp

kt
½I2�½M�a ð5:8:9bÞ
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The rate of polymerization, rp, is not affected by the transfer reaction at all, but

the latter affects the kinetic chain length and the average chain length, mn. The
kinetic chain length is given by

n ¼ Rate of propagation

Rate of formation of the dead chains
¼ kplP0½M�

ktlP0 þ ktrM½M�lP0
ð5:8:10Þ

1

n
¼ kt

kp½M�
þ ktrM

kp
ð5:8:11Þ

This result shows that if the transfer reaction predominates, the average chain

length, mn (mn ¼ n for cationic polymerization), is independent of the monomer

concentration as well as the initiator concentration.

5.8.2 Experimental Con¢rmation of the Model
of Cationic Polymerization

Cationic polymerization is one of the least understood subjects in polymer

science, and the data available are not as extensive as for radical polymerization.

Normal temperatures of operation vary from �100�C to þ20�C. The appropriate
temperature for any reaction is found only through experimentation and is

extremely sensitive to the monomer and the catalyst chosen. Lower temperatures

are preferred because they suppress several unwanted side reactions. It is

necessary to have highly purified monomers and initiators because transfer

reactions can easily occur with impurities, giving a polymer of very low

molecular weight.

Radical and cationic polymerization differ in that, in the latter, initiation is

very fast and propagation is the rate-determining step. Moreover, it has been

shown experimentally that carbonium ions are much less stable than the

corresponding radicals [30]. This implies that the lifetime of a polymer cation

is much shorter than the corresponding polymer radical. The very rapid

disappearance of the polymer cations may sometimes cause the steady-state

approximation to be invalid. Hence, Eqs. (5.8.9) and (5.8.11) must be used

cautiously, as they are based on the steady-state approximation.

5.8.3 Initiation in Cationic Polymerization

Cationic polymerization can be induced by initiators that release cations in the

reaction mass [3]. The following are various classes of initiator systems that are

commonly used:

1. Protonic acids: HCl, H2SO4, Cl3CCOOH, HClO4, and so forth

2. Aprotonic acids: BF3, AlCl3, TiCl4, SnBr4, SbCl3, SnCl4, ZnCl4,

BiCl3, and so forth, with coinitiators like H2O and organic acids
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3. Carbonium salts: Al(Et)3, Al(Et)2Cl, or Al(Et)Cl2 with alkyl or aryl

chlorides or mineral acid coinitiators

4. Cationogenic substances: t-BuClO4, I2, Ph3CCl, ionizing radiations

Let us consider protonic acids as initiators as an example. The acid must

first ionize in the medium of the reaction mass before it can protonate the

monomer molecule. The overall initiation reaction for HCl, for example, consists

of the following three elementary reactions:

HCl �! Hþ þ Cl� ðe1Þ ð5:8:12aÞ
Hþ þ C¼C �! H�Cþ ð�e2Þ ð5:8:12bÞ

HC�Cþ þ Cl� �! HC�Cþ�Cl� ð�e3Þ ð5:8:12cÞ
Reaction (5.8.12a) is a simple heterolytic bond dissociation of the initiator

molecule and þe1 is the dissociation energy, which is always positive. The

proton thus liberated attacks the monomer molecule, as shown in Eq. (5.8.12b).

The energy of this reaction, �e2, is a measure of the proton affinity of the

monomer. Because, overall, electrical neutrality has to be maintained, the

negative Cl� ion has to move somewhere near the generated cation. This is

because the energy required to keep the negative and the positive charges far

apart would be very large, and the lowest-energy configuration would be obtained

only when the two are at some finite distance r. The potential energy released due

to the interaction of these ions is given by Coulomb’s law:

�e3 ¼
e2

rD
ð5:8:13Þ

where D is the dielectric constant of the medium, e is the electric charge of the

ions, and r is their distance of separation.

Equation (5.8.13) must be studied very carefully. The distance of separation

between the two ions, r, depends on their relative sizes. Also, as the value of D

decreases, the electrostatic energy of the interaction increases. This implies that

the energy required to separate the ion pairs increases as the dielectric constant

decreases. Because the polymerization progresses only by the addition of a

monomer molecule to the carbonium ion, the driving force for such a process is

therefore derived through the ability of the positive charge of the carbonium ion

to attract the electron-rich double bond of the monomer molecule. If the

carbonium ion is held with great affinity by the gegen ion (here, Cl�), the

monomer molecule will be unable to add to the carbonium ion by transferring its

electron. Hence, a low dielectric constant of the medium of the reaction mass

favors the formation of covalent bonds between the carbonium ion and the gegen

ion. A high dielectric constant of the reaction medium, on the other hand, favors a

loose association between the carbonium and gegen ions (called the solvent-

separated ion pair) and promotes cationic polymerization. However, too high a
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value of D is also not desirable, because of thermodynamics constraints discussed

next.

The total change in the energy for the initiation step can be written as a sum

of the energies of the individual steps as

DHi ¼ e1 � e2 � e3 ð5:8:14Þ
and the free-energy change of initiation as

DGi ¼ DHi � TDSi

¼ e1 � e2 �
e2

rD
� TDSi ð5:8:15Þ

The entropy change for initiation, DSi, is always negative, because the reaction

moves from a less ordered state to a more ordered one. Therefore, the value of

e1 � TDSi in Eq. (5.8.15) is positive.

Since DGi should be negative for any process to occur, Eq. (5.8.15) shows

that the initiation reaction in cationic polymerization is favored by lowering the

temperature. In addition to determining e3, the solvent or reaction medium plays

an important role in influencing e1. Usually, e1 is a large positive number; for

example, e1 for the gaseous ionization of HCl is 130 kcal=mol. However, in the

presence of suitable solvents, the dissociation energy is lowered, and in the

presence of water, e1 for HCl is as low as 25 kcal=mol. The ability of the solvent

to reduce e1 is called the solvation ability. The solvation abilities of different

solvents are different, and the choice of the solvent for cationic polymerization is

thus very important.

5.8.4 Propagation, Transfer, and Termination
in Cationic Polymerization

The initiation reaction determines the nature of the growing polymer chain

because there is always a gegen ion in the vicinity of the carbonium ion. The

propagation reaction is the addition of the monomer to the growing center and it

depends on the following:

1. Size and nature of the gegen ion

2. Stability of the growing center, which determines the ability to add on

the monomer molecule

3. Nature of the solvent; that is, its dielectric constant and solvation

ability

The propagation reaction is written schematically as

Pþn � � �G�e þM ���!kp Pþnþ1 � � �G�e ð5:8:16Þ
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where Pþn is the growing polymer chain ion and G�e is the gegen ion.

As the dielectric constant of the medium is reduced, the activation energy

for the propagation reaction increases and kp decreases considerably. As pointed

out in the discussion of the initiation reaction, the lowering of the dielectric

constant of the reaction mass favors the formation of a covalent bond between the

carbonium and gegen ions. Therefore, the gegen ion and the propagating

carbonium ion would be very tightly bound together and would not permit the

monomer molecules to squeeze in. If the substituent on the carbon atom with the

double bond in the monomer molecule is such that it donates electrons to the p-
cloud, then the addition of the monomer to Pþn � � �G�e would be facilitated. This

would increase the value of kp.

The termination and the transfer reactions occur quite normally in cationic

polymerization. The termination reaction is unimolecular—unlike in radical

polymerization, where it is bimolecular. It occurs by the abstraction of a proton

from the carbonium ion end of the growing polymer chain by the gegen ion,

which always stays in its vicinity. How readily this occurs once again depends on

the stability of the carbonium ion end of the growing polymer chain, the nature of

the gegen ion, and the dielectric constant of the medium. The information on kt is

quite scanty.

One final note must be included in any discussion of the different

parameters that are involved in cationic polymerization. Equations (5.8.9) and

(5.8.11) for rp and mn are very gross representations of the polymerization

process, and they should therefore be used with caution.

5.9 ANIONIC POLYMERIZATION

Anionic polymerization is initiated by compounds that release anions in the

reaction mass. Cationic and anionic polymerization are very similar in nature,

except in their termination reactions. Termination reactions can occur easily in

cationic polymerization, whereas they are almost absent in anionic polymeriza-

tion. In both cases, there is a gegen ion adjacent to the growing center. Therefore,

their initiation and propagation rates have similar characteristics.

Anionic polymerization normally consists of only two elementary reac-

tions: initiation and propagation. In the absence of impurities, transfer and

termination reactions do not occur; therefore, in this treatment, we do not discuss

these reactions.

5.9.1 Initiation in Anionic Polymerization

The following are commonly used initiator systems for anionic polymerization:

1. Alkali metals and alkali metal complexes (e.g., Na, K, Li, and their
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stable complexes with aromatic compounds, liquid ammonia, or ethers)

2. Organometallic compounds (e.g., butyl lithium, boron alkyl, tetraethyl

lead, Grignard reagent)

3. Lewis bases (e.g., ammonia, triphenyl methane, xanthene, aniline)

4. High-energy radiation

High-energy radiation will not be discussed here because it has little

commercial importance. The first system of initiation, method 1, differs from

methods (2) and (3) in the process of producing growth centers. Alkali metals and

alkali metal complexes initiate polymerization by transfer of an electron to the

double bond of the monomer. For example, a sodium atom can attack the

monomer directly to transfer an electron as follows:

Naþ CH2¼CHR! ½CH2�CHR��Naþ ð5:9:1Þ

How readily this reaction progresses in the forward direction depends on the

nature of the substituents of the monomer, the nature of the gegen ion, and the

ability of the alkali metal to donate the electron.

Because the sodium metal usually forms a heterogeneous reaction mass,

this method of initiation is not generally preferred. On the other hand, alkali metal

complexes can be prepared with suitable complexing agents. The resultant

complex forms a homogeneous green solution that initiates polymerization as

follows:

The nature of the gegen ion and that of the reaction mass control the propagation

reaction, as in the case of cationic polymerization.

Initiation by organometallic compounds and Lewis bases occurs by a direct

attack of these compounds on the double bond of the monomer molecule. Before
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the Lewis base can attack the monomer, it must ionize, and only then can a

carbanion be formed. The process of initiation can be written as

where BG is a Lewis base, e1 is the dissociation energy, and �e2 is the electron
affinity. Gþ is the gegen ion, which must remain near the carbanion formed in the

initiation process.

The strength of the Lewis base (measured by the pK value) required to

initiate the polymerization of a particular monomer depends on the monomer

itself. Monomers having substituents that can withdraw the electron from the

double bond have relatively electron-deficient double bonds and can be initiated

by weak Lewis bases. Because the initiation reaction consists of the ionization of

the initiator and then the formation of the carbanion, the role of the solvent

(which constitutes the reaction mass) in anionic polymerization would be similar

to its role in cationic polymerization.

5.9.2 Propagation Reaction in Anionic
Polymerization

The initiation reaction is much faster than the propagation reaction in anionic

polymerization, so the latter is the rate-determining step.

The propagation reaction also depends on the nature of the gegen ion in that

a monomer molecule adds to the growing chain by squeezing itself between the

chain and the gegen ion. As a result of this, resonance, polar, and steric effects

would be expected to play a significant role in determining kp.

5.9.3 Kinetic Model for Anionic Polymerization
[31^35]

Because the initiation reaction is much faster than the propagation reaction, we

assume that all of the initiator molecules react instantaneously to give carbanions.

Thus, the total number of carbanions, which is equal to the number of growing

chains in the reaction mass, is exactly equal to the number of initiator molecules

initially present in the reaction mass. Therefore, the molar concentration of the
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initiator, ½I2�0, is equal to the concentration of growing chains in the reaction

mass. The rate of polymerization rp is given by

rp ¼ kp½M�½I2�0 ð5:9:4Þ

The average chain length of the polymer formed is the ratio of the total number of

monomer molecules reacted to the total number of growing polymer chains in the

reaction mass. If the polymerization is carried to 100% conversion, mn is

mn ¼
½M�0
½I2�

ð5:9:5Þ

where ½M�0 is the initial concentration of the monomer.

The initiation mechanism does not directly enter into the derivation of Eqs.

(5.9.4) and (5.9.5), and, therefore, these equations describe anionic polymeriza-

tion only approximately. However, because little information on rates of initiation

reactions is available and the initiation process is much faster than propagation,

these equations serve well to describe the overall polymerization.

Anionic polymerization has found favor commercially in the synthesis of

monodisperse polymers. These are found to have the narrowest molecular-weight

distribution and a polydispersity index with typical values around 1.1.

One of the most important applications of anionic polymerization is to

prepare a block copolymer. It may be pointed out that all monomers do not

respond to this technique, which means that only limited block copolymers can,

in reality, be synthesized. During the present time, as pointed out in Chapter 1,

there is considerable importance placed on finding newer drugs. Therein, we also

described combinatorial technique in which we showed the importance of solid

supports on which chemical reactions were carried out. However, these reactions

can occur provided reacting fluids can penetrate the solid support; in other words,

it should be compatible with the solid supports.

One of the problems of radical polymerization is high-termination-rate

constants by combination ðktcÞ or by disproportionation ðktdÞ. In view of this,

polymer chains of controlled chain length cannot be formed and this technique is

ill-suited for precise control of molecular structure (e.g., in star, comb, dendri-

mers, etc.) required for newer applications like microelectronics. The major

breakthrough occurred when nonterminating initiators (which are also stable

radicals) were used. Because of its nonterminating nature, this is sometimes

called living radical polymerization and the first initiator that was utilized for this

purpose was TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxo) [36,37]. A variation

of this is atom-transfer radical polymerization (ATRP) in which, say for styrene, a

mixture of 1mol% of 1-phenyl ether chloride (R�X) and 1mol% CuCl with two

equivalents of bipyridine (bpy) is used for initiation of polymerization. Upon

heating at 130�C in a sealed tube, bpy forms a complex with CuCl (bpy=CuCl),
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which can abstract the halide group from RX to give a radical that reacts with

monomer M to give a growing radical as follows:

R�Clþ 2bpy=CuCl! R
 þ 2bpy=CuCl2R

 þM! P
1

The bpy=CuX2 also complexes with growing radicals to give PnX, keeping the

concentration of active radicals (i.e., P�n) small through the following equilibrium:

Pn�Clþ 2bpy=CuCl�! � P�n þ bpy=CuCl2

In the above reaction, Pn�Cl is the dormant molecule which does not give any

growth of chains [38,39]. The TEMPO mediated and ATRP procedures are

commonly used for controlling the architecture of the chains (comb, star,

dendrite, etc.), composition of the backbone (i.e., random, gradient, or block

copolymers), or inclusion of functionality (chain ends, site specific, etc.) [40].

The generation of small structures (sometimes called microfabrication) is

essential to modern technologies like microelectronics and optoelectronics

[41,42]. In these applications, one is interested in constructing supramolecular

structures utilizing well-defined low-molecular-weight building blocks synthe-

sized as above. For this purpose, these building blocks are first functionalized at

the chain ends by cyclic pyrrolidinium salt groups and=or tetracarboxylate

anions. Self-assembly is defined as spontaneous organization of molecules into

a well-defined structure held together by noncovalent forces. In this case, the

functionalized polymer blocks (sometimes called telechelics) are held together by

electrostatic forces. On heating this self-assembly, the pyrrolodinium groups

(five-ring cyclic compound) polymerize this way, giving a covalent fixation of this

assembly.

5.10 ZIEGLER^NATTA CATALYSTS IN
STEREOREGULAR POLYMERIZATION
[43^56]

Stereoregular polymers have special properties and have therefore gained

importance in the recent past. A specific configuration cannot be obtained by

normal polymerization schemes (radical or ionic); special catalyst systems are

required in order to produce them. The catalyst systems that give stereoregulation

are called Ziegler–Natta catalysts, after their discoverers, the Nobel Prize winners

Ziegler and Natta.

Ziegler–Natta catalyst systems consist of a mixture of the following two

classes of compounds:

1. Compounds (normally halides) of transition elements of groups IV to

VIII of the periodic table, called catalysts, such as TiCl3, TiCl4, TiCl2,

Ti(OR)4, TiI4, (C2H5)2 TiCl2, VCl4, VOCl3, VCl3, vacetyl-acetonate,

ZrCl4, Zr tetrabenzyl, and (C2H5)2ZrCl2
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2. Compounds (hydrides, alkyls, or aryls) of elements of groups I to IV,

called cocatalysts such as Al(C2H5)3, Al(i-C4H9)3, Al(n-C6H13)3,

Al(C2H5)2Cl, Al(i-C4H9)2Cl, Al(C2H5)Cl2, and Al2(C2H5)3Cl.

Not all possible combinations of the catalysts and cocatalysts are active in

stereoregulating the polymerization of a substituted vinyl monomer. Therefore, it

is necessary to determine the activity of different combinations of the catalyst–

cocatalyst system in polymerizing a particular monomer.

Cationic polymerizations are also known to yield stereoregular polymers,

depending on experimental conditions. However, because of very low tempera-

tures of polymerization and very stringent purity requirements of monomers and

the catalyst systems, cationic polymerizations are very expensive. This is not so in

the case of stereoregular polymerization, which is far less expensive and very

easy to control. The only precaution that must be observed is that an inert

atmosphere must be maintained in the reactor to avoid fire, because the

cocatalysts are usually pyrophoric in nature.

A monomer can be in either the liquid phase or the gas phase at

polymerization conditions. If monomer is a gas, a solvent medium is employed

in which the Ziegler–Natta catalyst is dispersed and polymerization starts as soon

as the gaseous monomer is introduced (see Fig. 5.10a for the setup). In the case of

liquid monomers, a solvent is not necessary, but it is preferred because it

facilitates temperature control of the reaction.

The Ziegler–Natta catalyst can either dissolve in the medium of the reaction

mass or form a heterogeneous medium if insoluble. The latter is more a rule than

an exception, and the commercially used Ziegler–Natta catalysts are commonly

heterogeneous. The most common catalyst is TiCl3, which is prepared by

reducing TiCl4 with hydrogen, aluminum, titanium, or AlEt3, followed by

activation. The catalyst is activated by grinding or milling it to a fine powder.

The resultant TiCl3 is crystalline, having a very regular structure. There are four

crystalline modifications of TiCl3 available (alpha, beta, gamma, and delta), of

which the alpha form is the best known. Table 5.2 gives some of the schemes for

preparing some of the important catalyst systems and the crystalline forms that

result.

TiCl3 is a typical ionic crystal like sodium chloride. It is a relatively

nonporous material with a low specific surface area. It has a high melting point,

decomposes to TiCl2 and TiCl4 at 450
�C, and sublimes at 830�C to TiCl4 vapor.

It is soluble in polar solvents such as alcohols and tetrahydrofuran but is insoluble

in hydrocarbons. The highest specific surface area reported for these catalysts is

100 m2=g, but normal values lie in the range of 10–40m2=g.
In addition to its two main components, the Ziegler–Natta system of

catalysts also contains supports and inert carriers. An example of the former is

MgCl2, and the inert carriers include silica, alumina, and various polymers. These
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differ in the way they affect the catalyst. Supports are inactive by themselves but

considerably influence the performance of the catalyst by increasing the activity

of the catalyst, changing the physical properties of the polymer formed, or both.

Carriers do not affect the catalyst performance to any noticeable degree, but their

use is warranted by technological factors. For instance, carriers dilute very active

solid catalysts, make catalysts more easily transportable, and agglomerate

catalysts in particles of specific shape. For example, one recipe for the catalyst

for ethylene polymerization consists of dissolving MgCl2 and TiCl4 in a 3 : 1

molar ratio in tetrahydrofuran. The solution is mixed with carrier silica powder

that has already been dehydrated and treated with AlðC2H5Þ3. The tetrahydrofuran
is removed by drying the mixture, thus impregnating the carrier silica gel with

FIGURE 5.10 (a) Setup for stereoregular polymerization of propylene using

TiCl3�AlEth3 catalyst in n-heptane. (b) Schematic representation of effect of stirring on

polymerization for two speeds of stirring: N1 and N2.
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MgCl2 and TiCl4. This product is subsequently treated with solution of

AlðC2H5ÞCl2 and AlðC2H5Þ3 in hexane, and the solvent is once again removed

to give the final catalyst.

5.11 KINETIC MECHANISM IN
HETEROGENEOUS STEREOREGULAR
POLYMERIZATION

A simple system is shown in Figure 5.10a to depict heterogeneous polymeriza-

tion. A gaseous monomer is continuously fed into a glass vessel. The vessel

(serving as a reactor) has a suitable solvent (usually hexane for propylene) in

which the catalyst–cocatalyst system is uniformly dispersed. In Figure 5.10b, the

effect of stirring speed on the rate of propylene polymerization is shown

schematically. These results clearly demonstrate the external mass transfer effect.

To understand the mechanism of heterogeneous polymerization, it is first

necessary to understand the nature of the physical processes involved. Polymer-

ization centers (PCs) are complexes formed by the reaction between AlEt3 and

TiCl3 catalysts. The polymer chain is attached to these polymerization centers and

grows in size by adding monomer between the PCs and the chains. Because the

polymer chains coil around the catalyst particle, the PCs are buried within it. In

the case of gaseous monomers, the latter must first dissolve in the medium of the

reaction mass. The dissolved monomer in the reaction mass must then diffuse

from the bulk and through the thin layer of polymer surrounding the PC before it

reaches the catalyst surface for chemical reaction. The entire process can be

written as follows:

In the analysis that follows, it is assumed that the various diffusional resistances

are negligible and that the reaction step in Eq. (5.11.1) is controlling. This implies

that the stirring speed is very high.

Organometallic compounds used as components of Ziegler–Natta catalysts

are normally liquids of a high boiling point that dissolve in aromatic hydro-

carbons. Most of these exist in the following dimer form, which is stable:
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Dimer of Al(C2H5)3

Dimer of Al(C2H5)2Cl

However, there are some organometallic compounds [e.g., Al(i� C4H9Þ3 and

Zr(C2H5Þ2] that exist in the monomeric form.

Active centers for polymerization are formed in the process of interaction

between catalyst and cocatalyst systems. There is an exchange of a halogen atom

between them as follows (with a TiCl4 and Al(C2H5Þ2 Ziegler–Natta catalyst

system):

TiCl4 þ AlðC2H5Þ2Cl! Cl3Ti�C2H5 þ C1�AlðC2H5ÞCl ð5:11:3Þ

This reaction is fast. The titanium–carbon bond serves as the principal constituent

of the active center for polymerization because it has the ability of absorbing a

monomer (vinyl or diene) molecule. These metal carbon bonds are not extremely

stable and undergo several side reactions, leading to the breakage of TiCl bond.

For example, the Cl3TiCl2H5 molecule formed in Eq. (5.11.3) decomposes to

give TiCl3 as follows:

2Cl3Ti�C2H5 ! 2TiCl3 þ C2H6 þ C2H4 ð5:11:4Þ

Even though the metal–carbon bond of Ti�C2H5 is not very stable, a significant

portion of these survive under typical conditions of alkene and diene polymer-

ization of 30–100�C and 0.5–5 hr of polymerization time. In fact, the instability

of TiCl bonds strongly affects the performance of the Ziegler–Natta catalyst

system and occasionally explains the reduction in its activity with time.
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The transition metal–carbon bond, as stated earlier, reacts with an alkene

molecule (CH2¼CHR), and there is a formation of a complex, as follows:

After formation of the complex, the alkene molecule is inserted in the Ti�C bond

as follows:

The repeated insertion of CH2¼CHR according to Eqs. (5.11.5) and (5.11.6)

gives rise to propagation reaction, in this way forming long chain molecules.

5.12 STEREOREGULATION BY ZIEGLER^NATTA
CATALYST

The most important characteristic of the Ziegler–Natta catalyst system is its

ability to stereoregulate the polymer. The configuration of the resultant polymer

depends on the choice of the catalyst system and its crystalline structure.

Stereoregulation is believed to occur as follows:

There are two kinds of interactive force existing in the activated complex shown.

One is the steric hindrance between methyl groups (1) and (2) in the complex, and

the other is the interaction between methyl group (1) and the chlorine ligands.

Both interactions exist at any time, the relative strengths depending on the

specific catalyst system. If the interactive force between the ligands and

substituent (1) of the adsorbed molecule is not too large, the addition of the

CH3 group (1) of the monomer to the propagating chain occurs such that it

minimizes the steric hindrance between itself and CH3 group (2), thus giving a

syndiotactic chain. If, however, the interaction between CH3 group (1) and
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chlorine is large, it can compensate for the steric interaction and can lead to the

formation of an isotactic chain by forcing the adsorbed molecule to approach the

growing chain in a specific manner. More information on the nature of these

interactions and an explanation of how the chain adds on a monomer molecule

can be found elsewhere [31,49].

5.13 RATES OF ZIEGLER^NATTA
POLYMERIZATION

If the diffusional resistances in Eq. (5.11.1) are neglected, the rate of polymer-

ization, rp, can be expressed as

rp ¼ kp½C*�½M�c ð5:13:1Þ

where ½C*� represents an active polymerization center and ½M�c is the concentra-
tion of the monomer at the surface of the catalyst. If all the diffusional resistances

can be neglected, ½M�c can be taken as equal to the monomer concentration in the

solution ½M�s and can be easily determined by the vapor–liquid equilibrium

conditions existing between the gaseous monomer and the liquid reaction mass.

Ray et al. have used the Chao–Seader equation and Brockmeier has used the

Peng–Robinson equation of state to relate ½M�s to the pressure of the gas [37,38].

The size of the catalyst particle has a considerable effect on the rate of

polymerization of propylene. For a constant concentration of the monomer, ½M�0
(i.e., at a constant propylene pressure in the gas phase), it has been found that the

rate of polymerization is a function of time. For ground catalysts, a maximum is

obtained, whereas for unground particles (size up to 10), the rate accelerates to

approach the same asymptotic stationary value. The typical behaviors are shown

schematically in Figure 5.11, which gives the different zones into which catalysts

can be classified. The process has a buildup, a decay, and a stationary period.

Natta has proposed the following explanation for these observations.

Like other catalyst systems, Ziegler–Natta catalyst systems have active

centers, which have been amply demonstrated to be titanium atoms. In the case of

unground Ziegler–Natta catalysts, there are some active sites on the outer surface

where the polymerization starts immediately. As observed earlier, the polymer

molecule has one of its ends attached to the site while the molecule starts growing

around the catalyst particle. In this process of growth, there is a mechanical

grinding on the particle by which the catalyst particles undergo fragmentation.

When the larger catalyst particles break into smaller ones, additional surface is

exposed and more titanium atoms are available for monomer molecules to

interact. This implies that there is a generation of active sites during the process.

The increase in the number of active sites leads to enhanced polymerization rates.

The acceleration-type behavior is thus explained on the basis of an increase in the

Chain-Growth Polymerization 233

Copyright © 2003 Marcel Dekker, Inc.



surface area with time. The smaller the particle is, the higher the mechanical

energy required for further size reduction. Accordingly, the particle size

approaches some asymptotic value. The stationary polymerization rate corre-

sponds to this catalyst particle size.

5.13.1 Modeling of Stationary Rate

To determine the stationary rate of polymerization, we assume that all the sites of

the Ziegler–Natta catalysts are equivalent. In the reaction mechanism given in

Section 5.12, it was shown that aluminum ethylate reacts with TiCl3 to form an

empty ligand (and, therefore, a polymerization center). For this reaction to occur,

AlEt3 must first be adsorbed. We can write this schematically as

AlEt3 þ TI site ������������!adsorption

S* ������!Chemical

reaction
PC ð5:13:2Þ

where S* is a complex formed by the adsorption of the AlEt3 molecule onto the

Ti site. If the chemical reaction is the rate-determining step, the adsorption step in

FIGURE 5.11 Typical kinetic curves obtained during propylene polymerization by

TiCl3. A is a decay-type curve; B is a buildup or acceleration-type curve. I is the buildup

period; II is the decay period; III is the stationary period.
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Eq. (5.13.2) can be assumed to be at equilibrium and can be given by the

following Langmuir adsorption equilibrium relation:

½S*� ¼ K½A�
1þ K½A� ð5:13:3Þ

where [A] is the concentration of aluminum ethylate in the reaction mass and K is

the Langmuir equilibrium constant. If all of the S* formed is assumed to be

converted to an activated polymerization center, its concentration ½C*� is given by

½C*� � ½S*� ¼ K½A�
1þ K½A� ð5:13:4Þ

The rate of polymerization, r1, for large times can then be derived from Eq.

(5.13.2) as follows:

r1 ¼ kp
K½A�

1þ K½A� ½M�c ð5:13:5Þ

If the various diffusional resistances for the monomer are also neglected, ½M�c can
be replaced by the concentration of the monomer ½M�s in the reaction mass. This

may be related to the pressure P in the gas phase by using the Chao–Seader or

Peng–Robinson equations of state, but for moderate pressures, Henry’s law may

as well be assumed, giving

½M�s ¼ KH ½P� ð5:13:6Þ

where KH is Henry’s law constant and P is the pressure of the gas. In these terms,

r1 in Eq. (5.13.5) can be rewritten as

r1 ¼ k
½A�

1þ K½A� ½P� ð5:13:7Þ

where

k ¼ kpKKH ð5:13:8Þ

5.13.2 Modeling of the Initial Rates of
Stereoregular Polymerization

In Figure 5.11, we observed that in the initial region, the rate of polymerization is

a function of time. This is entirely due to the fact that the total concentration of

polymerization centers, ½C*�, is a function of time. An expression for this can be
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derived with the help of Eq. (5.13.2). With this equation, the polymer formation

in stereoregular polymerization can be rewritten as

AIEt3 þ S �! � S* ð5:13:9aÞ
S*þM �!kc C* ð5:13:9bÞ

C*þM �!kp C* ð5:13:9cÞ
where S represents an active titanium site and is the same as the first portion of

Eq. (5.13.2). It has been hypothesized that a C* is formed only after an S* reacts

with a monomer molecule and that the C* shown, thus formed, is the same as a

PC in Eq. (5.13.2).

It is now assumed that ½C*�1 is the total concentration of polymerization

centers present at t ¼ 1 (i.e., at the stationary state). In the early stages of the

reaction, ½C*� is expected to be less than ½C*�1. At any time, the simple mole

balance is

½S� þ ½S*� þ ½C*� ¼ ½S�0 ð5:13:10Þ
where ½S�0 is the total concentration of the active titanium sites. Also,

½S�1 þ ½S*�1 þ ½C*�1 ¼ ½S�0 ð5:13:11Þ
Subtraction of these equations leads to

ð½S�1 � ½S�Þ þ ð½S�1 � ½S1�Þ þ ð½C�1 � ½C^*�Þ ¼ 0 ð5:13:12Þ
½S*�1 is zero because, at large times, monomer molecules have already reacted

completely with all of the potential polymerization centers by the irreversible

reaction in Eq. (5.13.9b). This is the case because S* is an intermediate species in

the formation of the polymerization center. [S] and [S]1 are both large numbers.

Because it is assumed that only a few of the active sites participate in

polymerization, ½S�1 � ½S� can be neglected. Therefore,

½C*�1 � ½C*� � ½S*�0 ¼ 0 ð5:13:13aÞ
or

½S*� ¼ ½C*�1 � ½C*� ð5:13:13bÞ
The rate of formation of the polymerization centers is given by

d½C*�
dt
¼ kc½M�½S*� ð5:13:14Þ

With the help of Eq. (5.13.13b), this equation reduces to

d½C*�
dt
¼ kc½M� ½C*�1 � ½C*�

� 
 ð5:13:15Þ
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The rates of polymerization at time t and at the stationary zone are given as

rp ¼ kp½M�½C*� ð5:13:16aÞ
r1 ¼ kp½M�½C*�1 ð5:13:16bÞ

Because [M] is constant, multiplying Eq. (5.13.15) by kp½M� gives

d

dt
kp½M�½C*� ¼ kc½M� kp½M�½C*�1 � kp½M�½C*�

� 
�
or

dr

dt
¼ kðr1 � rÞ ð5:13:17Þ

where k ¼ kc½M�. Equation (5.13.17) is the same as the observed empirical

equation for the buildup period in the acceleration-type kinetic curve as observed

in Figure 5.12. This analysis explains why a decay-type rate behavior in Figure

5.12 is observed for fine particles and not for coarse catalyst particles.

Well-ground catalysts have a larger number of active sites and, therefore,

the reaction in Eq. (5.13.9) is pushed in the forward direction, the reversible

reaction playing a smaller role in the early stages of reaction. As the reaction

progresses, the reverse reaction starts removing the potential polymerization

centers (i.e., S*) until, ultimately, the equilibrium value corresponding to the

stationary zone is attained. This fact explains the maximum in ½S*� and, therefore,
in ½C*�. This case must be differentiated from that of coarse catalyst particles,

where the fragmentation of the particles occurs during the polymerization and the

total number of active sites is not constant. The derivation of Eq. (5.13.17) for

acceleration-type behavior is not quite correct because it is based on Eq. (5.3.10),

which assumes a constant concentration of total active sites and does not account

for the increase in the number of active sites by particle breakage.

Example 5.3: In the buildup period of decay-type stereoregular polymerization,

the rates are found to be different when catalyst is added first from the case when

gas is introduced, followed by the catalyst. Show why this happens.

Solution: Assume there are n0 number of adsorption sites and nA, the number of

sites occupied by monomers. On addition of the catalyst first, the following

adsorption equilibrium between the monomer and catalyst occurs:

Al2Cl6 þ S �! � S* ðaÞ
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Then,

rads ¼ kadsPðn0 � nAÞ
rdes ¼ kdesnA

At KodPðn0 � nAÞ ¼ kdesnA or

yA ¼
nA

n0
¼ KP

1þ KP

where K ¼ kod=kdes
On introduction of propylene gas, the following reactions occur which are

not in equilibrium:

S*þM �!kc C ðbÞ
CþM �! C ðcÞ

If the gas is introduced first, followed by the addition of the catalyst, reactions

(a)–(c) simultaneously and consequently give different results.

5.14 AVERAGE CHAIN LENGTH OF THE
POLYMER IN STEREOREGULAR
POLYMERIZATION

The average chain length of the polymer at a given time can be found from the

following general relation:

mn ¼
Number of monomer molecules polymerized in time t

Number of polymer molecules products in time t
ð5:14:1Þ

The number of monomer molecules polymerized can be found from the rate of

polymerization as
Ð t
0
r dt. The denominator can be found only if the transfer and

termination rates are known. If rt denotes the sum of these rates, then

mn ¼
Ð t
0
r dt

½C*�t þ
Ð t
0
rt dt

ð5:14:2Þ

where ½C*�t is the concentration of the polymerization centers at time t. The next

step is to apply Eq. (5.14.2) for the stationary state to find mn. At the stationary

state, r and rt are both constant, and Eq. (5.14.2) reduces to

1

mn
¼ rt

r1
þ ½C*�1

tr1
ð5:14:3Þ
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This equation ignores the contribution to the integrals from the transition zone.

For long times, the second term in Eq. (5.14.3) goes to zero and the following

holds:

1

mn
¼ rt

r1
ð5:14:4Þ

To be able to evaluate mn, termination and transfer processes must be known.

These have been studied and the following termination and transfer processes for

propylene have been reported.

1. Spontaneous dissociation

2. Transfer to propylene

3. Transfer to AlEt3
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The mn would, therefore, be given by Eq. (5.14.4) as follows:

1

mn
¼ rt

r1

¼ k1½C*� þ k2½C*�½M� þ k3½C*�½AlEt3�
kp½C*�½M�

¼ k1 þ k2½M� þ k3½AlEt3�
kp½M�

ð5:14:8Þ

5.15 DIFFUSIONAL EFFECT IN ZIEGLER^NATTA
POLYMER [45,46,49]

As explained in Section 5.12, during polymerization the growing chain surrounds

the catalyst particle. As a result, there is fragmentation of the catalyst particle,

leading to increased numbers of active sites for polymerization with time. In

addition, a film of polymer is formed around the polymer particle through which

monomer has to diffuse. Section 5.14 has shown a semiempirical way of taking

fragmentation of particles and diffusion of monomer into account, but there is a

definite need to model these problems more fundamentally.

Several models have been proposed to account for both the fragmentation

of catalyst particles and the diffusional resistance. The simplest is the solid-core

model, in which the polymer is assumed to grow around a solid catalyst particle

without any breakage. We show the model in Figure 5.12, in which the catalyst

FIGURE 5.12 Schematic representation of the multigrain model for stereoregular

polymerization of propylene.

240 Chapter 5

Copyright © 2003 Marcel Dekker, Inc.



particle is surrounded by a polymer shell. The dissolved monomer in the liquid

phase diffuses through the accumulated polymer to the catalyst surface and reacts

there. Knowing the rate of formation of the polymer at the surface, it is possible to

compute the movement of the polymer shell boundary. It may be recognized that

the polymerization is an exothermic reaction, which means that the heat of

polymerization is liberated at the catalyst surface, which must be transported

through the polymer shell by conduction. Because there is a finite resistance to

transport of monomer through the shell, the temperature T and monomer

concentration [M] are both dependent on radial position r and time t. This fact

has been represented in Figure 5.12 by showing T ðr; tÞ and [M]ðr; tÞ.
As a refinement to the hard-core model just discussed, the multigrain model

(recently proposed in Refs. 45 and 46) accounts for the particle breakup

indirectly. This too has been depicted in Figure 5.12. A macroparticle of radius

R comprises many small polymer microparticles. These particles are assumed to

be lined along the macroparticle radius, touching each other. All microparticles

are assumed to be spherical and of the same size. Microdiffusion in the interstices

between the microparticles and microdiffusion within the particles are each

assumed to exist, and the effective diffusion coefficient for the two regions

need not be equal.

The microparticle diffusion is treated in the same way as in the solid-core

model, and it is assumed that each of these microparticles grows independent of

each other according to the existing local monomer concentration. To write the

mole balance for the monomer in the macroparticle in spherical coordinates, let

us define DL as the effective diffusion coefficient for the macroparticle, rL as the

radial length, and RðML; rLÞ as the rate of consumption of monomer at rL. The

governing equation for the macroparticle can be easily derived as

@½ML�
@t
¼ DL

r2L

@

@rL
r2L
@½ML�
@rL

� �
� Rð½ML�; rLÞ ð5:15:1Þ

where ½ML� is the local concentration of monomer within the macroparticle.

Outside this large particle, the monomer concentration is the same as the bulk

concentration ½M�bulk, whereas at the center @½ML�=@rL ¼ 0 because of the no-flux

condition; that is

½ML�
rL
¼ 0; rL ¼ 0 ð5:15:2aÞ

½ML� ¼ ½M�bulk; rL ¼ rpoly ð5:15:2bÞ

In order to solve Eq. (5.15.1), we must first derive an expression for RðMLÞ, which
can be obtained only when we solve the diffusion problem on the microparticle

level. Let us define ½Mm� as the monomer concentration within it and Dm as the
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diffusivity in it. Because in this case (see Fig. 5.12) polymerization occurs within

the particle at the catalyst surface, the monomer diffusion can be written as

@½Mm�
@t
¼ Dm

1

r2
@

@r
r2

@½Mm�
@r

� �
ð5:15:3Þ

where r is the radial length within the microparticle. If Rp is the rate of

polymerization at the catalyst particle (having radius rc), then

AcDm

@½Mm�
@r
¼ Rp; r ¼ rc ð5:15:4aÞ

½M� ¼ ½ML�; r ¼ rpoly ð5:15:4bÞ

Condition (5.15.4a) arises because the surface reaction should be equal to the rate

of diffusion at the catalyst surface, whereas condition (5.15.4b) arises due to

continuity of monomer concentration at the boundary.

The complete rigorous solution of equations describing Ziegler–Natta

polymerization is difficult. However, a numerical solution can be obtained after

making several simplifying assumptions, such as quasi-steady-state for the

macroparticles and equality of all macroparticles. The polymers resulting from

use of Ziegler–Natta catalysts normally have a wide molecular-weight distribution

and this can be explained through the analysis of this section.

5.16 NEWER METALLOCENE CATALYSTS FOR
OLEFIN POLYMERIZATION [57^60]

Metallocene are group IV metals (Tl , Zr, Hf , and Rf , but commonly Zr is used)

complexed with cyclopentadiene and can be activated by methyl aluminoxane

(MAO) as follows:

The above MAO is a reaction product of partially hydrolyzed triethyl aluminium

and is mostly used in homogeneous solution. The MAO provides a cage for the

cation and the pair as a whole serves as the catalyst for polymerization. Some of
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the metallocene complexes that produce high molecular weights of polyethylene

are

The first step in the catalyst polymerization, as discussed in Section 5.12, of the

olefin to the Lewis acid metal center. The chain propagation occurs by insertion

of the olefin between the metal carbon bond as follows:

The insertion step consists of an alkyl migration to the olefin ligand. At the same

time, a new free coordination site is generated at the vacant piston of the former

alkyl ligand. Depending on the orientation of the monomer during insertion, the

following (1,2) or (2,1) possibilities exist:

In view of this, in the polymerization of propylene, the following racemic and

meso diads are formed:

A polymer having only racemic diads gives syndiotactic polymer, whereas one

having only meso diads gives isotactic polymer. The control of stereoregularity is

once again by (1) catalytic site control and (2) chain end control, which is caused

by the chirality of the previous monomer inserted.
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Metallocene catalysts are extremely interesting because they dissolve in the

reaction medium and give very high activity. The polymer formed has a

polydispersity index of the order of 2, which is a considerable improvement

from the usual Ziegler–Natta catalyst. The polymer thus formed has high clarity

and mechanical strength. However, it has the drawback of becoming poisoned by

polar comonomers. Late-metal (Hf and Pd) complexes used for ethylene homo-

polymerization and copolymerization. However, they have not been commercially

adopted as yet. Polyethylene formed using these catalysts is highly branched and

has a relatively lower molecular weight.

5.17 CONCLUSION

In this chapter, different mechanisms of chain-reaction polymerization have been

discussed in detail. Based on the mechanism involved, expressions for the rate of

polymerization, molecular-weight distribution, average chain lengths, and the

polydispersity index can be derived.

Understanding the expressions introduced in this chapter is an essential

requirement in the analysis of reactors, presented in Chapter 6.
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PROBLEMS

5.1. Analyze the equilibrium free-radical polymerization with the unequal

reactivity in P1 in the following propagation steps:

I2�! �
kd

k 0
d

2I; Kd ¼
kd

k 0d

IþM�! �
k1

k 0
1

P1; K1 ¼
k1

k 01

Pn þM�! �
kp

k 0p
Pnþ1 n � 1; Kp ¼

kp

k 0p

Pn þM�! �
ktd

k 0
td

Mn þMm; n; m � 1; Ktd ¼
ktd

k 0td

Proceed the same way as in Example 5.2 and determine the following

MWD of the polymer radicals:

P1 ¼ K1MI

P2 ¼ KP4
MP1

Pn ¼ KpMPn�1 ¼ ðKpMÞn�2P2; n � 3

Determine the zeroth, first, and second moments of the polymer radicals

and the dead polymers.

5.2. Analyze the following equilibrium free-radical polymerization, in which P1
reacts with itself at a different rate in the termination step:

I2�! �
kd

k 0
d

2I; Kd ¼
kd

k 0d

Mþ I�! �
k1

k 0
1

P1; K1 ¼
k1

k 01

P1 þM�! �
kp1

k 0
p1

P2; Kp1 ¼
kp1

k 0p

Pn þM�! �
kp

k 0p
Pnþ1; n � 2; Kp ¼

kp

k 0p

Pn þ Pm�! �
ktd

k 0
td

Mn þMm; n; m � 1; Ktd ¼
ktd

k 0td

Derive the following MWD relations for the radical species as well as the
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dead polymer:

P1 ¼ K1MI

Pn ¼ ðKPMÞPn�1
5.3. In Problem 5.2, derive expressions for the zeroth, first, and second

moments of polymer radicals and the dead polymer have the following

mn and mw:

mn ¼
1þ ðRtd � 1Þð1� KpM Þ3

ð1� KpM Þ½1þ ðRtd � 1Þð1� KpM Þ2�

mw ¼
1þ KpM þ ðRtd � 1Þð1� KpM Þ4
ð1� KpM Þ½1þ ðRtd � 1Þð1� KpM Þ3�

where Rtd ¼ ktd1=ktd.
Determine the polydispersity index of the dead polymer.

5.4. To explore as a variation of the unequal reactivity discussed in Problem 5.4,

consider the following kinetic model, in which P1 is assumed to react at a

different rate with all polymer radicals:

I2�! �
kd

k 0
d

2I; Kd ¼
kd

k 0d

IþM�! �
k1

k 0
1

P1; K1 ¼
k1

k 01

Pn þM�! �
kp

k 0p
Pnþ1; Kp ¼

kp

k 0p

P1 þ P1�! �
ktd1

k 0
td1

M1 þM1; Ktd1 ¼
ktd1

k 0td

Pn þ Pm�! �
ktd

k 0
td

Mm þMn; m � 1; n � 2; Ktd ¼
ktd

k 0td

Find the following MWDs of the Mn and Pn species and the various

moments:

P1 ¼ K1MI

Pn ¼ ðKpMÞn�1P1
l2M0 ¼ Kd1P1lP0 þ Ktd1P1ðlP0 � P1Þ þ KtdðlP0 � P1Þ2
l2M0 ¼ Kd1P1lP0 þ Ktd1P1ðlP1 � P1Þ þ KtdðlP0 � P1Þ ðlP2 � P1Þ

5.5. Polymerization of styrene has the rate constants kp ¼ 145 L=mol sec and
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kt ¼ 0:13� 107 L=mol sec. The density of styrene is 0.8 g=cm3. Benzoyl

peroxide, which has a half-life of 44 hr, is used as the initiator. The

polymerization of styrene uses 0.5% initiator by weight. Now, refer to

the mechanism of radical polymerization, in which there is no way of

measuring kl. The only thing that is known about the mechanism is that it is

the reaction between two small molecules I and M. As a result of it,

k1 > kp. Assume k1 ¼ 10kp.

Find the initiation, propagation, and termination rates under the

steady-state hypothesis. Determine [P] and [I]. Find the kinetic chain

length. Because termination occurs mainly by combination for styrene,

find the average molecular weight of the polymer formed.

5.6. We want to polymerize styrene to a molecular weight of 105. To avoid the

gel effect, we polymerize it in 60% toluene solution of the monomer. Find

out how many grams of benzoyl peroxide should be dissolved in 1 L of the

solution.

5.7. When we expose vinyl monomers to high temperatures, we find that the

polymerization progresses even without an initiator. The initiation has been

proposed to occur as follows:

Both of these ends can polymerize independently. Model the rate of

polymerization rp. Find the average molecular weight of the polymer.

5.8. A dilatometer is a glass bulb with a precision bore capillary; it is a

convenient tool with which the rate of free-radical polymerization can be

determined. A suitable initiator is dissolved in the monomer and the

solution is introduced into the dilatometer through a syringe. The change

in volume of the reaction mass is measured as a function of time, which can

be related to the conversion of monomer through

D½M�
½M�0

¼ DV
rsV0

1

rs
� 1

rps

 !�1

where V0 and DV are the initial and the change in volume; rs and rps are
the densities of the monomer and polymer (in the dissolved state),

respectively; and [M]0 and D[M] are the initial concentration and the

change in the concentration of the monomer. Derive this relation.

5.9. Determine the initiator efficiency in the polymerization of styrene at

60�C in the following actual experiment. We polymerize 4.4972 cm3 of

styrene in a dilatometer with the benzoyl peroxide concentration at

6:78� 10�3 mol=L and the concentration of 2,2-diphenyl picrylhydrazil
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(a strong inhibitor) as 0:3361� 10�4 mol=L. We measure the height in the

dilatometer as a function of time.

Time, min Height, mm Time, min Height, mm

30 0 82 2.9

40 0.5 86 3.1

50 1.0 90 3.8

60 1.6 102 4.4

70 2.0 106 4.7

We plot these data on graph paper and extend the linear region of the plot

to the abscissa to find the intercept, which is the same as the induction time.

From this plot, calculate the initiator efficiency.

5.10. A dilatometric study of polymerization of styrene has been carried out. The

volume of styrene is 4.4972 cm3 and the diameter of the capillary is 1mm.

The initiator used in AZDN at a concentration of 3:87� 10�3 mol=L. The
height, h, of the monomer column in the capillary varies with time, t, as

follows:

t, min h, mm t, min h, mm

0 0.0 40 6.9

5 0.1 50 8.5

10 1.0 60 10.1

20 3.4 70 11.7

30 4.9

The slope of the plot of h versus t will give rp. Find it.

5.11. Derive an expression for the kinetic chain length in radical polymerization

when a transfer reaction occurs with the monomer, the transfer agent, and

the solvent. Also find the expression for mn.
5.12. Integrate the equation

rp ¼ kp
fk1½I2�
kt

� �1=2

½M�

to find the monomer concentration as a function of time under the

following assumptions:

(a) The t1=2 of the initiator is very large, such that the concentration

of the initiator is approximately constant.

(b) The initiator concentration changes following first-order kinetics.

Plot the concentration in both these cases. If this is done correctly, you will

find that case (b) cannot give 100% conversion. Justify this physically, and

plot mn as a function of time.
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5.13. The kinetics of retarders (Z) are expressed as

Pþ Z �!k ZR

ZR þM �!ktd ZP

ZR þ ZR �!
kzt

Nonradical product

where ZR and P are the reacted radical and polymer radicals, respectively.

ZR is a radical of lower reactivity. Supposing that a retarder Z is present in

the reaction mass, the reactions shown would occur in addition to the

normal ones. In this case, we neglect the reaction between ZR and P to form

an inactivated molecule. Find the rate of polymerization and DP in the

presence of a known concentration of the retarder [Z]. This result is

immensely important because oxygen present in a monomer even in

trace amounts will retard the rate considerably, as follows:

Pþ O2�!P�O�O?

P�O�O? þM�!P�O�O�M?

P�O�O? is the retarded radical and P�O�O�M is kinetically the same as

P.

5.14. Consider the following mechanism of polymerization:

I2! 2I

IþM! P

PþM! P

Pþ P! Inactive

PþM! Inactive

In this mechanism, the monomer itself is acting as the inhibitor. Derive the

expression for rp and DP. This kind of inhibition is found in the case of

polymerization of allyl monomers.

5.15. Suppose that there is some mechanism by which the termination reaction is

totally removed in radical polymerization. Then, derive and plot an

expression for rp as a function of time. Note that there is no steady state

existing in this case and, hence, there is no steady-state approximation.

5.16. The rp derived in the text for radical polymerization has been done with the

assumption that initiation was the rate-determining step. Find out at what

state of the derivation this assumption was used. Consider the hypothetical

state when propagation is the rate-determining step and derive the new rp.

Repeat the derivation when termination is the rate-determining step.
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5.17. The initiator efficiency is designed to take care of the wastage of primary

radicals. Find the initiator efficiency if the initiation step consists of the

following reactions:

I2�! �
kI

2I

IþM�!k1 P

Iþ S�!k2 Inactive species

where S is a solvent molecule.

5.18. Find the initiator efficiency if the initiation step is known to consist of the

following reactions:

I2�!
kI

2I

IþM�!k1 P

I2 þM�!k2 Pþ I

5.19. Assume that the temperature of polymerization is increased from 50�C to

100�C for pure styrene and the polymerization is carried out to completion.

Do you expect the equilibrium monomer concentration to reduce or

increase? Calculate the equilibrium monomer concentration as a function

of temperature.

5.20. Do you expect the equilibrium monomer concentration in radical poly-

merization to be affected by the gel effect? Justify your claim.

5.21. The temperature of radical polymerization is increased such that the

viscosity of the reaction mass remains constant. Would the gel effect

occur? If yes, why do you think so?

5.22. In the buildup period of decay-type stereoregular polymerization, we find

that the rate when propylene is introduced after TiCl3 and AlEt3 are

allowed to equilibrate is different from the rate when AlEt3 is added after

the gas is introduced. It is assumed that the following equilibrium exists in

the former case:

TiCl3 þ AlEt3 ������! ������
Adsorption

Equilibrium
Potential PC

The concentration of potential polymerization centers is given by the

Langmuir equation. On the introduction of the gas, polymerization centers,

C, are formed. A proper balance of C would yield the appropriate relation.

Derive it.
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5.23. Consider now the case in which propylene is introduced before AlEt3 is

added. In such a case, all of the reactions in the mechanism of polymer-

ization occur simultaneously. Derive the following result for small extents

of time:

r0 ¼ kP½a�t
where r0 is the rate for small intervals of time, P is the propylene gas

pressure, [A] is the concentration of AlEt3, and t the time of the reaction.

5.24. Hydrogen is used as the molecular-weight regulator in stereoregular

polymerization. The proposed mechanism postulates that there exists a

pre-established equilibrium of dissociative adsorption of hydrogen on the

TiCl3 catalyst surface, as follows:

H2 ! 2Hads

It is this adsorbed hydrogen that participates in the following reaction:

Cat�Pþ 2Hads ! Cat�Hþ PH

The Cat�H reacts with monomer molecules at a different rate in the

following fashion:

Cat�Hþmonomer! Cat�P
Derive the rate of polymerization.

5.25. Using the mechanism stated in Problem 5.24, find the molecular weight in

the stationary zone.
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6

Reaction Engineering of
Chain-Growth Polymerization

6.1 INTRODUCTION

In Chapter 5, we considered the detailed mechanisms of chain-growth polymer-

ization. Expressions for the rates and average molecular weight were developed

and were shown to be sensitive to the reaction temperature, the initiator

concentration, and the presence of transfer agents. In general, most polymeriza-

tions are exothermic and good temperature control can be achieved only through

elaborate cooling systems. This is because most monomers and polymers have

low thermal conductivity. Sometimes, the desired physical and mechanical

properties cannot be obtained by a homopolymer or by blending several

homopolymers. In such cases, copolymers are prepared, several of which are

commonly used in industry.

This chapter discusses the reaction engineering of chain-growth polymer-

ization. In order to form polymers of specified properties, we observe that reactor

temperature is a very important variable. To find this, the energy balance equation

must be solved, along with mole balance relations of various species. In the study

of copolymers, the quantities of practical interest are the relative distributions of

the monomers on polymer chains and the overall rates of copolymerization. With

these, it is possible to carry out the reactor design.
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6.2 DESIGN OF TUBULAR REACTORS [1^13]

A reactor design can be carried out if we know the following information:

1. The rate characteristics

2. The heat and mass transfer characteristics

3. External restrictions imposed by the reactor setup on fluid flow

Let us consider a tubular reactor, which is normally modeled as a plug flow

reactor (PFR), shown in Figure 6.1. The composition of the reaction mass

changes along the reactor length, and in the ideal reactor, all fluid elements

are thought to move at the same velocity (or plug flow profile). Assuming a

constant density process and no mixing, it is possible to carry out mole balance as

follows:

FA0 dxM ¼ �rp dV ð6:2:1Þ

where xM is the conversion of monomer and rp is the rate of consumption of

monomer. The elemental volume dV can be written in terms of cross-sectional

area Ac as follows:

dV ¼ Ac dz ð6:2:2Þ

FIGURE 6.1 Schematic diagram of a plug flow reactor. FA0 is the molar flow rate of

reactants, FAf is the exit flow rate of the reactants, xM is the conversion monomer, and Q0 is
the heat removed by coolants per unit surface area of the reactor.
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The molar flow rate FA0 in Figure 6.1 can be written in terms of the velocity, v0, at

which the fluid particles are traveling, or

FA0 ¼ AcCA0v0 ð6:2:3Þ
Substituting these in Eq. (6.2.1), we get

CA0

dxM

dt
¼ �rp ð6:2:4Þ

where

dt ¼ dz

v0
ð6:2:5Þ

In reactors used for carrying out radical polymerization, there is a continual

change in the physical properties such as heat capacity, density, and viscosity. The

following examples examine these effects on reactor design.

Example 6.1: Polymerization of styrene is carried out in an isothermal tubular

reactor at 60�C up to 30% conversion. Assume average rate constants at 60�C:

kp ¼ 145 L=mol sec; kt ¼ 1:3� 106 L=mol sec

fk1 ¼ 4:4� 106 sec�1; ½I2�0 ¼ 1:86� 10�2 mol=L
½M�0 ¼ 8:93 gmol=L

At this temperature, styrene has a density of 0.869 g=mL and that of

polystyrene is 1.047 g=mL. Determine the residence time,

1. Assuming no contraction in volume.

2. Accounting for the change in density of the reaction mass.

Solution:

1. When constant molar density is assumed, Eq. (6.2.4) yields

d½M�
dt
¼ �kp

fkI½I2�0
kt

� �1=2

½M�

If the change in ½I2�0 is neglected,

ln
½M�0
½M�

� �
¼ �kp

fkI½I2�0
kt

� �1=2

½M�

For 30% conversion, the residence time t is calculated to be

9:8� 103 sec.
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2. When the change in volume is to be accounted for, we write the

variable value as

V ¼ V0ð1� exM Þ

where e is the incremental volume contraction due to 1% polymer-

ization and is given by

e ¼ �1=rP þ 1=rM
1=rM

¼ rP � rM
rP

where rM and rP are the densities of the monomer and polymer,

respectively. The monomer concentration can be written in terms of

conversion as follows:

½M�0 ¼
Moles of M

Volume
¼ ½M�0ð1� xMÞ

1� exM

rP ¼ �
d½M�
dt
¼ kp

fkI

kt

� �1=2 ½I2�1=20 ½M�0ð1� xMÞ
ð1� exMÞ1=2ð1� exMÞ

The residence time of the reactor is

½M�0
1� exM

dxn

dt
¼ rp

or ð
dt ¼ t ¼ k

1=2
t

kpð fkIÞ1=2½I2�1=20

ðxf
0

ð1� exMÞ1=2
ð1� xMÞ

dxM

e is determined to be 0.1704, and the integral
Ð xf
0
½ð1� exÞ1=2=

ð1� xÞ� dx determined numerically as 0.325 for xf ¼ 0:3. The reactor
residence time is 0:95� 105 sec.

The change in volume leads to a reduction of 3% in reactor

size. It may be recalled that the polymerization rate is the slowest in

the initial region, and this may represent sizable savings.

Example 6.2: Estimate the viscosity of the reaction mass in a polystyrene reactor

at 1% and 10% conversion. The molecular weight of the polymer is assumed to

be 3:0� 106.
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Solution: We approximate the styrene–polystyrene system by using a toluene–

polystyrene system. For this, the viscosity can be estimated by

Z� 0:0056

0:0056
¼ 5:3lM1 þ 0:4� 5:32lM1 for lM1 < 5%

where lM1 is the concentration of polymer in g=dL and Z is the viscosity of the

solution (in poise). For 10% polymer, Cp is equal to 0.087 g=dL, which gives the

viscosity as 0.086 P. The viscosity of 10% solution is obtained from

Z ¼ 2� 10�5½l1:5M1
�MMw�3:5

where �MMw is the weight-average molecular weight. The calculated viscosity is in

poise and is found to be 90 P, a 10,000-fold increase. This large increase in

viscosity reduces the Reynolds number of the flow, which, in turn, increases the

pressure drop and lowers the overall heat and mass transfer coefficients.

We have already observed in Chapter 5 that the reactor temperature plays a

major role in determining the course of polymerization. This temperature can be

determined if an energy balance is made over the differential element, which, at

steady state, is given by

F �CCpðT þ dT Þ � F �CCpT ¼ rpð�DHrÞAc dz� Q02pR dz ð6:2:6Þ
where F is the mass flow rate, not the molar flow rate in Eq. (6.2.1), Cp is the

average specific heat, and ð�DHrÞ is the heat of polymerization. Because F is in

total mass units, it remains constant along the length of the tubular reactor.

Rearranging Eq. (6.2.6) yields

�CCp

dT

dZ
¼ �ð�DHrÞrp � Q ð6:2:7Þ

where Z is the average density of the reaction mass and Q is given by

Q ¼ 2Q0

R
ð6:2:8Þ

It may be observed that Eq. (6.2.7) involves the specific heat, �CCp, which is also

likely to change along the reactor length. Fortunately, though, the monomer and

the polymer formed have similar �CCp values. For example, styrene and polystyrene

have Cp values of 0.40 and 0.41 cal=g �C at 25�C.
We discussed in Chapter 5 that, under quasi-steady-state approximation

(QSSA), the net production of all intermediate species in a reaction mass can be

taken as zero after a small induction time. The polymer in radical polymerization

is formed only after polymer radicals are generated. At any given time, therefore,

we have two distributions: one for polymer radicals ðPn; n ¼ 1; 2; 3Þ and one for
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dead polymer chains ðMn; n ¼ 2; 3Þ. In Chapter 5, we assumed a QSSA and

derived the zeroth moment, lP0, of the polymer radicals as follows:

lP0jss ¼
fkI½I2�0

kt

� �1=2

ð6:2:9Þ

However, when the gel effect sets in, kt decreases in value, which results in

increased lP0jSS under QSSA, thus leading to higher rates of polymerization.

Because all polymerization reactions are exothermic in nature, the temperature of

the polymer mass also increases for the same cooling rate, which, in turn, gives a

higher rate of initiation. Hence, under the influence of the gel effect, the upward

thermal drift always occurs and the QSSA is known to break down. When this

happens, the mole balance relation for polymer radicals lP0 is governed by a

nonlinear first-order differential equation instead of the simple relation given in

Eq. (6.2.9). The concentration lP0 in the reaction mass is normally very low

compared with the monomer or initiator concentration. For example, for styrene

polymerizing at 60�C with benzoyl peroxide initiator, lP0jss [as calculated from

Eq. (6.2.9)] is of the order 10�8 mol=L. As a consequence, in computing lP0
numerically through its governing differential equation, the time increment Dt
must be chosen to be very small, which would mean that the numerical

determination of reactor performance requires a great amount of time for

computation.

6.2.1 Moments of Radical and Dead Polymers [12,13]

In order to reduce the computational load, the following moment equations are

developed as an alternative to attempting to solve a large number of coupled

ordinary differential equations (governing mole balance relations for various

species). Within the reaction mass, we have molecular-weight distributions of

radical and dead polymers; as a result, we define moments for these separately, as

follows:

lPi ¼
P1
n¼1

ni½Pn�; i ¼ 0; 1; 2; . . . ð6:2:10aÞ

lMi ¼
P1
n¼1

ni½Mn�; i ¼ 0; 1; 2; . . . ð6:2:10bÞ

Zeroth, first, and second moments ði ¼ 0; 1; 2Þ are usually important; as a

consequence, this section focuses on these moments only. In Chapter 5, we

derived the mole balance for Pn; it is summarized in Table 6.1 for easy reference.

The moment equations are easy to derive from the mole balance, and they are also
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TABLE 6.1 Mole and Energy Balance Relations for Species in Batch (or Tubular)

Reactors Used for Carrying out Radical Polymerization

MWD Relations

Initiator, I2
d½I2�
dt
¼ �fkI½I2� ð1Þ

dI

dt
¼ 2fkI � ½I2� � k1½I�½M�

Polymer radicals, Pn
d½P1�
dt
¼ k1½I�½M� � kp½M�½P1� � ðktc þ ktdÞlP0½P1� þ ktrs½S�ðlP0 � ½P1�Þ ð2Þ

d½Pn�
dt
¼ kp½M� ½Pn�1� � ½Pn�

� 
� ðktc þ ktdÞlP0½Pn� þ ktrs½S�½Pn�; n � 2 ð3Þ

Monomer, M
d½M�
dt
¼ �kp½M�lP0 ð4Þ

Transfer agent, S
d½S�
dt
¼ �ktrs½S�lP0 ð5Þ

Dead polymer, Mn

d½Mn�
dt
¼ ktc

2

Pn�1
m¼1
½Pm�½Pn�m� þ ktd½Pn�lP0 þ ktrs½S�½Pn�; n � 2 ð6Þ

Energy balance

rXp
dT

dt
¼ ð�DHrÞkp½M�lP0 �

4U*

D
ðT � TwÞ ð7Þ

Moment Relations

Radical polymers
dlP0
dt
¼ k1½I�½M� � ðktc þ ktdÞl2P0 ð8Þ

dlP1
dt
¼ k1½I�½M� þ kp½M�lP0 � ðktc þ ktdÞlP0lP1 � ktrsðlP1 � lP0Þ½S� ð9Þ

dlP2
dt
¼ k1½I�½M� � ktrsðlP2 � lP0Þ½S� þ kp½M�ð2lP1 þ lP0Þ � ðktc þ ktdÞlP0lP2ð10Þ

Dead polymer
dlM0

dt
¼ ktc

2
þ kd

� �
l2P0 þ ktrs½S�lP0 ð11Þ

dlM1

dt
¼ ðktc þ ktdÞlP0lP1 þ ktrs½S�lP1 ð12Þ

dlM2

dt
¼ ðktc þ ktdÞðlP0lP2l2P1Þ þ ktcðl2P1 � ½P1�Þ þ ktrs½S�ðlP2 � ½P1�Þ ð13Þ

Note: U ¼ overall heat transfer coefficient; Tw ¼ coolant temperature.
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given in the table. In the following, we demonstrate the technique by deriving

generation relations for lP2 and lM2:

dlP2
dt
¼ P1

n¼1
n2

d½Pn�
dt

¼ k1½I�½M� þ kp½M� 22½P1� þ 32½P2� þ � � �
� 


¼ �kp½M� ½P1� þ 22½P2� þ 32½P3� þ � � �
� 


þ ktrs½S� lP0 � ½P1� � 22½P2� � 32½P3� � 42½P4� � � � �
� 


� ðktc þ ktdÞlP0 ½P1� þ 22½P2� þ 32½P3� þ � � �
� 


k1 ½I� ½M�
¼ þ kp½M�

P1
n¼1
ðnþ 1Þ2 � n2
� 
½Pn� þ ktrs½S� lP0 � lP2

� 

� ðktc þ ktdÞlP0lP2
¼ k1½I�½M� � ktrs½S�ðlP2 � lP0Þ � ðktc þ ktdÞlP0lP2
þ kp½M�

P1
n¼1
ð2nþ 1Þ½Pn�

¼ k1½I�½M� � ktrs½S�ðlP2 � lP0Þ � ðktcktdÞlP0lP2
þ kp½M�ð2lPi þ lPnÞ ð6:2:11Þ

which are the same as those given in Table 6.1. Similarly, for lM2, we have

dlM2

dt
¼ d

dt

P1
n¼2

n2½Mn�

¼ ktc

2

P1
n¼1

n2
Pn�1
r¼1
½Pr�½Pn�r� þ ktdlP0

P1
n¼2

n2½Pn� þ ktrs½S�
P1
n¼2

n2½Pn�

ð6:2:12Þ
However, we know thatP1

n¼1
n2
Pn�1
r¼1
½Pr�½Pn�r� ¼

P1
n¼2
½Pn�

P1
n¼2
ðnþ rÞ2½Pr�

¼ P1
n¼1
½Pn�

P1
r¼1
ðn2 þ r2 þ 2nrÞ½Pr�

¼ P1
n¼1
½Pn�ðn2lP0 þ lP2 þ 2nlP1Þ

¼ lP0
P1
n¼1

n2½Pn� þ lP2
P1
n¼1
½Pn� þ 2lP1

P1
n¼1

n½Pn�

¼ lP2lP0 þ lP2lP0 þ 2l2P1 ð6:2:13Þ
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Therefore, lM2 is given by

dlM2

dt
¼ ktc

2
ð2lP2lP0 þ 2l2PIÞ þ ktdlP0ðlP2 � ½P1�Þ þ ktrs½S�ðlP2 � ½P1�Þ

ð6:2:14Þ
We have already observed that, in radical polymerization, after the monomer

reacts with primary radicals I, P1 grows very quickly (due to a large kp) to give a

high molecular weight. This means that the concentration of P1 is always very

low, and the following inequality holds:

lP2 þ lP1 � lP0 ½P1� ð6:2:15Þ
We subsequently assume the validity of steady-state approximation for primary

radicals I, which gives the following:

d½I�
dt
¼ 2fkI½I2� � k1½M�½I� ¼ 0 ð6:2:16Þ

The use of Eqs. (6.2.15) and (6.2.16) gives the moment generation relation for

lM2 as written in Table 6.1.

The various differential equations of Table 6.1 are nonlinear and coupled,

and, in principle, they must be solved numerically, which takes excessive

computational time. For isothermal reactors for time-invariant rate constants, it

is possible to derive a complete analytical solution, which is given in Appendix

6.1. However, actual reactor performance is always nonisothermal; in addition,

rate constants (particularly kp and kt) are dependent on reaction parameters in a

very complex way. Tables 6.2 and 6.3 show the physical properties and rate

constants for polystyrene and polymethyl methacrylate systems. Several research-

ers have attempted to solve for the reactor performance for these systems, and all

of them have reported that the differential equations of Table 6.1 (along with the

energy balance relation) take excessive computational time. The following

discussion minimizes this problem by using the isothermal solution presented

in Appendix 6.1.

The standard method for solving a set of ordinary differential equations is

to use a fourth-order numerical technique. The total time is divided into small

increments of time, Dt (the flowchart of the computer program is given in Figure

6.2). In any given time increment, Dt, the temperature (T), rate constants (kI; kp,
and kt), and concentration ([M]; [I2]; [S]; lP0; lP1, and lP2; lM0; lM1, and lM2Þ
are assumed constant over Dt and their next incremental values are calculated by

treating the differential equations as difference equations. As a result, in the

Runge–Kutta technique, the choice of incremental time is crucial and the

numerical solution tends to diverge if Dt is not chosen small enough. One of

the ways of overcoming this difficulty is to keep reducing Dt until the numerical

solution becomes independent of it. This is called a stable solution.
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Note that the temperature is assumed constant in the Runge–Kutta

technique between any time increment Dt. Thus, instead of using a difference

equation, we can easily use the integrated equations of Appendix 6.1. The

flowchart of such a computer program is given in Figure 6.3. Results thus

obtained are inherently stable, and there is a general insensitivity to the choice of

Dt. The increment in temperature can be determined from the solution of the

following energy balance equation:

rCp

dT

dt
¼ ð�DHrÞkp½M�lP0 �

4U

D
ðT � TwÞ ð6:2:17Þ

where �DHr is the heat of the reaction, U is the overall heat transfer coefficient,

and Tw is the coolant temperature. This can be rearranged using Eq. (6.1.26) and

may be written as

dy

dx
þ by ¼ ae�mX ð6:2:18Þ

TABLE 6.2 Parameters Used for Simulation of Polystyrene Reactors

f ¼ �12:342396þ 9577:287

T

� 1743120:6

T 2

kt ¼
dt0D0

D0 þ kt0l0yt

kp ¼
kp0D0

D0 þ kp0 þ l0yp

rM ¼ 924� 0:918 ½T ðKÞ � 273:1� g=L Et ¼ 31:1 kcal=mol

rP ¼ 1084:8� 0:685 ½T ðKÞ � 273:1� g=L Ep ¼ 7:06 kcal=mol

e ¼ ½rM � rP�
rP

Etc ¼ 1:68 kcal=mol

TgP ¼ 373:1K Etr ¼ 12:5916 kcal=mol

kd ¼ 2:67� 1015 sec�1 B ¼ 0:02
kp0 ¼ 1:051� 107 L=mol sec e1 ¼ 0:1

ktd0 ¼ 0:0 yp ¼ 1:23421� 10�14 exp
11:0614� 103

RT

� �
ktc0 ¼ 1:26� 109 L=mol sec yt ¼

2:81437� 10�4

½I2�0

� �
exp

22:8488� 103

RT

� �
ktr0 ¼ 2:31� 106 L=mol sec

D0 ¼
2:303ð1� fPÞ
Aþ Bð1� fPÞ

A ¼ 0:091678� 1:142� 10�5 ðT � 373:1Þ2

Source: Ref. 12.
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where

y ¼ T � Tw ð6:2:19aÞ
X ¼ Z0 � Z ð6:2:19bÞ
b ¼ 8U

DrCp fkIZ0
ð6:2:19cÞ

a ¼ ð�DHrÞ½M�0m
rCp

ð6:2:19dÞ

The integrating factor of Eq. (6.2.18) is ebX and, using the initial condition

T ¼ T0 at X ¼ 0, we obtain

T � Tw ¼
ae�mðZ0�ZÞ

ðb� mÞ þ ðT0 � TwÞe�bðZ0�ZÞ �
ae�bðZ0�ZÞ

b� m
ð6:2:20Þ

This result has been built into the algorithm of Figure 6.3.

Example 6.3: It is desired to manufacture polymer of constant molecular weight

in free-radical batch polymerization. How would you achieve this?

TABLE 6.3 Parameters Used for Simulation of Poly-

methyl Methacrylate Reactors

f ¼ 0:58 (AIBN)

rM ¼ 0:9665� 0:0011½TðKÞ � 273:1� g=cm3

rP ¼ 1:2 g=cm3

e ¼ 0:1946þ 0:916� 10�3½TðKÞ � 273:1� g=cm3

TgP ¼ 387:1K
k1 ¼ 6:32� 1016 min

kp0 ¼ 2:95� 107 L=molmin

ktd0 ¼ 5:88� 109 L=molmin

ktc0 ¼ 0:0
ktr ¼ 0:0
EI ¼ 30:66 kcal=mol

Ep ¼ 4:35 kcal=mol

Etc ¼ 0:701 kcal=mol

B ¼ 0:03
e1 ¼ 1:0
yp ¼ 666:37� 10�16 exp ð24:455� 103Þ=1:987T� 

yt ¼

0:48139� 10�22

½I2�0
exp ð35:5481� 103Þ=1:987T� 


A ¼ 0:15998� 7:812� 10�6 ðT� 387:1Þ2

Source: Ref. 12.
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FIGURE 6.2 Flowchart of computation using an analytical scheme for free-radical

polymerization.
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Solution: From the balance relations of Table 6.1, we have

d½M�
dt
¼ �kp½M�lP0

rCp ¼
dT

dt
¼ ð�DHRÞkp½M�lP0 �

4U

D
ðT � TwÞ

rCp ¼
dlP0
dt
¼ 2fkI½I2� � ðktc þ ktdÞl2P0

mn ¼
kp½M�
2ktlP0

For constant mn; lP0 is constant and is given by

lP0 ¼
kp½M�
2ktmn

FIGURE 6.3 Runge–Kutta scheme for free-radical polymerization.
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Therefore,

d½M�
dt
¼ kp½M�2

2ktmn
	D C1½M�2

or

1

½M� �
1

½M�0
¼ C1t

or

½M� ¼ ½M�0
1þ C1½M�0t

The energy balance equation is given by

rCp

dT

dt
¼ ðþDHrÞkp½M�2

2ktmn
� 4U

D
ðT � TwÞ

or

dT

dt
¼ DHp

rCp

kp

2ktmn

½M�20
1þ C1½M�0t
� 
2 � UA

rpD
ðT � TwÞ

which can be integrated analytically.

Example 6.4: In order to analyze equilibrium radical copolymerization of

monomers A and B, we define species Nm;n which contains m units of A and n

units of B. Determine the MWD, Nm;n.

Solution: The mechanism of polymerization in terms of Nm;n can be written as

1þ A *)
K 0
A

N1;0

1þ B *)
K 0
B

N0;1

N1;0 þ A *)
KA

N2;0

N1;0 þ B *)
KB

N1;1

N0;1 þ A *)
KA

N1;1

N0;1 þ B *)
KB

N0;2

Nm;n�1 þ B *)
KB

Nm;n
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We have

N1;0 ¼ K 0A½I�½A�
N0;1 ¼ K 0B½I�½B�
N2;0 ¼ K 0AKA½I�½A�2

N1;1 ¼ ðK 0AKB þ K 0BKAÞ½I�½A�½B�
N0;2 ¼ K 0BKB½I�½B�2

N3;0 ¼ K 0AK
2
A½I�½A�3

N2;1 ¼ KAð2K 0AKB þ K 0BKAÞ½I�½A�2½B�
N1;2 ¼ KBðK 0AKB þ 2K 0BKAÞ½I�½A�½B�2

N0;3 ¼ K 0BKB½I�½B�

By induction, one can write

Nm;n ¼
mþ n

n

� �
ðmþ nÞ ½I�K

m�1
A Kn�1

B ðmK 0AKB þ nK 0BKAÞ½A�m½B�n

We define

a ¼ K 0A
KA

; b ¼ K 0B
KB

a ¼ KA½A� b ¼ KB½B�

in terms of which

Nm;n ¼
mþ n

m

� �
mþ n

½I�ðmaþ nbÞambn; mþ n � 1

Example 6.5: Prepare a computer program to determine the polystyrene reactor

performance using the semianalytical technique [equations of Table A6.1 and

Eq. (6.2.20)]. Use the data given in Table 6.2.
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Solution: This is quite straightforward. Equations of Table A6.1 are in the Z

domain, whereas the computations are required to be carried out in the time

domain. In the program, we can choose the increment DZ as 0.001. Because rate

constants change with the time of polymerization, the corresponding incremental

time is calculated using

Dt ¼ ðt2 � t1Þ ¼
2 lnðZ1=Z2Þ

fkI

The results of simulation have been plotted in Figure 6.4 for [M] and T, Figure 6.5

for lP0 and lM0, and Figure 6.6 for lM1 and lM2. We have also calculated results

using the Runge–Kutta technique and compared the computations in these

figures. We find that the results from the semianalytical technique are inherently

stable, whereas those from Runge–Kutta require excessive computational time.

For certain choices of Dt, there is a numerical overflow. Results from both

of these techniques are identical until the thermal runaway conditions are

encountered.

6.2.2 Control of Molecular Weight [8^13]

Designing a reactor for low-molecular-weight compounds involves deciding the

residence time such that the desired conversion is obtained. In polymer reactors,

on the other hand, it is necessary to attain not only a given conversion, but also a

FIGURE 6.4 [M] versus time for nonisothermal polymerization with gel effect. Aster-

isks indicate numerical instability.
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well-defined molecular weight of the polymer formed. In this context, the control

of molecular weight becomes extremely important.

In Chapters 3 and 4, we noted that the rate of step-growth polymerization

becomes diffusion controlled at advanced conversions and, in turn, the polymer-

ization progresses at a slower rate. Because mn depends solely on conversion, the

onset of the diffusional resistance delays only the attainment of the final

conversion. Therefore, the control of molecular weight in step-growth polymer-

ization implies the regulation of the final conversion in the product stream of the

reactor.

As opposed to this, gel and glass effects are observed in radical polymer-

ization. These effects lead to a marked increase in the average molecular weight

of the polymer formed. Radical polymerization differs from step growth in that, in

the former, the average molecular weight as well as the final conversion must be

controlled individually. The control of the molecular weight in free-radical

polymerization beyond the gel effect can be achieved by the following methods:

1. Increase of temperature of polymerization

2. Increase of monomer concentration, initiator concentration, or both

3. Method of weak inhibition

FIGURE 6.5 Total moles of polymer radicals versus time for nonisothermal polymer-

ization with gel effect. Asterisks indicate numerical instability.
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4. Use of a transfer agent

The effect of the polymerization temperature on the number-average molecular

weight can be seen from the following expression:

mn ¼
kp

fktkI
� 
1=2 ½M�½I2�1=2 ð6:2:21Þ

It has been shown that kt reduces considerably faster than the rate constants kp
and kI when the gel and the glass effects set in. It can be inferred from the

numerical values of the activation energies that EI is much larger than Ep and Et.

Therefore, an increase in temperature would cause an increase in kI much greater

than the corresponding increase in kp or kt and would lower mn. This is precisely
what is required to control the molecular weight beyond the gel point. The

increase in temperature helps in controlling the mn not only by increasing kI but

also by lowering the viscosity of the reaction mass, which, in turn, reduces the gel

and glass effects. It is indeed possible to choose the temperature sequence in a

tubular reactor such that a perfect control of the molecular weight is achieved.

Finding this temperature sequence requires the following information:

FIGURE 6.6 First and second moments of polymer formed versus time for nonisother-

mal polymerization with gel effect. Asterisks indicate numerical instability.
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1. Variation of rate constants with temperature

2. Variation of the viscosity of the reaction mass with conversion and the

gel and glass effects

3. Variation of the viscosity of the reaction mass with temperature at a

given conversion

Several theoretical and experimental studies have accounted for the gel

effect, and, in them, the optimal temperature is determined for a given initiator

concentration to minimize the residence time of a batch reactor. The optimal

temperature profiles for various initiator concentrations for methyl methacrylate

(MMA) polymerization, leading to a fixed mn* of 5000, have been developed. It

has been recommended that high isothermal temperatures be used for large

concentrations of the initiator. For small concentrations, on the other hand, the

temperature must be increased significantly with the time of polymerization. As

the final molecular weight of the polymer ðmn*Þ is increased, it is necessary to have

lower temperatures. This is reasonable because as the temperature is reduced, the

molecular weight of the polymer increases even though the rate of polymerization

falls.

6.3 COPOLYMERIZATION [14^25]

As pointed out earlier, several instances arise in practice where two different

characteristics (e.g., the rubberlike characteristics of polybutadiene and the

glasslike property of polystyrene) may be required in the final polymer. In such

cases, butadiene and styrene are polymerized together, and the resultant polymer

exhibits properties between those of the two homopolymers. The polymerization

of two or more monomers is called copolymerization and the resultant polymer is

called a copolymer.

In practice, the choice of monomers for copolymerization should be such

that all of them will respond to the catalyst system used for copolymerization. In

cases where any of these monomers does not respond to the catalyst, that

particular monomer is not incorporated into the copolymer. Thus, a monomer

(e.g., styrene) that polymerizes by the radical mechanism does not copolymerize

with a monomer such as e-caprolactam, which homopolymerizes by the step-

growth mechanism.

In the analysis of copolymerization, there are two quantities of interest [14–

16]. The first is the overall rate of copolymerization, and the latter is the average

distribution of the monomer in the final polymer chain. Chapter 1 has already

shown that monomers may be distributed randomly on the chain, may occur in

blocks, or may alternate regularly [17–19]. In this chapter, we discuss the random

copolymers only. The following analysis presents the copolymerization of two
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monomers that undergo radical polymerization. The analysis can easily be

adapted for copolymerization of more than two monomers.

In general, two monomers, M1 and M2, homopolymerize at different rates.

Thus, the rate of addition of M1 to a polymer radical having M2 at its end is

different from the rate when it adds onto a radical with an M1 end. In random

copolymerization, polymer chain radicals are formed with M1 and M2 randomly

distributed. Strictly speaking, all of these chain radicals are different (e.g.,

M1M2M2M1 is different from M1M2M1M1). The equal-reactivity hypothesis

states that, for similar chains, the reactivity is independent of the chain length and,

therefore, cannot be applied to the copolymerization rigorously. In general, the

reactivity of a particular chain radical depends on not only the terminal

monomer’s unit but also the monomers attached before it. The effect of the

previous monomers on the reactivity is called the penultimate effect. It is possible

to figure this mathematically, but we avoid this step in order to simplify the

mathematics in the analysis presented here. In the first approximation, it is

assumed that the reaction rate constant is determined entirely by the terminal

monomeric unit. Thus, chain radicals need to be distinguished from each other

based only on the terminal units. In the copolymerization of M1 and M2, we need

to distinguish two kinds of chain radicals having structure M1 and M2. These are

designated as P1 and P2; respectively.
For radical copolymerization of M1 and M2, the mechanism given in

Chapter 5 for homopolymerization can be extended easily for all of the

elementary reactions, resulting in two initiation, four propagation, and three

termination reactions, as follows:

Initiation

I2�!
kI

2I ð6:3:1aÞ
M1 þ I�!ki1 P1 ð6:3:1bÞ
M2 þ I�!ki2 P2 ð6:3:1cÞ

Propagation

P1 þM1�!
kp11

P1 ð6:3:1dÞ

P1 þM2�!
kp12

P2 ð6:3:1eÞ

P2 þM1�!
kp21

P1 ð6:3:1f Þ

P2 þM2�!
kp22

P2 ð6:3:1gÞ
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Termination

P1 þ P1�!
kt11

Md ð6:3:1hÞ
P1 þ P2�!

kt12
Md ð6:3:1iÞ

P2 þ P2�!
kt22

Md ð6:3:1jÞ

The desired quantities, rp, and the monomer distribution on the polymer chain

can now be found as follows. The mole balance equations for M1 and M2 are

� d½M1�
dt
¼ kp11½P1�½M1� þ kp21½P2�½M1� ð6:3:2aÞ

� d½M2�
dt
¼ kp12½P1�½M2� þ kp22½P2�½M2� ð6:3:2bÞ

In writing Eqs. (6.3.2), the small consumption of the monomers by reactions

(6.3.1b) and (6.3.1c) has been neglected. Dividing Eq. (6.3.2a) by Eq. (6.3.2b)

gives

d½M1�
d½M2�

¼ kp11½P1�½M1� þ kp21 ½P2�½M1�
kp12½P1�½M2� þ kp22 ½P2�½M2�

ð6:3:3Þ

Whichever monomer is consumed by way of copolymerization appears on the

polymer chains. Because the addition of these monomers is a random process,

the relative rates of consumption [given by Eq. (6.3.3)] should be the same as the

relative distribution of monomers on polymer molecules on the average. There-

fore, if a differential amount, dð½M1� þ ½M2�Þ, of the reaction mass is polymerized

in time dt, then, on the average, the number of molecules of M1 and the number

of molecules of M2 on a small length of chain formed at that instant are in the

ratio ðd½M1�=d½M2�Þ. The differential polymer composition, F1, is defined as

F1 ¼
d½M1�

d ½M1� þ ½M2�
� 
 ¼ 1� F2 ð6:3:4Þ

It is possible to relate F1 to the average composition, f1, of the unreacted

monomer in the reaction mass, defined by

f1 ¼
½M1�

½M1� þ ½M2�
¼ 1� f2 ð6:3:5Þ
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In Eq. (6.3.3), [P1] and [P2] are not known. Because these are intermediate

species, they can be evaluated using the steady-state approximation. The balance

equations on P1 and P2 are

d½P�
dt
¼ 0 ¼ ki1½I�½M1� � f2kt11½P1�2 þ kt12½P1�½P2�

� kp21½P2�½M1� þ kp12½P1�½M2�g ð6:3:6aÞ
d½P2�
dt
¼ 0 ¼ ki2½I�½M2� � f2kt22½P2�2 þ kt12½P1�½P2�

þ kp21½P2�½M1� � kp12½P1�½M2�g ð6:36bÞ
In these equations, the propagation terms due to reactions (6.3.1e) and (6.3.1g)

are much larger than the initiation and termination terms due to reactions

(6.3.1a)–(6.3.1c) and (6.3.1h)–(6.3.1j). Therefore, Eqs. (6.3.6) give

kp12½P1�½M2� ¼ kp21½P2�½M1� ð6:3:7Þ
Equation (6.3.7) can be substituted into Eq. (6.3.3) to eliminate [P1]=[P2], as
follows:

d½M1�
d½M2�

¼ kp11½M1�½P1�=½P2� þ kp21½M1�
kp12½M2�½P1�=½P2� þ kp22½M2�

d½M1�
d½M2�

¼ ðkp21=kp12Þkp11½M1�½M1�=½M2� þ kp21½M1�
ðkp12=kp12Þ½M2�½M1�=½M�2� þ kp22½M2�

¼ ½M1�=½M2�
ð½M1�=½M2�Þ þ r2

r1
½M1�
½M� þ 1

� �
where

r1 ¼
kp11

kp12
ð6:3:9aÞ

r2 ¼
kp22

kp21
ð6:3:9bÞ

This is sometimes called the Mayo equation. F1 can now be written in terms of

[M1] and [M2]:

F1 ¼
d½M1�

d ½M1� þ ½M2�
� 
 ¼ d½M1�=dp½M2�

1þ ðd½M1�=d½M2�Þ
ð6:3:10Þ

Substituting Eq. (6.3.8) into this equation gives the following:

F1 ¼
ð½M1�=½M2�Þ 1þ r1ð½M1�=½M2�Þ

� 

= r2 þ ð½M1�=½M2�Þ
� 


1þ ð½M1�=½M2�Þ 1þ r1ð½M1�=½M2�
� 


= r2 þ ð½M1�=½M2�Þ
� 
 ð6:3:11Þ
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Equation (6.3.5) gives

½M1�
½M2�
¼ f1

1� f1
¼ f1

f2
ð6:3:12Þ

Substituting into Eq. (6.3.11) yields

F1 ¼
ð f1=f2Þ þ r1ð f1=f2Þ

r2 þ 2ð f1=f2Þ þ r1ð f1=f2Þ

¼ r1 f
2
2 þ f1 f2

r1 f
2
1 þ 2f1 f2 þ r2 f

2
2

ð6:3:13Þ

Thus, the differential polymer composition, F1, is related to the monomer

composition, f1, in the reaction mass at that instant. This relation has been

obtained through the use of the mechanism written in Eqs. (6.3.1). The

parameters r1 and r2 measure the relative preference that the polymer radicals

P1 and P2 have for the two monomers M1 and M2. If kp22 and kp11 are zero, the

resultant polymer has an alternating sequence of M1 and M2 on the chain. If kp21
and kp12 are zero, then there is no copolymerization, and the resulting polymer

consists of two homopolymers. If, however, monomers M1 and M2 display equal

relative preferences for P1 and P2—that is, if

kp11

kp12
¼ kp21

kp22
ð6:3:14Þ

then

r1r2 ¼ 1 ð6:3:15Þ
and Eq. (6.3.13) reduces to

F1 ¼
r1 f

2
1 þ f1 f2

r1 f
2
1 þ 2r1 f1 f2 þ r2 f

2
2

¼ r1 f1

r1 f1 þ f2
ð6:3:16Þ

Equation (6.3.13) has been plotted in Figure 6.7 for different values of r1 and r2
and in Eq. (6.3.16) in Figure 6.8 for different values of r1. The relation between

F1 and f1, as shown in these plots, is quite similar to the vapor–liquid equilibrium

relations. The vapor pressure of an ideal liquid behaves in the same way as the

copolymer monomer mixture composition in Figure 6.8. Accordingly, copoly-

merizations with r1r2 equal to 1 are sometimes termed ideal.

The overall balance on radicals can be written by adding Eq. (6.3.6a) and

(6.3.2b):

ki1½I�½M1� þ ki2½I�½M2� ¼ 2kt11½P1�2 þ 2kt12½P2�2 þ 2kt12½P1�½P2� ð6:3:17Þ
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The balance on primary radicals, I, reduces, under the steady-state hypothesis, to

2kI½I2� ¼ ki1½I�½M1� þ ki2½I�½M2� ð6:3:18Þ
and Eq. (6.3.17) then simplifies to

2kt11½P1�2 þ 2kt22½P2�2 þ 2kt12½P1�½P2� ¼ 2kI½I2� ð6:3:19Þ
or

½P1�2 ¼
kI½I2�

kt11 þ kt12ð½P2�=½P1�Þ þ kt22ð½P2�=½P1�Þ2
ð6:3:20Þ

Equation (6.3.7) gives the following:

½P1�2 ¼
kI½I2�

kt11 þ kt12ðkp12½M2�=kp21½M1�Þ þ kt22ðk2p12½M2�2=k2p21½M1�2Þ
ð6:3:21Þ

Similarly, [P2] can be found. The overall rate of polymerization, rp, can be written

rp ¼ kp11½P1�½M1� þ kp22½P2�½M2 þ kp12½P1�½M2� þ kp21½P2�½M1� ð6:3:22Þ

FIGURE 6.7 Plot of Eq. (6.3.13) for different values of r1 and r2.
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In Eq. (6.3.22), [P1] and [P2] can be eliminated from Eq. (6.3.21) and rp
(sometimes called the Melville equation) can be found:

rp ¼
2kI½I2�
� 
1=2

d1

r1½M1�2 þ 2½M1�½M2� þ r2½M2�2

r21½M1� þ 2frr1r2ðd2=d1Þ½M1�½M2� þ ðd2=d1Þðr2½M2�Þ2
� 
1=2

ð6:3:23Þ
where

d1 ¼
2kt11
k2p11

( )1=2

ð6:3:24aÞ

d2 ¼
2kt22
k2p22

( )1=2

ð6:3:24bÞ

f ¼ kt22

k
1=2
p22k

1=2
t22

ð6:3:24cÞ

The values of r1 and r2 for various monomer systems undergoing radical

copolymerization have been compiled in the Polymer Handbook [20]. The

FIGURE 6.8 Incremental polymer composition F1 versus f1 for ideal copolymerization.
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experimental determination of r1 and r2 is usually tedious and sometimes requires

a careful statistical analysis, but all of the measurements reported belong to short

times of polymerization, where the gel effect does not exist. It is expected that r1
and r2 will change when the propagation rate constants begin to be affected by the

glass effect [21–23].

The Melville equation for the rate of copolymerization [Eq. (6.3.23)] has

been applied to several systems with f as a parameter. Calculations carried out

based on the molecular-orbital theory lead to a theoretical value of f ¼ 1, which

is contrary to experimental findings in which f has been reported to take on any

value. In the copolymerization of styrene with diethyl fumarate at 90�C shown in

Figure 6.9, f ¼ 2:0 is found to fit experimental data. The value of f is also found

to depend on the temperature, as shown in Figure 6.9, in which f ¼ 7:5 is found

to describe experimental data at 60�C. Furthermore, the value of f depends on

the monomer ratio for some systems, as has been shown for styrene–methacrylate

systems in the literature. Only very few studies have reported the changes in

d1; d2, and f after the gel effect sets in.

If a mixture of monomers M1 and M2 is copolymerized from some initial

concentrations ½M1�0 and ½M2�0, respectively, to some final concentrations ½M1�

FIGURE 6.9 Copolymerization rate at different mole fractions: x, styrene and diethyl

fumerate at 90�C giving f ¼ 2; �, styrene and diethyl fumerate at 60�C giving f ¼ 7:5.
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and ½M2�, respectively, then Eq. (6.3.13), as such, does not give the overall

composition of monomers on the polymer chain. This is because [M1] and [M2]

change with time. To obtain the composition, we proceed as follows. If ½M*� is
defined as

½M*� ¼ ½M1� þ ½M2� ð6:3:25Þ
the average (i.e., the ratio of [M1] and [M2]) of a polymer chain can be found

when [M*] changes from ½M�0* to ½M �* by making a mass balance. If f10 is the

fraction of M1 in the reaction mass initially, there are f10½M�0*NA molecules of M1

in the reaction mass (NA is Avogadro’s number) at the beginning of the

copolymerization. At time t, the number of unreacted molecules of M1 in the

reaction mass is f1½M�*NA. The total number of reacted molecules

ð½M�0*� ½M�*ÞNA of both M1 and M2 would show up on the polymer chain. If

F1 is the average composition of the polymer chains at time t, then a number

balance gives

f10½M�0*NA ¼ �FF1ð½M�0*� ½M�*ÞNA þ f1½M�*NA ð6:3:26Þ

�FF1 ¼
f10 � f1ð½M�=½M�0*Þ
1� ð½M�*=½M�0*Þ

ð6:3:27Þ

Equation (6.3.27) has been plotted in Figure 6.10 as a function of

ð1� ½M�*=½M�0*Þ. Here, �FF1 goes to zero as ð1� ½M�*=½M�0*Þ goes to 1 because

styrene is more reactive ðr1 > 1; r2 < 1Þ, but �FF1 becomes 0.5 when an equimolar

ratio of two monomers is copolymerized.

In Eq. (6.3.27), ½M�*=½M�0* is the independent variable that can be

determined from a plot of F1 versus f1 by making a number balance similar

to the derivation of Eq. (6.3.27). Suppose that ½M�* changes from ½M�* to

½M�*� d½M�* in copolymerization. Simultaneously, f1 changes from f1 to

f1 � df1. The quantity f1½M�*NA is the number of molecules of M1 before

d½M�*mol of the reaction mass copolymerize, and ð f1 � df1Þð½M�*� d½M�*ÞNA

is the number in the reaction mass after the copolymerization. The difference

between these quantities is the number of molecules of M1 that appear on the

polymer chains. This balance can be written as

f1½M�*NA ¼ NAð f1 � df1Þð½M�*� d½M�Þ þ ðFn d½M�*NAÞ ð6:3:28Þ
Neglecting second-order differential terms, we obtain

d½M�
½M�* ¼

df1

F1 � f1
ð6:3:29Þ

The equation can be integrated as follows:

ln
½M�*
½M�0*
� �

¼
ð f1

f10

df1

F1 � f1
ð6:3:30Þ
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If F1 versus f1 [Eq. (6.3.16)] is known, ½M�*=½M�0* can be calculated graphically

from Eq. (6.3.30) and F1 can, therefore, be evaluated from Eq. (6.3.27). Figure

6.10 has been generated in this manner.

It may be reemphasized that some of the important variables used to control

copolymerization reactors are the average composition of M1 and M2 and the

reaction temperature. The degree of polymerization of the polymer formed is not

as important—even though recent studies have attempted to focus attention on it.

Incorporation of the gel effect, copolymerization in CSTRs, and the determina-

tion of optimal temperature–time histories in batch reactors are some areas that

have received attention in recent studies.

Example 6.6: Anionic copolymerization involving monomers A and B have

been carried out using l1mol of initiators. Determine expressions for F1 and the

rates.

Solution: In anionic polymerization, initiation is instantaneous, and in a short

times, there are l00 mol of growing polymer anions. Let us similarly define PA
and PB polymer anions having monomers and A and B at the growing ends. There

FIGURE 6.10 F1 and �FF1 versus 1� ½M�*=½M�0*
� 


for the styrene (1) and butadiene (2)

systems for r1 ¼ 1:39 and r2 ¼ 0:78. Monomers are present initially in equimolar ratio.

282 Chapter 6

Copyright © 2003 Marcel Dekker, Inc.



is no quasistate and PA and PB grow according to following reactions:

PA þ A�!k11 PA

PA þ B�!k12 PB

PB þ A�!k21 PA

PB þ B�!k22 PB

At times t ¼ 0, let their concentrations be lA00 and lB00, and at any other time,

lA0 and lB0. Then,

lA00 þ lB00 ¼ lA0 þ lB0 ¼ l00

The mole balance on lA0 is given by

dlA0
dt
¼ k12lA0½B� þ k21lB0½A�

¼ �ðk12½B� þ k21½A�ÞlA0 þ k21½A�l00	D �C1lA0 þ C2l00

If we assume [A] and [B] as constants, then this equation can be easily integrated

to

lA0 ¼
C2l00
C1

þ ðconst: expð�C1tÞ

The mole balances of monomers A and B are

� d½A�
dt
¼ k11l0A½A� þ k21l0B½A�

� d½B�
dt
¼ k12l0A½B� þ k22l0B½B�

and

F1 ¼
d½A�
d½B�

�
1þ d½A�

d½B�
� ��1

¼ k11l0A½A� þ k21l0B½A�
k12l0A½B� þ k22l0B½B� þ k11l0A½A� þ k21l0B½A�

Example 6.7: For batch reactors carrying out radical copolymerization of

monomers A and B, one can use probabilistic arguments to determine average

number of A and B, �NNA and �NNB per chain. Define relevant probabilities and

determine these.
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Solution: We define species Pm;n and Qm;n with growing and radical groups A

and B and each having m number of A and n number of B. The copolymerization

reactions in terms of these are

Pm;n þ A�!kp11 Pmþ1;n

Pm;n þ B�!kp12 Qn;mþ1

Pm;n þ A�!kp21 Pnþ1;n

Pm;n þ B�!kp22 Qm;nþ1

We have following probabilities:

pAA: probability that Pm;n adds another A

pAB: probability that Pm;n adds another B

pBA: probability that Qm;n adds another A

pBB: probability that Qm;n adds another B

Then,

pAA ¼
kp11½A�

kp11½A� þ kp12½B�
	D r1½A�=½B�
1þ r1½A�=½B�

	D r1 f1=ð1� f1Þ
1þ r1 f2=ð1� f1Þ

	D a
1þ a

pAB ¼
kp12½B�

kp11½A� þ kp12½B�
¼ 1

1þ r1 f1=ð1� f1Þ
¼ 1

1þ a

Similarly,

pBA ¼
1

r2½ð1� f1Þ=f1� þ 1
¼ 1

1þ b

and

pBB ¼
r2ð1� f1Þ=f1

1þ r2½ð1� f1Þ=f1�
¼ b

1þ a

The probability of having exactly n units of A in a growing chain is

An ¼ pn�1AA pAB

¼ an�1

ð1þ aÞn

284 Chapter 6

Copyright © 2003 Marcel Dekker, Inc.



The probability of having exactly n units of B in a growing chain is

Bn ¼ pn�1BB pBA

¼ bn�1

ðiþ bÞn

�NNA ¼
P1
n�1

nAn ¼ 1þ a

�NNB ¼
P1
n�1

nBn ¼ 1þ b

6.4 RECYCLING AND DEGRADATION OF
POLYMERS [26^33]

With increasing industrialization, production of polymeric materials have been on

the rise. Because plastics are not compatible with the environment, they do not

degrade easily. Polyolefins represent the largest groups of plastics and are mainly

used as packaging materials. After they are used once, they are thrown away and

treated as waste. Chemical recycling of plastics is being used increasingly in

recent years and is defined as the breakdown of polymer waste into materials that

are reusable as fuels or chemicals. There are several applications that require the

use of pure plastics and there are several other applications where mixed plastics

(e.g., composites) are used. In such cases, separation and purification of these into

industrially pure materials is critical to recycling of plastics [26–28].

It is desired to recover plastics waste and reprocess or use the product of the

reprocessing as raw material or fuel. Currently, plastics are subjected to any one

of the following options:

1. Plastics materials are dumped; however, with the increasing cost of

land, this is becoming uneconomical. In addition to this, there is total

wastage of the material and energy (assuming that the polymer could

be burnt as fuel) [29,30].

2. Plastics are recycled; but during the recovery stage, the polymers

(particularly in the case of mixed plastics such as composites) lose

quality and texture due to partial degradation, which invariably occurs

during the recovery stage.

3. The plastics are burned as a municipal waste in incinerators or in steel

plants. In this recycle technique, the energy of combustion is recovered

and utilized, but the material is lost.

There is considerable economic interest currently in the complete degrada-

tion of plastics and recover higher-valued products because of high dumping cost

and stringent legal requirements of pollution. Unfortunately, monomers cannot be
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recovered quantitatively from these mass-produced plastics, such as polyethylene

and polypropylene. Monomers have been, on the other hand, recovered from

speciality polymer such as polymethyl methacrylate (PMMA), polystyrene (PS),

and polytetrafluoroethylene (PTFE). Monomer recovery from PMMA is 97%,

whereas those from polystyrene is only 70%. In the earlier days, the pyrolysis

gave only 16% monomer recovery from PTFE, but after the advent of the present-

day technology of using a fluidized bed operating at 605�C, as much as 78%

PTFE has been recovered. In addition to thermal pyrolysis, alcoholysis has been

used for depolymerization of polyethylene terephthalate (PET) to terephthalic

acid derivates. However most of the chemical recycling processes rely heavily

upon the depolymerization of polymers at higher temperatures.

A major problem faced with all of these processes is the contamination of

used plastics and the uniformity of the type of the materials used. For example,

polyvinyl chloride (PVC) on pyrolysis gives out HCl, which corrodes the reactor.

Composites, particularly those involving metals, can also impair the reactor.

Therefore, used, mixed, and contaminated plastics must be mechanically as well

as thermally pretreated. In view of this, one of the possibilities of separation of the

polymer has been staged pyrolysis in which different components are depolymer-

ized one after the other with a temperature program. Below 300�C, the gaseous

decomposition product of PVC is largely HCl, which autocatalyzes the dehydro-

chlorination and also gives polyne sequences. In commercial PVC, the molecular

structure is predominantly a head-to-tail combination, but a few tail-to-tail

arrangement contributes heavily to its thermal instability. In addition to this,

the double bonds and branching also contributes to this instability.

Polymer degradation is an old subject and was studied mainly because

people wanted to know the limiting factor (loss of mechanical strength) in

different environments (the pH, temperature, pressure). Thermal degradation as a

technique was also utilized to determine the molecular structure of copolymers,

but now it has gained considerable importance because of recycling of polymers.

Degradation of polymer by heat in the absence of oxygen depends not only

on the temperature but also the molecular structure of the polymer. In Chapter 2,

we gave the mechanism of thermal degradation and showed that the polymer

degradation could occur from either (or a combination) of any other mechanisms

[31].

1. Elimination of low-molecular-weight compounds (such as HCl in

PVC)

2. Unzipping (sometimes called depolymerization) of monomers (as in

PMMA)

3. Cyclization (as in polyacrylonitrile)

4. Random scission of polymer chains (as in polyethylene)

5. Formation of specific molecular-weight compounds, sometimes called

specific depolymerization.
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The fifth mode of degradation is similar to the second one, except that in the

former, the compound formed is not the monomer. For example, in the case of

PS, the specific compounds formed are C8H8 (styrene), C8H8 � C3H6O, and

C8H8ðC3H6OÞ2. In addition to this, PS undergoes random scission (or mode 4).

Also, the polymer radicals thus formed react with each other either through

combination or disproportionation reactions. If the radical center per polymer

chain is only one, linear (if it is at the chain end) or branched (if it is in the middle

of the chain) dead polymers are formed. However, if it is more than one per chain,

the final polymer is always a network.

Recently, there have been great efforts to find catalysts which would lead to

specific depolymerization. In this regard, polyethylene was depolymerized in the

presence of NO, O2, and N2 (275 kPa NO, 690 kPa O2, and 3170 kPa N2) to a

mixture of benzoic acid, 4-nitrobenzoic acid, and 3-nitrobenzoic acid [32]. In an

alternate work [33], zirconium hydride supported on silica alumina catalyst has

been reported, which, in presence of hydrogen, cleaves the C�C bonds of

polyethylene and polypropylene. The end products of the hydrogenolysis

of these polymers have been diesel and lower alkanes and is still a subject of

vigorous research.

6.5 CONCLUSION

In this chapter, we have considered the reaction engineering of chain-growth

polymerization. In order to manufacture polymers of desired physical and

mechanical properties, the performance of the reactors must be closely controlled.

To do this, various transport equations governing their performance must be

established, which, in principle, can be solved numerically. The usual Runge–

Kutta technique takes considerable computational time and, at times, gives

numerical instability. To overcome all of these problems, a semianalytical

approach can be used.

There are certain applications in which homopolymers or their blends are

not adequate. In such cases, copolymers are synthesized. In this chapter, we have

presented the analysis of copolymerization. By developing relations, the rate

of polymerization and the monomer distribution on polymer chains can be

determined.

APPENDIX 6.1 SOLUTION OF EQUATIONS
DESCRIBING ISOTHERMAL
RADICAL POLYMERIZATION

The mole balances for radical and dead polymers for batch (or tubular) reactors

are given in Table 6.1. We define concentration of polymer radicals, lP0, as

lP0 ¼
P1
n¼1
½Pn� ðA6:1:1Þ
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With the help of Eq. (2) of Table 6.1, we can derive an expression for the time

variation of lP0, as follows:

dlP0
dt
¼ 2fkI½I2� � kIl

2
P0 ðA6:1:2Þ

When the gel and thermal effects are present in radical polymerization, the rate

constants kI and kt are dependent on temperature and monomer conversion and,

therefore, the above equation cannot be integrated. We show that Eq. (A6.1.2) has

a solution for constant values of kI and kt and then show that these results can be

naturally adopted in the presence of gel and thermal effects.

A6.1.1 Solution for lP0

The mole balance for the initiator given in Eq. (1) of Table 6.1 can be integrated

for time-invariant fkI as follows:

½I2� ¼ ½I2�0e�fIt ðA6:1:3Þ
where ½I2�0 is the concentration of the initiator at t ¼ 0. Let us now transform lP0
in Eq. (A6.1.2):

lP0 ¼
1

kt

dy=dt

y
ðA6:1:4Þ

Substituting Eq. (A6.1.3) for ½I2� in Eq. (8) of Table 6.1 gives

d2y

dt2
¼ 2fkdkt½I2�0e�fkIt ðA6:1:5Þ

Further, we define x related to time of polymerization as

x ¼ 2fkdkI½I2�0e�fkIty ðA6:1:6Þ
This gives

dx

dt
¼ �fkIx ðA6:1:7aÞ

dy

dt
¼ dy dx

dx dt
¼ �fkIx

dy

dx
ðA6:1:7bÞ

d2y

dt2
¼ d

dx

dy

dt

� �
dx

dt
ðA6:1:7cÞ

¼ ð f kIÞ2x
dy

dx
þ ð f kIÞ2x2

d2y

dx2
ðA6:1:7dÞ
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In terms of these, Eq. (A6.1.5) becomes

ð f kIÞ2x2
d2y

dx2
þ ð f kIÞ2x

dy

dx
� xy ¼ 0 ðA6:1:8Þ

We further transform x by

Z ¼ 2
ffiffiffiffiffi
bx
p

ðA6:1:9Þ
where

b ¼ 1

f kI

� �2

ðA6:1:10Þ

in terms of which Eq. (A6.1.8) reduces to

Z2 d2y

dZ2
þ Z

dy

dZ
� ðZ2 � 0Þy ¼ 0 ðA6:1:11Þ

For this equation, y has the solution

y ¼ C1I0ðZÞ þ C2K0ðZÞ ðA6:1:12Þ
where I0ðZÞ and K0ðZÞ are the modified zeroth-order Bessel functions and C1 and

C2 are the constants of integration. With the help of Eq. (A6.1.4), we can derive

lP0 as

lP0 ¼
fkIZ

2kt

1

y

dy

dZ
¼ fkIZ

2kt

C2K1ðZÞ � C1II ðZÞ
C2K0ðZÞ þ C1I0ðZÞ

� �
¼ fkdZ

2kt

KI ðZÞ � CI1ðZÞ
K0ðZÞ þ CI0ðZÞ

where C ¼ C1=C2, which is to be determined by the initial conditions.

Let us assume that at t ¼ 0, the concentration of polymer radicals is lP00. In
the Z plane, time t ¼ 0 corresponds to Z0, given by

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kt½I2�0
fkI

s
ðA6:1:14Þ

and C in Eq. (A6.1.13) is given by

C ¼ K1ðZ0Þ � ð2kt½P�0=f kIZ0ÞK0ðZ0Þ
I1ðZ0Þ þ ð2kt½P�0=fKIZ0ÞI0ðZ0Þ

¼ KI ðZ0Þ=I1ðZ0Þ � l*P0½K0ðZ0Þ=I1ðZ0Þ�
1þ l*P0½I0ðZ0Þ=I1ðZ0Þ�

ðA6:1:15Þ
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where

l*P0 ¼
lP0
lP0s
¼ lP000

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kt

2f kI½I2�0

s
ðA6:1:16Þ

Here, lP0s is the concentration of polymer radicals assuming the steady-state

approximation; it is given by Eq. (6.2.9).

The variation in the monomer concentration [M] is governed by Eq. (4) of

Table 6.1. We substitute Eq. (A6.1.9) into it to obtain

d½M�
dt
¼ d½M�

dz

dz

dt
¼ � f kIZ

2

d½M�
dZ
¼ �kp½M�lP0

or

f kIZ

2

d½M�
dZ
¼ kp½M�

fkIZ

2kt

� �
K1ðZÞ � CI1ðZÞ
K0ðZÞ þ CI0ðZÞ

ðA6:1:17Þ
d½M�
dZ
¼ ½M� kp

kt

KIðZÞ � CI1ðZÞ
K0ðZÞ � CI0ðZÞ
� �

We substitute

u ¼ K0ðZÞ þ CI0ðZÞ ðA6:1:18Þ
which, on differentiating with respect to Z, gives

du

dz
¼ �K1ðZÞ þ CI1ðZÞ ðA6:1:19Þ

Comparison of Eqs. (A6.1.17) and (A6.1.19) gives

du

dz
¼ �K1ðZÞ þ CI1ðZÞ ðA6:1:20Þ

which, on integration, leads to

� d½M�
½M� ¼

kp du

ktu

½M� ¼ ½M�0
K0ðZÞ þ CI0ðZÞ
K0ðZ0Þ þ CI0ðZ0Þ

 ��kp=kt

ðA6:1:21Þ

where ½M�0 is the monomer concentration at t ¼ 0 (or Z ¼ Z0) and Z0 is defined

in Eq. (A6.1.14). The magnitude of Z, as defined in Eq. (A6.1.9), is very large.

For example, for methyl methacrylate polymerizing at 60�C with AIBN, ½I2�0 is

equal to a 0.0258-mol=L initiator; the rate constants kI kp, and kt are

0:475� 10�3 min�1; 0:4117� 105 L=molmin, and 0:20383� 1010 L=molmin,

respectively. Taking the initiator efficiency f to be 0.58, at time t ¼ 0 we get b as

defined by Eq. (A6.1.9) and x0 as defined by Eq. (A6.1.6) to be 1:3175� 107 and
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2:8756� 104, respectively. Therefore, Z at time t ¼ 0 is given by Eq. (A6.1.14)

and is equal to 0:1231� 107. Hence, the asymptotic expansion of Bessel

functions valid for large arguments ðZ > 5Þ may be used. Neglecting terms

involving Z in the denominator, we get

K1ðZÞ ¼ K0ðZÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p
2Z

e�z
r

ðA6:1:22aÞ

I1ðZÞ ¼ I0ðZÞ ¼
eZffiffiffiffiffiffiffiffi
2pZ
p ðA6:1:22bÞ

Making use of these approximations for Bessel functions, C as defined by Eq.

(A6.1.15) is

C ¼ cpe�2Z0 ðA6:1:23Þ
where

c ¼ 1� l*P0
1þ l*P0

Equation (A6.1.13) for lP0 may be written as

lP0 ¼
f kI

2kZ

� � ½K1ðZÞ=ðI0ðZÞ� � C½I1ðZÞ=I0ðZÞ�
2kt½K0ðZÞ=I0ðZÞ� þ C

After substituting for C and Bessel functions, we get an expression for the time

variation of [P]:

lP0 ¼
fk1Z

2ki

� �
fk1Z1� ce�2ðZ0�ZÞ

2kt1þ ce�2ðZ0�ZÞ
ðA6:1:24Þ

The quantities CI0ðzÞ and CI0(Z0) in Eq. (A6.1.21) for [M] are given by

CI0ðZÞ ¼ cpe�Z0
e�ðZ0�ZÞffiffiffiffiffiffiffiffi

2pZ
p ðA6:1:25Þ

These may be taken as zero, because both Z0 and Z are of the order 106. Hence,

Eq. (A6.1.21) for [M] simplifies to

½M� ¼ ½M�0e�mðZ0�ZÞ ðA6:1:26aÞ
where

m ¼ kp

kt
ðA6:1:26bÞ

By making use of these expressions for [M] and lP0, we can obtain analytical

expressions for various moments of radical and dead polymer distributions. The

final results are summarized in Table A6.1.
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TABLE A6.1 Analytical solution of radical and dead polymer moments

For ktrs ¼ 0,

lp1 ¼ C1

½M�
½M�0

� �
þ C2

½M�
½M�0

� �1=m

þ f k1

2kt
ðZ þ 1Þ ðA1Þ

where C1 ¼
�½M�0
1� 1=m

and C2 ¼ lp10 þ
½M�0

1� 1=m
� f k1

2kt
ðZ0 þ 1Þ ðA2Þ

lp2 ¼
f k1ðZ þ 1Þ

2kt
� 4kp½M�0C1

f k1Z0ð2m� 1Þ
½M�
½M�0

� �2

� 4kp½M�0C2

f k1Z0m

½M�
½M�0

� �1þð1=mÞ

� 2kp½M�0
ktðm� 1Þ

½M�
½M�0

� �
� 2kp½M�0
ktZ0ðm� 1Þ

½M�
½M�0

� �
� ½M�0
1� 1=m

½M�
½M�0

� �
þ C*

½M�
½M�0

� �1=m
ðA3Þ

where C* is a constant evaluated using the initial condition lp2 ¼ l20 at t ¼ 0. Therefore,

we get

C* ¼ lp20 �
f k1ðZ0 þ 1Þ

2kt
þ 4kp½M�0C1

f k1Z0ð2m� 1Þ þ
4kp½M�0C2

f k1Z0m
þ 2kp½M�0
ktðm� 1Þ

þ 2kp½M�0
ktZ0ðm� 1Þ þ

½M�0
1� 1=m

ðA4Þ

lm0 � lm00 ¼
ð0:5ktc þ ktd Þ

4kpkt
m � f k1Z0f2ðZ0 � ZÞ � 2 lnð1þ cÞ þ 2 ln½1þ ðceÞ�2ðZ0�ZÞ�g ðA5Þ

lm1 � lm10 ¼
kt
kp

C1 1� ½M�½M�0

� �
þ mC2 1� ½M�

½M�0

� �1=m
( )" #

þ f k1
2kt

1

2
ðZ2

0 � Z2Þ þ ðZ0 � ZÞ

 �

ðA6Þ

lm2 � lm20 ¼
2ktc
f k1

C2
1

2mZ0
1� ½M�

½M�0

� �2
( )

þ C2
2

2Z0
1� ½M�

½M�0

� �2=m
( )"

þ f k1

2kt

� �2
1

2
ðZ2

0 � Z2Þ þ 2ðZ0 � ZÞ þ ln
Z0

Z

� �
 �

þ 2C1C2

ðmþ 1ÞZ0
1� ½M�

½M�0

� �1þð1=mÞ( )
þ C1

m

f k1

kt
1� ½M�

½M�0

� �� �

þ C1

mZ0

f k1

kt

� �
1� ½M�

½M�0

� �� �
þ C2f k1

kt
1� ½M�

½M�0

� �1=m
( )

þ C2f k1
ktZ0

1� ½M�
½M�0

� �1=m
( )#

þ kt
kp

mf k1
2kt

1

2
ðZ2

0 � Z2Þ þ ðZ0 � ZÞ

 �

� 2kp½M�0C1

f k1Z0ð2m� 1Þ 1� ½M�
½M�0

� �2
( ) 

� 4kp½M�0C2

f k1Z0ðmþ 1Þ 1� ½M�
½M�0

� �1þð1=mÞ( )
� 2kp½M�0
ktðm� 1Þ 1� ½M�

½M�0

� �� �

� 2kp½M�0
ktZ0ðm� 1Þ 1� ½M�

½M�0

� �� �
� ½M�0
ð1� ½1=m�Þ 1� ½M�½M�0

� �

þ mC* 1� ½M�
½M�0

� �1=m
( )!

ðA7Þ
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PROBLEMS

6.1. Suppose that two monomers responding to radical initiators are copoly-

merized in the presence of a transfer agent, S. Can you use Eq. (6.3.11)

for F1? If not, derive the corrected result. Find the overall rate of

polymerization.

6.2. If an inhibitor is used instead of a transfer agent in Problem 6.1, what

happens to the equation derived therein?
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6.3. Derive the equations that are parallel to Eq. (6.3.11) for cationic as well as

stereoregular polymerizations.

6.4. In writing Eqs. (6.3.1a)–(6.3.1j), it was assumed that the effect of

penultimate groups on the reactivity is negligible. Suppose that this

effect cannot be neglected. In that case, we define species P1(AA),

Q1(BA), P2(AB), and Q2(BB). Now, write the kinetic mechanism of

copolymerization involving these species.

6.5. Find the size of the CSTR as well as the PFR for free-radical polymeriza-

tion of styrene to achieve a 60% conversion. Assume for styrene,

kp ¼ 145 L=mol sec, fkI ¼ 4:4� 10�6 sec�1; ½M�0 ¼ 8:93mol=L, and

kt ¼ 1:3� 106 L=mol sec.

6.6. It is well known that the flow is never a plug type in a reaction that is

carried out in a flow reactor. Instead, we find a parabolic flow profile. Find

the correction in the calculation when the flow is assumed to be a plug

type. What is the effect of the velocity profile on mn?
6.7. An engineer suggests a sequence of two CSTRs such that the polymer is

separated from the monomer at the intermediate point. The monomer is the

ARB type. Would the separation of the polymer make any difference on the

total residence time? Would the separation affect the mn? If so, by how

much? Use the same numerical values as given in Problem 6.5.

6.8. Carry out the analysis in Problem 6.7 for the following cases also: (1) two

PFRs in sequence and (2) a CSTR and a PFR in sequence.

6.9. The text has assumed so far that the initiator concentration is constant in

the design of a CSTR (as shown here) for radical polymerization. In

general, this would not be so.

Find [I2], [M], and mn.
6.10. Consider the free-radical polymerization of a monomer in the presence of a

weak inhibitor (Z). The mechanism of the polymerization is given by the

following:

I2�!
kI

2I

IþM�!k1 P1

Pn þM�!kp Pnþ1

Pn þ Pm�!
kt

Mn þMm þMmþn

Pþ Z�!kz Mn � Z
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Find an expression for rp* where rp* and rp are the polymerization rates in

the presence and absence of inhibitor. When the gel effect sets in, kt
decreases and rp, in turn, increases explosively. However, due to the

presence of inhibitor, the rate remains within bounds. Derive an expression

of mn and confirm through similar arguments that mn also remains within

bounds.

6.11. It is necessary to use the weak inhibitor method for controlling the

molecular weight of polymethyl methacrylate in batch bulk polymerization.

At 60�C kp is 580 L=mol sec, whereas the value of kz for terephthonitrile is

31.2. Assume that ½I2� ¼ 10�2 mol=L and find l*P0 in this problem.

6.12. In a CSTR, a vinyl monomer is polymerized at 60�C in the presence of a

weak inhibitor. Develop relevant equations when an inhibitor is used for

controlling the molecular weight of the polymer formed.

6.13. When the conversion approaches 100% in radical polymerization, we can

neglect the mutual termination compared with primary termination. Then,

the mechanism of polymerization is as follows and we cannot assume a

steady-state approximation:

I2�!
kI

2I

IþM�!k1 P1

Pn þM�!kp P

Pþ I�!kt Mn

The results have to be calculated in the time domain; what would be the

molecular-weight distribution of the polymer formed?

6.14. From the mechanism of stereoregular polymerization, find the molecular-

weight distribution of the polymer formed in a batch reactor.

6.15. In this chapter, only l0; l1, and l2 have been related to the generating

function. Find the general expression of lk in terms of Gðs; tÞ.
6.16. Note in Example 6.4 that the moles of initiator consumed would be equal

to the total moles of polymer. If [I]0 is the initial concentration of the

initiator, find its concentration at the equilibrium.

6.17. For the Nm;n distribution in Example 6.4, evaluate
P

m;n Nm;n;
P

m;n mNm;n;P
m;n nNm;n;

P
m;n m

2Nm;n;
P

m;n n2Nm;n, and
P

m;n mnNm;n. Then, deter-

mine the following:

(a) Average amount of monomer A in copolymer: �PPA ¼
ðPm;n mNm;nÞ=ð

P
m;n Nm;nÞ.
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(b) Average amount of monomer B in copolymer: �PPB ¼
ðPm;n nNm;nÞ=ð

P
m;n Nm;nÞ.

(c) Number-average chain length: �PP ¼ �PPA þ �PPB.

6.18. Continuing as in Problem 6.17, go on to find the following:

(a) Number-average molecular weight: �MMn ¼ �PPAMA þ �PPBMB, where

MA and MB are the molecular weights of monomers A and B.

(b) Weight-average molecular weight Mw:

�MMw ¼ �PP
�PPAð1þ a� bÞM 2

A þ 2ða �PPB þ b �PPAÞMAMB þ PBð1� a� bÞM2
B

ð �PPAMA þ �PPBMBÞ2

(c) The mole fraction of A and B in copolymer, FA and FB:

FA ¼
�PPA

P
¼ 1� FB

(d) The weight fractions of A and B in copolymer, FAW and FBW :

FAW ¼
�PPAMA

PAMA þ PBMB

¼ 1� FBW

6.19. For the reversible anionic polymerization, the initiation step is fast, and the

following kinetic model may represent the equilibrium better:

A �! �
K 0
A

N1;0

B �! �
K 0
B

N0;1

N1;0 þ A �! �
KA

N2;0

N1;0 þ B �! �
KB

N1;1

N0;1 þ A �! �
KA

N1;1

N0;1 þ B �! �
KB

N0;2

Nm�1;n þ A �! �
KA

Nm;n

Nm;n�1 þ B �! �
KB

Nm;n

Prove that

Nm;n ¼
mþ n

m

� �
ðmþ nÞ ðmaþ nbÞambn; mþ n � 1
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where a; b; a, and b are defined as in Example 6.4.

6.20. For the MWD in Problem 6.19, find the information sought in Problems

6.17 and 6.18.

6.21. A variation of the equilibrium copolymerization model is as follows:

Aþ A �! �
K 0
A

N2;0

Bþ A �! �
K 0
A

N1;1

Aþ B �! �
K 0
B

N1;1

Bþ B �! �
K 0
B

N1

N2;0 þ A �! �
KA

N3;0

N2;0 þ B �! �
KB

N2;1

N1;1 þ A �! �
KA

N2;1

N1;1 þ B �! �
KB

N1;2

Nm�1;n þ A �! �
KA

Nm;n

Nm�1;n þ B �! �
KB

Nm;n

Prove that the MWD is now given by

Nm;n ¼
a

KA

mþ n� 2

n

� �
a

KA

þ b

KA

� �
mþ n� 2

n� 1

� ��
þ b

KA

mþ n� 2

m

� ��
ambn; mþ n � 2

6.22. For the MWD of Problem 6.20, find all of the information sought in

Problems 6.17 and 6.18.
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7

Emulsion Polymerization

7.1 INTRODUCTION

Emulsion polymerization is a technique of polymerization where polymer

formation occurs in an inert medium in which the monomer is sparingly soluble

(not completely insoluble). Traditionally, water is the inert medium and the

initiator is chosen such that it is water soluble. Monomers undergoing step-

growth reaction do not require any initiation and are not polymerized by this

method. Emulsion polymerization is commonly used for vinyl monomers under-

going addition polymerization and, even among these, those that polymerize by

the radical mechanism are preferably polymerized by this method. Water-based

emulsions for ionic polymerizations are uncommon because of high-purity

requirements. This discussion is therefore restricted to the polymerization of

monomers following the radical mechanism only.

The water-soluble initiator commonly used is potassium or sodium persul-

fate, and the usual recipe for emulsion polymerization is 200 parts by weight of

water, 100 parts by weight of the monomer, and 2–5 parts by weight of a suitable

emulsifier [1,2]. The monomer should be neither totally soluble nor totally

insoluble in the water medium and must form a separate phase. The emulsifier

is necessary to ensure that the monomer is dispersed uniformly as in a true

emulsion [3–8]. The polymer that is formed from emulsion polymerization is in

the form of small particles having an average diameter around 5 mm. The particles

form a stable emulsion in water. Their separation can be effected only through the
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evaporation of water, and once the water is evaporated, these particles coalesce to

a solid mass. The rate of emulsion polymerization, rp, is found experimentally to

be much greater than that for the corresponding bulk polymerization, and the

average molecular weight of the polymer formed is simultaneously very high—a

property that is not achieved in bulk polymerization.

7.2 AQUEOUS EMULSIFIER SOLUTIONS

Emulsifiers are known to play a very important role in emulsion polymerization.

To appreciate the role of an emulsifier, we must understand the physicochemical

properties of emulsifier solutions. When an emulsifier is dissolved in water,

several physical properties of the solution (e.g., osmotic pressure, conductivity,

relative viscosity, and surface tension) change. Figure 7.1 shows these changes as

a function of the molar concentration of the emulsifier. Beyond a particular level

of concentration, there is a sudden change in the slope of these physicochemical

properties, as shown in the figure. This concentration is called the critical micelle

concentration (CMC).

An emulsifier molecule consists of a long hydrocarbon chain, which is

hydrophobic in nature, and a small hydrophilic end, as shown in Figure 7.2. For

very small concentrations of the emulsifier, molecules of the latter arrange

themselves on the free surface of water such that the hydrophobic ends point

FIGURE 7.1 Changes in physical properties of water as a function of the concentration

of the sodium dodecyl sulfate emulsifer.
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outward and the hydrophilic ends are buried in the water. In this way, the total free

energy of the system is minimized. When more molecules of the emulsifier are

present than necessary to form a monolayer on the free surface, they tend to form

aggregates, called micelles, so as to minimize the energy of interaction. This

aggregate formation starts when the emulsifier concentration increases above the

critical micellar concentration. The idealized lamellae and spherical aggregates

are shown in Figure 7.2. Beyond the CMC, the emulsifier molecules stay

primarily in micellar form. These micelles are responsible for the changes in

the physical properties that can be observed in Figure 7.1.

When an emulsifier (or detergent) is added to water and a sparingly soluble

monomer is dissolved, the solubility of the monomers is found to increase. The

apparently higher solubility is attributed to the presence of micelles, which really

become a kind of reservoir for the excess monomer, as shown in Figures 7.2b and

7.2c. At the beginning of the emulsion polymerization, therefore, an emulsifier

acts as the solubilizer of the monomer, thus giving a higher rate of emulsion

polymerization.

FIGURE 7.2 Schematic representation of micelle formation in emulsion polymeriza-

tion.
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7.2.1 Polymerization in Water Emulsion

It may be recognized that the water-soluble initiator (say, sodium persulfate)

decomposes to give a hydrophilic radical that cannot enter the monomer phase

due to thermodynamic constraints. We have already pointed out that the monomer

is sparingly soluble in the aqueous phase, which means that once initiation occurs

in water, the polymer radical begins to grow in chain length. If the polymer

radical grows to a certain critical chain length (say, n*), it nucleates into primary

particles, but in the meantime there is a finite probability of being trapped by

monomer-swollen micelles, already-existing polymer particles (through coagula-

tion), or monomer droplets. If the radical is trapped in a monomer droplet, the

monomer–water equilibrium is totally disturbed, and there is a tendency to eject it

and form a smaller monomer droplet and primary particles, as shown in Figure

7.3. Primary particles can similarly be formed from the monomer-swollen

micelles.

When emulsion polymerization is started, physical changes occur in the

medium as the reaction progresses. For example, it is found that beyond about 5%

conversion, the surface tension increases suddenly. Because micelle formation

involves a sharp decrease in surface tension, emulsifier molecules are not present

in the form of micelles beyond about 5% conversion. The region before this point

is referred to as the first stage of polymerization, whereas the region beyond is

referred to as the second stage. The third stage of the emulsion polymerization is

the stage in which monomer is not available as droplets. Whatever the monomer

is present in the reaction mass, it is available in (monomer) swollen polymer

particles. These stages are depicted in Figure 7.4.

Figure 7.4, a summary of various studies, reveals that in the second stage,

fewer primary particles are formed and polymerization occurs essentially by the

growth of polymer particles. As the propagation continues, monomer molecules

from the emulsified monomer droplets (see Fig. 7.5) diffuse toward the propagat-

ing chains within the polymer particles. The diffusion of the monomer to the

polymer particles continues at a fairly rapid rate to maintain constant monomer

concentration in the polymer particles.

We will first discuss the modeling of the second stage of emulsion

polymerization, because most of the polymerization occurs in this stage. One

of the simplest (and oldest) models existing is that of Smith and Ewart. This

model was the first to explain gross experimental observations. It may be added

that the Smith and Ewart theory assumes that primary radicals (SO4
�2) can enter

into the polymer particles. Although we have already explained that this is not

possible because of thermodynamic constraints, it is an important simplifying

assumption of this theory.
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FIGURE 7.4 Various phases in different stages of emulsion polymerization.

FIGURE 7.3 The overall polymerization process in emulsion polymerization.
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7.3 SMITH AND EWART THEORY FOR STATE II
OF EMULSION POLYMERIZATION [1,2]

This theory is based on the observation that no new polymer particles are formed

in the second stage of emulsion polymerization. As depicted in Figure 7.5,

monomer-swollen polymer particles exist in this stage in the form of a stable

emulsion. It is assumed that initiator radicals formed in the water phase can enter

into these particles to start or stop polymerization. Thus, polymer radicals lie only

within these polymer particles.

The total number of polymer particles per unit volume of emulsion in the

second stage of the emulsion polymerization is assumed to be Nt. Out of these, N0

particles are assumed to have no polymer radicals, N1 to have one polymer radical

each, N2 to have two polymer radicals, and so forth. Therefore,

Nt ¼
P1
i¼0

Ni ¼ N0 þ N1 þ N2 þ � � � ð7:3:1Þ

If nt is the total number of polymer radicals per unit volume in the reaction mass,

then

nt ¼
P1
i¼0

iNi ¼ N1 þ 2N2 þ 3N3 þ � � � ð7:3:2Þ

FIGURE 7.5 Representation of physical processes in emulsion polymerization in stage

2. Monomer concentration within polymer particles is maintained constant through

diffusion.
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The upper limit on these summations would theoretically be infinity. It is assumed

that r primary radicals are generated in the aqueous phase per unit time per unit

volume. These primary radicals enter the polymer particles and generate polymer

radicals therein. These polymer radicals can also diffuse out of the particle or

undergo a mutual termination with other polymer radicals in the particle. Because

primary radicals are generated in the aqueous phase at a rate of r radicals per unit

volume per unit time and there are Nt polymer particles per unit volume, r=Nt

primary radicals per unit time (on average) enter a given particle. Polymer

radicals can diffuse out of a particle at a rate r1, given by

r1 ¼ �k0a
�
n

v

�
ð7:3:3Þ

where a is the surface area of the polymer particle, v is its volume, k0 is the mass

transfer coefficient, and n is the number of polymer radicals in it. It is assumed

that all particles are of equal size. The polymer radicals are also destroyed by

mutual termination and the rate, r2, at which this happens is given by

r2 ¼ �
2k2nðn� 1Þ

v
ð7:3:4Þ

This form of the equation appears because the polymer radical cannot react with

itself. The term nðn� 1Þ=v is proportional to the total number of collisions

between the radicals per unit volume.

The rate of generation of particles having n radicals can now be written as

follows. A particle having n polymer radicals is formed when one primary radical

enters into a particle having n� 1 polymer radicals, one radical diffuses out from

a particle having nþ 1 radicals, or two polymer radicals undergo a mutual

termination in a particle having nþ 2 radicals. Similarly, the population of

particles having n radicals is reduced when a primary radical enters into them or

any one radical diffuses out or there is a mutual termination. At steady state, the

rate of increase of Nn equals the rate of decrease of Nn; that is,

Nn�1
r
Nt

� �
þ Nnþ1k0a

nþ 1

v

� �
þ Nnþ2k2

ðnþ 2Þðnþ 1Þ
v

¼ Nn

r
Nt

� �
þ Nnk0

�
n

v

�
þ Nnk2n

nðn� 1Þ
v

ð7:3:5Þ

This equation is valid if the number of particles is large. The factor of 2 does not

appear with k2 because only one particle having n radicals is formed from one

having nþ 2 radicals. Equation (7.3.5) is the basic recursion relation for

emulsion polymerization derived by Smith and Ewart. Many refinements to

this equation have been suggested by several authors, but their net result is similar
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to that of Smith and Ewart. It is difficult to solve Eq. (7.3.5) in its general form;

the following discussion develops a few simplified forms.

7.3.1 Case I: Number of Free Radicals per
Polymer Particle Is Small Compared with
Unity

It is clear that polymer radicals of one polymer particle cannot undergo a mutual

termination with polymer radicals of another polymer particle. Therefore, when

the number of polymer radicals per particle is on average less than 1, there would

not be any mutual termination and the corresponding term in Eq. (7.3.5) should

be dropped; that is,

Nn�1
r
Nt

� �
þ Nnþ1k0a

nþ 1

v

� �
¼ Nn

r
Nt

� �
Nnk0a

�
n

v

�
ð7:3:6Þ

This equation is valid only when the diffusion of free radicals out of the particle is

much higher than the mutual termination of radicals within it. In general, there

are some particles having more than one polymer radical, but such cases are rare

because as soon as more radicals are formed, they are transported out of the

particle. As a good approximation, therefore, Eq. (7.3.1) can be modified for this

case to

Nt ffi N0 þ N1 ð7:3:7Þ
where it is assumed that the number of particles having more than one polymer

radical is small (i.e., N2 ¼ N3 ¼ N4 ¼ � � � ffi 0). Then,

N1k0
a

v
¼ N0

r
Nt

� �
ð7:3:8Þ

from which N1 can be determined as follows:

N1 ¼
Nt

1þ ðk0a=rvÞNt

ð7:3:9Þ

If N1 is small, N0 ¼ Nt and Eqs. (7.3.8) and (7.3.9) give

N1 ffi
rv
k0a

ð7:3:10Þ

Therefore, the overall rate of polymerization, rp, per unit volume of the aqueous

phase is given by

rp ¼ kp½M�N1

¼ kp½M�rv
k0a

ð7:3:11Þ
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where [M] is the local monomer concentration within the polymer particles.

Procedures to obtain this value are discussed later.

7.3.2 Case II: No Transfer of Polymer Radicals
out of the Particle Through Di¡usion
Combined with a High Termination Rate

This occurs when polymer radicals are intertwined in the particles and k0 ¼ 0. In

this case, the recursion relation, Eq. (7.3.5), becomes

Nn�1
r
Nt

� �
þ Nnþ2k2

ðnþ 2Þðnþ 1Þ
v

¼ Nn

r
Nt

þ Nnk2
nðn� 1Þ

v
ð7:3:12Þ

which can be written as

Nn�1
Nn

þ Nnþ2
Nn

bðnþ 2Þðnþ 1Þ ¼ 1þ bnðn� 1Þ ð7:3:13Þ

where

b ¼ k2Nt

vr
ð7:3:14Þ

The following can now be defined:

x ¼ Nnþ1
Nn

x1 ¼
Nn

Nnþ1
ð7:3:15Þ

x2 ¼
Nnþ1
Nnþ2

as a result of which Eq. (7.3.13) can be written as follows

x ¼ 1þ bnðn� 1Þ 1� 1

x1x2

ðnþ 2Þðnþ 1Þ
nðn� 1Þ

� �
ð7:3:16Þ

If we examine the convergence of the series
P1

n¼0 Nn and
P1

n¼0 nNn, it is clear

that for nt and Nt to be finite, these series must be such that x, x1, and x2 are each

greater than 1. Because b and n can take on only positive values, the following

expression can be deduced from Eq. (7.3.16) to be valid for x > 1:

1� 1

x1x2

ðnþ 2Þðnþ 1Þ
nðn� 1Þ > 0 ð7:3:17Þ

Emulsion Polymerization 307

Copyright © 2003 Marcel Dekker, Inc.



If this difference is defined as D,

D 	 1� 1

x1x2

ðnþ 2Þðnþ 1Þ
nðn� 1Þ > 0 ð7:3:18Þ

where D is a positive quantity; then, Eq. (7.3.16) becomes

x ¼ 1þ bnðn� 1ÞD ð7:3:19Þ

For any arbitrary positive value of D, as n or b tends to very large values, x

also tends to a very large value. Consequently, x1 and x2 also take on large

values. Therefore, in the limit of large b or large n, the factor ð1=x1x2Þ �
½ðnþ 2Þðnþ 1Þ�=nðn� 1Þ goes to zero and the following approximation can be

made:

x 	 Nn�1
Nn

� 1þ bnðn� 1Þ ð7:3:20Þ

which is true for large b or large n. From Eq. (7.3.20),

N0

N1

¼ 1 for n ¼ 1 ðand large bÞ ð7:3:21Þ
N1

N2

¼ 1þ 2b for n ¼ 2 ð7:3:22Þ
N2

N3

¼ 1þ 6b for n ¼ 3 ð7:3:23Þ

and so on. From these results the values of N1, N2, and so forth can be solved as

follows:

N1 ¼ N0 ð7:3:24aÞ
N2 ¼

N0

1þ 2b
ð7:3:24bÞ

N3 ¼
N0

ð1þ 2bÞð1þ 6bÞ ð7:3:24cÞ

The average number of polymer radicals per polymer particle can now be

determined as follows:

nt

Nt

¼ N1 þ 2N2 þ 3N3 þ � � �
N0 þ N1 þ N2 þ � � �

ð7:3:25Þ
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N1, N2, and so forth are now substituted from Eq. (7.3.24) into Eq. (7.3.25),

giving

nt

Nt

¼ N0 þ
2N0

1þ 2b
þ 3N0

ð1þ 2bÞð1� 6bÞ þ � � �
� �
� N0 þ N0 þ

N0

1þ 2b
þ N0

ð1þ 2bÞð1þ 6bÞ þ � � �
� ��1

ð7:3:26Þ

For large b, we have

nt

Nt

ffi N0

2N0

¼ 1

2
ð7:3:27Þ

The rate of polymerization, rp, in the second stage can now be written as follows:

rp ¼ kp½M�nt ¼ kp½M�
Nt

2
ð7:3:28Þ

where [M] is, again, the local concentration of the monomer in the polymer

particles. In this equation, N1 is constant because—according to Harkin’s

observations—it does not change in the second stage of emulsion polymerization.

Nt can be found as discussed next. The degree of polymerization of the polymer

formed can easily be written as follows:

mn ¼
Rate of propagation

Rate of termination
¼ rp

r=2
¼ kp
½M�Nt

r
ð7:3:29Þ

Equation (7.3.27) can also be derived using statistical arguments as given in

Ref. 2. Each of the polymer particles can be imagined as having at most one

growing polymer radical at a given time. Because kt is large, as soon as an

initiator radical enters a polymer particle, it terminates the polymer radical if there

is any present. If there are no polymer radicals, the entry of any initiator radical

into the polymer particle starts the propagation step once again. Thus, there can

be either one or zero polymer radicals in the particle under this condition. On an

average, then, of the Nt polymer particles, half will have no radical and the other

half will have one radical.

Example 7.1: Consider the diffusion of species A through a stationary medium

B around a stationary particle. Determine k0 in Eq. (7.3.3).

Solution: This particular problem is solved in Ref. 9 and the rate of diffusion,

nA, is given by

_nnA ¼ �Dw4pr
2C

dxA

dt

� �
R¼r
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where Dw is the diffusivity of species A, C is the total molar concentration, and xA
is the mole fraction of species A. If D is the thickness of the stationary B layer

through which the diffusion occurs, then nA can be derived as follows:

_nnA ¼ �Dw4pr
2C

r þ d
d
ð1� xaÞ ln

1� xa

1� xw

� �
where xa and xw are the values of xA at the particle surface and in the bulk,

respectively. If xA is small, we can write 1� xA � 1, which gives

_nnA ¼ �Dw4prr
r þ d
d
ðCxw � CxaÞ

If the size of the particle is considerably smaller than d, nA reduces to

_nnA ¼ �4prDwðCw � CaÞ
where Cw and Ca are the concentrations of A in the bulk and at the surface of the

particle, respectively. On comparison with Eq. (7.3.3), we find the following [8]:

k0a ¼ 4prDw

Example 7.2: The Smith and Ewart theory for emulsion polymerization yields

the average number of radicals per particle as 0.5. Experimental results for vinyl

chloride give the following [10]:

½M�p ¼ 6
mol

L

kp ¼ 3:6� 107
L

mol h

Burnett has calculated n in Eq. (7.3.28) to be in the range of ð0:1 5Þ � 10�4,
which implies that the theory of Smith and Ewart does not work, and he attributes

this to the presence of transfer and termination in the aqueous phase. Modify the

analysis to account for this special case of low n.

Solution: Let us assume that rw is the rate of radical production in water and that

the polymer radicals desorbed from polymer particles can be terminated in the

water with the rate constant ktw [as opposed to k2 in Eq. (7.3.4) within the

polymer particles]. We define the following:

Nw ¼ number of latex particles per liter H2O

N0 ¼ number of latex particles having no radicals

N1 ¼ number of particles having one radical

N2 ¼ number of particles having two radicals

Nt ¼ sum of the number of radicals in the latex particles and in the water

phase per liter of H2O
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We assume that

Nw � N1 � N2 or N0 � Nw � ðN1 þ N2Þ ð7:3:30Þ

which is based on the fact that there are very few latex particles that have growing

radicals. If ½I�w is the concentration of radicals in the water phase, the rate of

adsorption of radicals by N0 particles is given by

Rate of adsorption ¼ ka½I�w
N0

Nw

� ka½I�w
Nw � ðN1 þ N2Þ

Nw

We can now make a count balance on N1, N2, and nt very easily. We observe that

N1 is formed when N0 receives a radical through adsorption or when there is

desorption in N2. Conversely, N1 is depleted when it receives a radical or there is

desorption in it; that is,

dN1

dt
¼ ka½I�w

Nw � ðN1 þ N2Þ
Nw

þ 2kdN2 � kdN1 � ka½I�w
N1

Nw

ð7:3:31Þ

We can similarly make balances for N2 and nt as follows:

dN2

dt
¼ ka½I�w

N1

Nw

� 2kdN2 � 2
ktp

v
N2 ¼ 0 ð7:3:32Þ

dn1

dt
¼ rw �

4ktp

v
N2 � 2ktw½I�2w ð7:3:33Þ

If we assume the existence of a steady state, we get

dN1

dt
¼ dN2

dt
¼ dn1

dt
¼ 0

which, with the help of Eq. (7.3.30), gives the following:

½I�w ¼
kd

kaN1

ð7:3:34aÞ

N2 ¼
kdN

2
1Nw

2kd þ 2ktp=v
ð7:3:34bÞ

On substituting these into Eq. (7.3.33), we obtain N1 as follows:

N1 ¼ r1=2w

ðVpkd þ NwktpÞk2a
2ktpkdk

2
a þ 2ktwk

2
d ðVpk

2
d þ NwktpÞ

 !1=2

ð7:3:35Þ
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As N1 � N2, the total number of particles containing one radical (i.e., N1) can be

set equal to the total number of radicals. The rate of polymerization, rp, is then

given by

Rp ¼
kp½M�p
NA

ðrwÞ1=2
ðvpkd þ NwktpÞk2a

2ktpkdk
2
a þ 2ktwk

2
d ðVpkd þ NwktpÞ

 !1=2

ð7:3:36Þ

If the termination in the aqueous phase (i.e., ktw) is small, or

2ktpkdk
2
a � 2ktwk

2
d ðVpkd þ NwktpÞ ð7:3:37Þ

then the rate is given by

rp ¼
kp½M�p
NA

rw
Vp

2ktp
þ Nw

2kd

 !1=2

Example 7.3: In the Smith and Ewart theory, we define state i of the polymer

particles the same as the number of polymerizing free radicals within it.

Experimentally, it has been demonstrated that the polymer particles have a

particle size distribution (PSD), which cannot be obtained through this theory.

Assume that within the reaction mass, particles have either 0 or 1 growing

radicals and develop necessary relations that give the PSD [11].

Solution: Let us define particle size distribution niðv; tÞ as the number of

particles ni in state i having volume v at time t. Because Ni represents particles

of all sizes, we have the following general relation:

NiðtÞ ¼
ð1
0

niðv; tÞ dv

We have stated that only N0 and N1 exist; therefore,

niðv; tÞ ¼ ½n0ðv; tÞ; n1ðv; tÞ�
Let us divide the general PSD into various boxes, each having an elemental

volume DV . Subsequently, we define n
j
0 and n

j
1 as the number concentrations of

n0 and n1 particles, respectively, in the jth box. We further observe that the

number of nongrowing particles n0 is increased whenever a radical is captured or

desorbed by n1. If Dn
j
0 is the change, then

Dnj0 ¼ rn1Dt � rn0Dt þ kn1Dt ð7:3:38Þ
where r and k have the same meaning as in the discussion of the Smith and Ewart

theory. Because we have assumed that there can be at most one growing radical in

any polymer particle, it is evident that the mutual termination of radicals cannot
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occur. We can make a similar balance for n1, except that now we must account for

the growth of the particle. We define a dimensionless number f as the fraction of

growing n1 in an elemental box Dv that leaves the box in time Dt, or

f ¼ K
Dt
Dv

ð7:3:39Þ

where K is a constant. In these terms,

Dn j
1 ¼ rn0Dt � rn1Dt � kn1Dt � fn

j
1 þ fn

j�1
1 ð7:3:40Þ

Dividing Eqs. (7.3.38) and (7.3.40) by Dt and using Eq. (7.3.39) gives

Dn j
0

Dt
¼ ðrþ kÞn j

i � r j
n0

Dn j
1

Dt
¼ r j

n0ðrþ kÞn j
i � K

n
j
1 � n

j�1
1

Dv

These reduce to the following partial differential equations in the limit when Dt
and Dv both are allowed to go to zero:

@n0
@t
¼ ðrþ kÞni � rn0

@n1
@t
¼ rn0ðrþ kÞni � K

@n1
@v

7.4 ESTIMATION OF THE TOTAL NUMBER OF
PARTICLES, Nt

The total number of polymer particles in the second stage is estimated from the

fact that all of the emulsifier molecules form a monolayer over the particles at the

beginning of this stage. According to Figure 7.5, some emulsifier molecules are

used up in stabilizing monomer droplets, but these are assumed to be negligible in

number.

In the first stage of polymerization, the number of polymer particles N

changes with time. We assume that the overall rate of polymerization is given by

the same equation as for the second stage when N ¼ Nt (a constant); that is, the

polymerization rate per particle is kpð½M�=2Þ. The volumetric rate of growth of the

particles, m, would then be proportional to this rate and is given as

m ¼ k1
kp

2

� �
½M� ð7:4:1Þ

where k1 is the proportionality constant.

We now consider the emulsion polymerization in stage 1 at time t from the

beginning of the reaction. If a polymer particle is born (by entry of the first
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initiator radical in a monomer-swollen micelle) after time t from the beginning,

its age at time t is t � t. The volume, Vt, of this particle at time t is

Vt;t ¼ mðt � tÞ ð7:4:2Þ

assuming that the size of the particle at birth is negligible. The term at;t is the

surface area of this particle at time t and is given by

at;t ¼ 4p
3mðt � tÞ

4p

� �2=3

¼ ½ð4pÞ1=23mðt � tÞ�2=3 ð7:4:3Þ

To determine the total area, At, of all polymer particles at time t, the rate at which

polymer particles are formed must be known. Knowing this rate allows us to

specify the age distribution of polymer particles at time t. In general, primary

radicals generated in the aqueous phase are either caught by monomer-swollen

micelles or by monomer-swollen polymer particles existing at the time consid-

ered. To simplify the analysis, it is assumed that primary radicals are trapped by

monomer-swollen micelles only. In that case, the rate of generation of particles,

dN=dt, is given as follows

dN

dt
¼ r ð7:4:4Þ

Therefore, At can be found:

At ¼
ð
at;t dN ¼ ½ð4pÞ1=23m�2=3

ðt
t¼0
ðt � tÞ2=3r dt ð7:4:5Þ

which, on integration, gives

At ¼
3

5
½ð4pÞ1=23m�2=3rt5=3 ð7:4:6Þ

The emulsifier is assumed to form a monolayer around the polymer particles

when the polymerization just enters the second stage. It is assumed that t1 is the

time when the emulsion polymerization enters the second stage. If [S]0 is the

initial concentration of the emulsifier and ae is the area occupied by a unit mole of

the emulsifier for a monolayer, then

At1 ¼ ½S�0ae ð7:4:7Þ
This value of At1 is attained at time t1, given by Eq. (7.4.6):

t1 ¼
53=5m�2=5

3ð4pÞ1=5
½S�0ae
r

� �3=5

¼ 0:53
½S�0ae
r

� �3=5

m�2=5 ð7:4:8Þ
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The total number of particles generated by the time t1 can now be found by

integrating Eq. (7.4.5) as follows:

N ðt ¼ t1Þ ¼ Nt ¼ 0:53
½S�0ae
r

� �3=5

m�2=5r

¼ 0:53½S�0a3=5e

r
m

� �2=5
ð7:4:9Þ

7.5 MONOMER CONCENTRATION IN POLYMER
PARTICLES, [M]

As shown in Figure 7.5, the concentration [M] of the monomer in the polymer

particles remains almost constant with time because of diffusion from the

monomer droplets. The monomer is held in the polymer particles by surface

tension forces, and the polymer in these particles is in the swollen state. If the

monomer is a good solvent for the polymer formed, it is possible to derive the

monomer concentration in the particle through fundamental principles. The

concentration is given by

RT lnfm þ 1� 1

mn

� �
fp þ XFHf

2
p


 �
þ 2Vmg

r
¼ 0 ð7:5:1Þ

where fm and fp are the volume fractions of monomer and polymer in the

particle, respectively, XFH is the Flory–Huggings interaction constant (whose

value is known for a monomer–polymer system), Vm is the partial molar volume

of the monomer, g is the interfacial tension, and r is the radius of the polymer

particle. The first term in the brackets in Eq. (7.5.1) is the chemical potential of

the monomer in the absence of surface tension effects, which results from the

Flory–Huggins theory, discussed later. The second term represents the contribu-

tion to the chemical potential of the monomer due to surface tension effects.

Thus, Eq. (7.5.1) represents equilibrium between surface tension effects and

solubility effects. Equation (7.5.1) has been plotted in Figure 7.6, where the

saturation swelling has been plotted as a function of fm and the Flory–Huggins

parameter. The volume fraction fm can easily be converted to [M] using

additivity of volumes.

In deriving Eq. (7.5.1), it has been assumed that the monomer-swollen

particle is homogeneous. This assumption, however, does not give a correct

physical picture. Based on thermodynamic considerations, the core-and-shell

theory [12–16] on the other hand, proposes that the particle has a polymer-rich

core with relatively little monomer and an outer shell around it, consisting of

practically pure monomer, as shown in Figure 7.7. This means that [M] in Eq.

(7.5.1) is the molar density of the pure monomer. It has been argued that Eq.
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(7.5.1) predicts reasonable results when the monomer is a good solvent for the

polymer, as in the styrene–polystyrene system [12–16]. However, when the

monomer is a poor solvent for the polymer, as for the vinyl acetate–polyvinyl

acetate and vinylidene chloride–polyvinylidene chloride systems, the core-and-

shell theory gives better results.

FIGURE 7.6 Saturation swelling of polymer particles by monomer.

FIGURE 7.7 Core-and-shell model of polymer particles.
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7.5.1 Experimental Results

The results derived for region II using the Smith and Ewart theory have been

confirmed abundantly. Figure 7.8 gives the conversion in emulsion polymeriza-

tion as a function of time for isoprene using a potassium laurate emulsifier. On

integration of Eq. (7.3.28) with [M] constant, it is found that the plot of the yield

versus time should be a straight line. In Figure 7.8, the plot is observed to be

essentially linear except near the beginning of the emulsion polymerization (i.e.,

in stage I), which is attributed to the variation of N with time. The tapering of the

curve in stage III, on the other hand, is attributed to the disappearance of the

emulsified monomer droplets and the consequent decrease in [M] within polymer

particles.

One of the assumptions in the Smith and Ewart theory is that no new

polymer particles are generated in the second stage of emulsion polymerization.

The rate of polymerization per particle has been experimentally measured in the

FIGURE 7.8 Polymerization of isoprene in aqueous emulsion with 0.3 g K2S2O8

initiator per 100 g monomer and potassium laurate emulsifier at 50�C. (Reprinted with

permission from Harkins, J. A., J. Am. Chem. Soc., 69, 1428, 1943. Copyright 1943

American Chemical Society.)
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second stage and is found to be flat for Nt between 1012 and 1014 particles per

milliliter of water solution. However, for larger concentrations of particles, Nt has

been observed to change with conversion [8]. It was believed earlier that the

nucleation of particles in stage I of emulsion polymerization occurred solely in

micelles. However, it has been shown more recently that the nucleation can occur

equally well in the aqueous phase. The change in Nt in the second stage (in the

range of large concentrations of particles) has been explained by the coagulation

of particles. When this occurs, emulsifier molecules are released in the water

phase, which can generate fresh particles even at high conversions. As can be

seen, this fresh nucleation has considerable ramifications on the rate of poly-

merization as well as on the molecular-weight distribution (MWD) of the polymer

formed by emulsion polymerization. In addition, in some systems, the gel effect

manifests itself in the third stage of emulsion polymerization.

Comparison of Eqs. (7.4.9) and (7.3.28) reveals that the rate of polymer-

ization in stage II of emulsion polymerization is proportional to [I]0.40. This

proportionality has also been experimentally confirmed. Moreover, if the poly-

merization has entered the second stage, and then some more initiator is added,

the rate should not change, according to the Smith and Ewart theory. This is

because Nt attains a constant value [according to Eq. (7.4.9)] corresponding to

the initial concentration [I2]0. Addition of the initiator after the second stage

is reached does not alter Nt. This has also been confirmed by Bovey and

Kolthoff [1].

Finally, according to Eq. (7.4.9), the total number of particles, Nt, should be

proportional to ½S�0:600 . This proportionality has been confirmed for styrene, but

for other monomers, deviations have been found. Table 7.1 gives empirical

correlations for different emulsifiers and monomers [4].

TABLE 7.1 Empirical Correlations for Emulsion

Polymerization with Sodium Lauryl Sulfate Emulsi-

fier and Potassium Persulfate Initiator

Monomer Empirical correlations

Styrene r / Nt

Nt / ½S�5=70 ½I2�2=70

Methyl methacrylate Nt / ½S�0:60 ½I2�0:40

mn decreases with [I2]0
Acrylonitrile rp increases with time

rp / ½S�1=60 ½I2�1=20

mn decreases with conversion

Vinyl acetate rp / N0:14 0:2
t ½I2�0:8 1:0

0

Vinyl chloride rp / ½I2�0:50 N 0:05 0:15
t
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7.6 DETERMINATION OF MOLECULAR WEIGHT
IN EMULSION POLYMERIZATION [17,18]

We have already observed that emulsion polymerization has three phases (i.e.,

water, polymer particle, and micelles). In each of these, the following radical

polymerization reactions occur:

Propagation

Pn þMkp�!
kp

Pn þ 1 ð7:6:1aÞ
Monomer transfer

Pn þM�!kpm Mn þ P1 ð7:6:1bÞ
Polymer transfer

Pn þMs�!
kpf

Mn þ Ps ð7:6:1cÞ
Terminal double bond

Pr þMx�!
k�p

Pr þ x ð7:6:1dÞ
Termination by disproportionation

Pr þ Ps�!
ktd

Mr þMs ð7:6:1eÞ
Termination by combination

Pr þ Ps�!
ktc

Mr þ s ð7:6:1f Þ
Note that in Eq. (7.6.1), the transfer reaction can occur anywhere on the polymer

chain. As a result, when the polymer radical Ps grows, it gives rise to branched

chains, as seen in Figure 7.9. It is also observed that the disproportionation

reaction [Eq. (7.6.1e)] gives rise to dead polymer chains, which can react as in

Eq. (7.6.1d). This also leads to the formation of branched polymers, as shown in

Figure 7.9.

Most of the polymer is present in polymer particles and, in view of this, we

must analyze the polymer formation therein if we want to determine the average

chain length and the polydispersity index. We have already noted that initiator

radicals are absorbed on the surface of polymer particles, initiating the formation

of polymer radicals. These polymer radicals grow and terminate according to Eq.

(7.6.1) or get desorbed. For the analysis presented in this section, we assume that

dead polymer chains do not get desorbed, even though polymer radicals (i.e., Pn)
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could. If Vp is the total volume of polymer particles within the reaction mass, the

rate of formation of polymer molecules, Mn, within the particle is given by

1

Vp

ðVp½M�n�Þ ¼ kfm½M�pð1� xÞ½Pn�
P1
r¼1

r½Mr�

¼ kfpn½Mn�
P1
n¼1
½Pn� � kp*½Mn�

P1
r¼1
½Pr�

ð7:6:2Þ

where x is the conversion of the monomer and ð1� xÞ½M�p0 gives the monomer

concentration. Also,
P

r½Mr� refers to the total moles of repeat units of dead

polymer, which is equal to the moles of monomer reacted. In other words,P
r½Mr� ¼ x½M�0 ð7:6:3Þ

In writing Eq. (7.6.2), expressions for termination and initiation have not been

included. Within a given particle, these reactions are small due to a sufficiently

slow rate of polymerization and, therefore, have negligible influence on the

molecular weight distribution.

We can similarly make a mole balance equation within polymer particles

for polymer radicals Pr and derive the following reaction, assuming that the

steady-state approximation is valid:

1

Vp

d

dt
ðVp½Pn�Þ ¼ 0

¼ kp½M�p0ð1� xÞ½Pn�1� � fkp½M�p0ð1� xÞ þ kfmð1� xÞ½M�p0
þ kfp½M�p0xg½Pn� � kp*

P1
r¼1
½Mr�

� �
½Pn�

þ kfpðn½Mn�Þ
P1
r¼1
½Pr� þ kp*

P ½Mn�r�½Pr� ð7:6:4Þ

FIGURE 7.9 Formation of branched polymer in the emulsion polymerization of vinyl

acetate and vinyl chloride.
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Within particles, we have a distribution of dead polymer molecules Mr as well as

polymer radicals. Consequently, we have the following two kinds of moment:

lMn
¼ P1

r¼1
rn½Mr�; n ¼ 0; 1; 2 ð7:6:5aÞ

lPn ¼
P1
r¼1

rn½Pr�; n ¼ 0; 1; 2 ð7:6:5bÞ

In these terms, Eqs. (7.6.2) and (7.6.5) can be used to derive the moment

generation relations as follows:

1

Vp

dðVplMN
Þ

dt
¼ ½M�p0fkfmð1� xÞ þ kfpxglPn

� kfplMðnþ1Þlp0 � kp*lMn
lp0 ð7:6:6aÞ

lpnfkfmð1� xÞ½M�p0 þ kfpx½M�p0 þ kp*lM0
g

¼ nkpð1� xÞ½M�p0lPðn�1Þ þ kfplp0lMnþ1 þ kp*Fn ð7:6:6bÞ

where

Fn ¼
P1
r¼2

rn
P1
s<r

½Mr�s�½Ps� ¼
P1
r¼1

P1
s¼1
ðr þ sÞn½Mr�½Ps� ð7:6:7aÞP

rn½Mr�1� ¼
P
r

rn½Mr� þ n
P

r n�1½Mr� ð7:6:7bÞ

In order to get the number- and weight-average chain lengths (mn and mw), the first
three moments of both these distributions are needed. For n ¼ 0, 1, and 2, Eq.

(7.6.6a) yields

1

Vp

d

dt
ðVplM0Þ ¼ zlp0 � kfplM1lp0 � kp*lM0lp0 ð7:6:8aÞ

1

Vp

d

dt
fVplM0Þ ¼ zlp1 � kfplM2lp0 � kp*lM1lp0 ð7:6:8bÞ

1

Vp

d

dt
fVplM2Þ ¼ zlp2 � kfplM3lp0 � kp*lM2lp0 ð7:6:8cÞ

where

z ¼ fkfmð1� xÞ þ xkfpg½M�p0 ð7:6:9Þ
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We further observe the following:

F1 ¼
P
r

P
s

ðr þ sÞ½Mr�½Ps�

¼ lM1lp0 þ lM0lp1 ð7:6:10Þ
F2 ¼

P
r

P
s

ðr2 þ 2rsþ s2Þ½Mr�½Ps�

¼ lM2lp0 þ 2lM1lp1 þ lM0lp2 ð7:6:11Þ

In these terms, Eq. (7.6.6b) gives

zlp1 ¼ kpð1� xÞ½M�p0lp0 þ kfplM2lp0 þ kp*lM1lp0 ð7:6:12aÞ
zlp2 ¼ 2kpð1� xÞ½M�p0lp1 þ kfplM3lp0 þ kp*ðlM2lp0 þ 2lM1lp1Þ ð7:6:12bÞ

On eliminating zlp1 and zlp2 in Eq. (7.6.8b) and with the help of Eqs. (7.6.12a)

and (7.6.12b), the following are obtained:

1

Vp

dðVplM1Þ
dt

¼ kpð1� xÞ½M�p0lp0 ð7:6:13aÞ

1

Vp

dðVplM2Þ
dt

¼ 2fkpð1� xÞ½M�p0 þ kp*lM1glp1 ð7:6:13bÞ

We have already observed that there is an equilibrium during stage II of emulsion

polymerization between the monomer-swollen polymer particles and the separate

monomer phase. As a result of this equilibrium, the ratio of monomer and

polymer within them remains time invariant. Equations (7.6.8a), (7.6.13a), and

(7.6.13b) during stage II reduce to the following:

lM0

Vp

dVp

dt
¼ ðz� kfplM1 � kp*lM1Þlp0 ð7:6:14aÞ

lM1

Vp

dVp

dt
¼ kpð1� xÞ½M�p0lp0 ð7:6:14bÞ

lM2

Vp

dVp

dt
¼ 2fkpð1� xÞ½M�p0 þ kp*lM1glp1 ð7:6:14cÞ

It may be mentioned that the net effect of polymerization in stage II is the growth

of polymer particles. If Eqs. (7.6.14a) and (7.6.14b) are divided, we get the

average chain length of the polymer within the particles as follows:

mn ¼
lM1

lM0

¼ kpð1� xÞ½M�p0
ðz� kfplM1 � kp*lM0Þ

ð7:6:15Þ
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Dividing Eqs. (7.6.14b) and (7.6.14c) and eliminating lP1=lP0 with the help of

Eq. (7.6.12a) gives the weight-average chain length mw:

mw ¼
lM2

lM1

¼ 2½kpð1� xÞ½M�p0 þ kp*lM1kpð1� xÞ½M�p0 þ kfplM2 þ kp*lM1

kpð1� xÞ½M�p0
ð7:6:16Þ

Note that the first moment of monomer, lM1
, can be directly determined by the

conversion of the monomer

lM1 ¼ x½M�p0 ð7:6:17Þ

and once this is known, Eqs. (7.6.15) and (7.6.16) can be conveniently used to

determine mn and mw.

Example 7.4: Polymerizing systems such as vinyl chloride and vinyl acetate give

branched polymers in emulsion. Find the extent of branching in the second stage.

Also, find the relations governing mn and mw in the third stage of emulsion

polymerization.

Solution: Whenever reactions occur through Eqs. (7.6.1c) and (7.6.1d) within

the polymer particles, branched polymers are formed. Let us denote by [B] the

concentration of branch points per unit volume of the particles. A balance on [B]

is given by

1

Vp

d

dt
ðVp½B�Þ ¼ kfp

P
r1½Mr�

� � P
Pn

� �þ kp*
P

Pn
� � P

Mn

� �
¼ kfplM1lp0 þ kp*lM0lp0

For the second stage, if we assume that [B] is constant, we get

½B�
Vp

dVp

dt
¼ ðkfplM1 þ kp*lM0Þlp0

During stage III of emulsion polymerization, the various moments within the

polymer particles may change. Assuming that changes in volume of the particles
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are considerably slower compared to changes in moments, Eq. (7.6.8) reduces to

the following:

dlM0

dt
¼ ðz� kfplM1 � kp*lM1Þlp0

dlM1

dt
¼ kpð1� xÞ½M�p0lp0

dlM2

dt
¼ 2fkpð1� xÞ½M�p0 þ kp*lM1glp1

7.7 EMULSION POLYMERIZATION IN
HOMOGENEOUS CONTINUOUS-FLOW
STIRRED-TANK REACTORS [8]

Operation of homogeneous continuous-flow stirred-tank reactors (HCSTRs) for

emulsion polymerization offers several advantages over batch reactors, the most

important of which are high production rate and better polymer quality. In

commercial batch reactors, it has been found that there is always a small variation

from batch to batch in monomer conversion, particle number and size, molecular

weight, and polymer branching. HCSTRs, on the other hand, eliminate this

problem and also give a narrower MWD of the polymer. We have already

observed that steady-state HCSTRs operate at the exit concentrations, which can

be chosen by the designer. This provides flexibility during operation, and the

reactor can be conveniently controlled at optimal conditions.

Figure 7.10 shows an HCSTR carrying out emulsion polymerization. The

feed consists of a monomer dispersed in aqueous phase that already has initiator

and emulsifier in it. During polymerization within the reactor, polymer particles

are generated. These particles are macroscopic in size, and we cannot assume that

all particles stay within the reactor for the same residence time. The reasoning for

this is as follows. We first observe that the feed has no polymer particles; they are

later nucleated within the reactor at different times. Because the particles grow

and attain their final size in the remainder of the time within the reactor, there

must be a size distribution of the particles. As a result, for the specified flow

conditions, the particles of different size move toward the reactor exit at different

velocities.

In analyzing an HCSTR, we rarely analyze the flow conditions existing

within it, but assume (based on experiments) the following particle age distribu-

tion:

f ðtÞ ¼ y�1 exp � t
y

� �
ð7:7:1Þ
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where y represents the reactor residence time and f ðtÞ represents the fraction of

particles that stays in the reactor for time t. As a result of this age distribution,

there is a particle size distribution, which can be determined as follows. Let us

consider a single particle operating during the second stage of emulsion

polymerization, when the rate rpp in a given particle is given by

rpp ¼
kp½M�p �nn

NA

ð7:7:2Þ

where �nn is the average number of free radicals per particle. If the excess monomer

is available within the reactor (which is the case for second stage), the monomer

concentration, ½M�p, within the particle remains constant. The particles grow in

size due to polymerization and the reacted monomer is replenished by diffusion

from the droplets. Under these conditions, the particle growth (radius r and

volume vp) can be represented by

dvp

dt
¼ 4pr2

dr

dt
¼ kp½M�p �nn

rpNAV

	 K1½M�p �nn ð7:7:3Þ

where K1 is a constant and rp is the density of the particle. If we assume case II of

the Smith–Ewart theory, n is equal to 0.5 and Eq. (7.7.3) can be easily obtained as

follows:

v ¼ 0:5K1½M�pt ð7:7:4aÞ

r3 ¼ 3K1½M�pt
8p

ð7:7:4bÞ

FIGURE 7.10 Schematic diagram of an HCSTR carrying out emulsion polymerization.
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where we assume that particles have negligible volume after stage I. We now

eliminate t in Eq. (7.7.1) using Eq. (7.7.4b) to obtain particle size distribution

FðrÞ as

FðrÞ ¼ f ðtÞ dr

dt

� ��1
¼ 8pr2

K1½M�py
exp � 8pr3

3K1½M�py

 ! ð7:7:5Þ

If the inlet concentration of the emulsifier is ½S�0 and that in the exit stream is [S],

then it is possible to estimate the total number of polymer particles, Np. It is

observed that the total surface area of these particles is Np

R1
0

4pr2FðrÞ=dr and
that

½S�0 � ½S� ¼
4pNp

as

ð1
0

r2FðrÞ
dr

where as is the surface area coverage offered by a single surfactant molecule.

7.8 TIME-DEPENDENT EMULSION
POLYMERIZATION

There are several situations described in the literature where the phenomenon of

transience in emulsion polymerization must be considered. Some of these are

reactor start-up or shutdown [19,20], reactor stability [21,22], and reactor controls

[23,24] There are also a few applications in which the amount of emulsifier used

is such that it gives a concentration less than the CMC. The particle sizes that

result lie in the range 0.5–10 mm and are larger than those obtained from the usual

emulsion polymerization described earlier. The product obtained in this condition

is not a true emulsion from which polymer particles precipitate out when diluted

with water. This is known as dispersion polymerization, to which the analysis

developed earlier is not applicable [25–27].

The time-dependent behavior of emulsion polymerization arises due to

variation in monomer concentration, changes in the number of polymer particles

Nt, or both. We have already observed that Nt changes due to nucleation in stage I

of emulsion polymerization and this normally ends at about 10–15% conversion.

However, when the monomer-to-water ratio (M=W ) is high or the monomer is

more than ‘‘sparingly’’ soluble, the constancy of Nt cannot be assumed up to

conversions as large as 50%. If the monomer droplets are sufficiently small, they

also become the loci of particle formation and, in such circumstances, the Smith–

Ewart theory is inadequate to explain the experimental phenomena. We now

present the outline of a mathematical model of emulsion polymerization that is
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based on kinetic theory and thus overcomes the inadequacy of the Smith–Ewart

theory.

The overall emulsion polymerization can be described in terms of reactions

as follows. The initiator molecule (I2) is present in the aqueous phase, where it

undergoes thermal decomposition to give initiator radical (I). These radicals are

hydrophilic and cannot enter into hydrophobic monomer droplets (see Fig. 7.3).

Consequently, they can react only with monomer dissolved in water, giving the

following:

I2�!
kda

2I ð7:8:1aÞ

Iþ aM�!kia aP1 ð7:8:1bÞ
aP1 þ aM�!kpa aPiþ1 ð7:8:1cÞ

These polymer radicals (aPi) in the aqueous phase can grow up to a certain critical

length (say, n*), after which they precipitate to form a primary particle. Here, a

polymer particle is represented Paj, where the index j denotes the number of times

it has been initiated. This means that Pa1 represents the primary particle. Before

reaching the critical length n*, the polymer radicals aPi can terminate as they do

in the homogeneous polymerization discussed in Chapter 5. This means that the

following reactions occur:

aP*n�1 þ aM�!kpa aPn� ������!Nucleation
Pa1 ð7:8:2aÞ

aPi þ aPj�!
kta aPiþj as long as iþ j < n* ð7:8:2bÞ

aPi þ aPj�!
k

ta

aPiþj ������!Nucleation
Pa1 when iþ j > n* ð7:8:2cÞ

The polymer radicals can also enter into micelles (indicated by subscript or

superscript c), monomer droplets (indicated by subscript or superscript d), or

polymer particles. As soon as one of the former two happens, the micelle (MC)

and the droplet (MD) become particles with one radical in them:

aPi þMD�!Kmd

Pa1 ð7:8:3aÞ
aPi þMC�!Kmc

Pa1 ð7:8:3bÞ
aPi þ Paj �!

Kc

Pajþ1 ð7:8:3cÞ
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In writing Eq. (7.8.3c), we assume that, on average, a polymer particle has mostly

dead chains and any radical entry into it amounts to initiating polymerization

therein. Radical desorption from the particles can be written as

PajKi�!
kei

Paj þ aPi for all j ð7:8:4Þ
The coagulation of polymer particles [Eq. (7.8.5a)], micelle disappearance to

cover newly formed particle surface [Eq. (7.8.5b)], and the coalescence and

breakage of monomer droplets [Eq. (7.8.5c)] can be represented as follows:

Pai þ Paj �!
Kfij

Paiþj for all i and j ð7:8:5aÞ

MCþ Paj �!
Rmp

Paj for all j ð7:8:5bÞ

MDþMD ��*)��
Rmp1

Rmd1

MD ð7:8:5cÞ

With the model presented in Eqs. (7.8.1)–(7.8.5) it is possible to model the

transience of emulsion polymerization. As an example, let us derive the rate of

formation of polymer particles as follows. If Nt represents the total number of

particles in the reaction mass, then

1

NA

dNt

dt
¼ ½Nucleation in aqueous phase by Eq: ð7:8:2aÞ� þ ½Nucleation
in micelles by Eq: ð7:8:3cÞ� þ ½Nucleation in monomer

droplets by Eq: ð7:8:3aÞ� � ½Coalescence of particles by
Eq: ð7:8:5aÞ þ ½Precipitation of oligomers from the ð7:8:6Þ
aqueous phase by termination by Eq: ð7:8:2cÞ�

¼ kp½aM�½aPn��1� þ Kmc½MC� Pn��1
i¼1
½aPi� þ Kmd ½MD� Pn��1

i¼1
½aPi�

� 1

2

Pn�c
i¼1

Pn�
j¼1

Kfij½Pai�½Paj� ¼ Kta

Pn��1
i¼1

Pi
k¼1
½aPi�½aPn��k �

We can establish mole balance equations for each species present in different

phases (i.e., aqueous, micelle, droplet, and particle phases) and solve these

simultaneously. Song and Pohlein have solved these sets of differential equations

and have finally arrived at the following analytical solution of Eq. (7.8.6) [28].

Nt

Ns

¼ 1� e�t=t

1þ e�t=t=A2

ð7:8:7Þ

where Ns represents particle concentration in number per volume of the aqueous

phase at the steady state. Here, A2 and t are the model parameters, which can be

estimated from the basic kinetic parameters and reaction conditions.
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Example 7.5: In an effort to graft gelatin with polymethyl methacrylate

(PMMA), 2 g of potassium persulfate and 20 g of gelatin are dissolved in

water. This is added to 40 g of methyl methacrylate (MMA), and the reaction

mass is made up to 500 cm3. This recipe does not contain any surfactant and the

polymerization at 70�C is found to give stable emulsion polymenzation. Experi-

mental analyses of samples show a copious formation of gelatin grafts, which

suppress the homopolymerization of MMA [29]. Explain this phenomenon

through a kinetic model.

Solution: Because there are no surfactants in the reaction mass, there are only

two phases: aqueous and monomer droplet phases. Gelatin has hydroxyl (�OH)
functional groups on its chain that can react with a persulfate radical easily and

give growing polymer radicals. Such a reaction would lead to the formation of

grafted gelatin, which is the intention of the experiment described. Accordingly,

we define the following symbols for species in the reaction mass:

I2 ¼ initiator molecules

I ¼ initiator radicals

M ¼ monomer

PH ¼ homopolymer radicals

Pg ¼ graft polymer radicals

OHG ¼ gelatin

MG ¼ dead graft homopolymer molecules

MH ¼ dead homopolymer molecules

Superscript w ¼ aqueous phase

Superscript d ¼ droplet phase

The aqueous phase consists of I2, gelatin (OHw
G), dissolved methyl methacrylate

monomer (Mw), primary radicals (SO�4 ), and desorbed homopolymers (Mw
H ). The

grafting of gelatin occurs mostly in the aqueous phase but as the length of the

graft chain increases, it begins to migrate to the droplet surface due to thermo-

dynamic considerations. We have therefore grafted gelatin in the aqueous phase

(OHw
G) as well as at the interface of the droplets surrounding it (OHd

G), with the

graft dangling inside.

The various reactions occurring in the system are all shown schematically

in Figure 7.11, and the rate constants for these are given in Table 7.2. It is

possible to establish balance equations for various species; these are given in

Table 7.3. Note that all polymer radicals, such as PH and PG, are intermediate

species and their rates of formation could be taken as zero after the steady-state

approximation is made.
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FIGURE 7.11 Various reactions giving grafting of gelatin for Example 7.5.
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TABLE 7.2 Equations of the Model of Example 7.5

Initiation reactions Termination reactions in the droplet phase

Iw�!K1
2R�w

R�w þMw�!K2
PwH1

Rw þ OHw
G �!

K3

PwG1

Rw þ OHd
G �!

K4
PwG1

PdGi þ PdGj �!
K16

Md
Gi þMd

Gj

PdHi þ PdHj �!
K17

Md
Hi þMd

Hj

PdHi þ PdGj �!
K18

Md
Hi þMd

Gj

Md
Hi þ OHd

G�!
K19

Md
Gi

Propagation of MMA and branched

gelatin in water phase

Transfer reactions with PHi in water phase

PwHi þMw�!K5

PwHiþ1; i ¼ 1; 2; . . .

PwGi þMw�!K6

PwGiþ1; i ¼ 1; 2; . . .

PwHi þ OHw
G �!

K7

PwGi

PwHi þ I�!K20

Mw
Hi þ PwHi

PwHi þMw
Hj �!

K21
Mw

Hi þ PwH1

PwHi þMw�!K22

Mw
Hi þ PwH1

Termination by disproportionation in

water phase

Transfer reaction with PHi in droplet phase

PwGi þ PwGj �!
K8

Mw
Gi þMw

Gj

PwGi þ PwHj �!
K9

Mw
Gi þMw

Hj

PwHi þ PwHj �!
K10

Mw
Hi þMw

Hj

PdHi þMd
Hj �!

K23

Md
Hi þ PdHj

PdHi þMd �!K24

Md
Hi þ PdH1

PdHi þ OHd
G �!

K25

Md
Hi þ PdG1

Absorption–desorption reactions

between water and droplet phase

Transfer reactions with PGi in water phase

Mw
Gi
��! ��K33

K�33
MGi

Mw
Hi
��! ��K34

K�34
MHi

PwHi
��! ��K11

K�11
PdHi

PwGi
��! ��K12

K�12
PdGi

PwGi þ I�!K26

Mw
GiP

w
H1

PwGi þMw
Hj �!

K27

Mw
GiP

w
Hj

PwGi þMw�!K28

Mw
GiP

w
H1

PwGi þ OHw
G �!

K29

Mw
GiP

w
G1

Propagation of MMA and branched

gelatin in the droplet phase

Transfer reaction with PGi in droplet phase

PdHi þMd �!K13

PdHiþ1; i ¼ 1; 2; . . .

PdGi þMd �!K14

PdGiþ1; i ¼ 1; 2; . . .

PdHi þ OHd
G �!

K15

PdGi

PdGi þMd
Hj �!

K30

Md
Gi þ PdHj

PdGi þMd �!K31

Md
Gi þ pdH1

PdGi þ OHd
G �!

K32

Md
Gi þ pdG1

Source: Ref. 29.
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TABLE 7.3 Mole Balance of Various Species in Example 7.5

d½PG�w
dt
¼ Vxð�K6½PG�wMw þ K7½PH �wOHw

G � K8½PG�w � K9½PG�w½PH �w � K12½PG�w

� K26PG�wIw � K27½PG�w½MH �w � K28½PG�wMw � K29½PG�wOHw
GÞ

þ ð1� VxÞK�12½PH �d þ VxK3½R�wOHw
G ¼ 0 ð1Þ

d½PG�d
dt
¼ ð1� VxÞð�K�12½PG�d � K14½PG�dMd þ K15½PH �dOHd

G

� K16½PdG�2 � K18½PH �d ½PG�d � K30½PG�d ½MH �d � K31½PG�dMd � K32½PG�dOHd
GÞ

þ VxK12½PG�w þ ð1� VxÞK4½R�wOHd
G ¼ 0 ð2Þ

d½PH �w
dt
¼ Vxð�K5½PH �w � K11½PH �w � K20½PH �wIw � K21½PH �w½MH �w � K22½PH �wMw

� K10½PH �wÞð1� VxÞK�11½PH �d þ VxK2½R�wMw ¼ 0 ð3Þ
d½PH �d
dt
¼ ð1� VxÞð�K�11½PH �d � K13½PH �dMd þ K15½PH �dOHd

G

� K17½PdH �2 � K18½PH �d ½Pg�d
� K23½PH �d ½MH �d � K24½PH �dMd � K25½PH �dOHd

GÞ þ VxK11½PH �w ¼ 0 ð4Þ
d½I�
dt
¼ Vxð�2K1 f ½I� � K20½Ph�wI� K26½Pg �wIÞ

d½M�w
dt
¼ Vxð�K2½R�Mw � K5½PH �wMw � K6½PG�wMw � K22½PH �wMw � K28½PG�wMw ð5Þ

d½M�d
dt
¼ ð1� VxÞð�K13½PH �dMd � K14½PG�dMd � K24½PH �dMd � K31½PG�dMdÞ ð6Þ

d½OHG�w
dt

¼ Vxð�K3½R�OHw
G � K7½PH �wOHw

G � K29½PG�wOHw
GÞ ð7Þ

d½OHG�d
dt

¼ ð1� VxÞð�K4½R�OHd
G � K15½PH �dOHd

G � K19½MH �dOHd
G

� K25½PH �dOHd
G � K32½PG�dOHd

GÞ ð8Þ
d½MG�w

dt
¼ Vxð2K8½PwG�2 þ K9½PG�w þ ½PH �w � K33½MG�w � K26½PG�w

þ K27½PG�w½MH �w þ K28½PG�wMw þ K29½PG�wOHw
GÞ þ ð1� VxÞK�33½MG�d ð9Þ

d½MG�d
dt
¼ ð1� VxÞf�K�33½MG�d þ K16½PdG�2 þ K19½MH �dOHd

G þ K30½PG�d ½MH �d

þ K31½PG�dMd þ K32½PG�dOHd
Gg þ VxK33½MG�w ð10Þ

d½MH �d
dt

¼ VxðK9½PG�w½PH �w þ 2K10½PwH �2 � K34½MH �w

þ K34½MH �w þ K20½PH �wIw þ K22½PH �wMwÞ þ ð1� VxÞK�34½MH �d ð11Þ
d½MH �d

dt
¼ ð1� VxÞð�K�34½MH �d þ 2½PdH �2K18½PH �d ½PG�d � K19½MH �dOHd

G

þ K24½PH �dMd þ K25½PH �dHd
GÞ þ VxK34½MH �w ð12Þ
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The kinetic model of Table 7.2 is very complex and can be simplified as

follows:

1. The dissociation rate constant K1 for the potassium persulfate initiator

in water has been reported in the literature as 3:42� 10�3 mL=g hr
[30]. The same value is used here.

2. The initiation rate constant for gelatin in water (K3) and on the surface

of the droplet phase (K4) have been assumed to be equal. Because there

is no information on K2 and K3, we have treated these as parameters

and, through curve fitting, we have obtained K2 ¼ 1250mL=mghr at

60�C and K3 ¼ 4:5� 10�1 mL=g hr.
3. The propagation rate constants in water (K5, K6, K7) and in droplet

(K13, K14, K15) are assumed to be equal.

K5 ¼ K6 ¼ K7 ¼ Kw
p ðsayÞ; K13 ¼ K14 ¼ K15 ¼ Kd

p ðsayÞ
Kd
p is available from the Polymer Handbook [30] and the average

propagation rate constant Kp is taken as Kp ¼ VxK
w
p þ ð1� VxÞKd

p .

The term Vx is the volume fraction of water phase in the reaction mass.

The values taken in the simulation are as follows:

Vx ¼ 0:75 Kd
p ¼ 2:06� 107 mL=g hr

Kw
p ¼ ðassumedÞ13:18� 106 mL=g hr

Kp ¼ 10:4� 107 mL=g hr

4. The termination rate constants for MMA and graft polymer in water

(K8, K9, K10) and those in the droplet phase (K16, K17, K18, K19) are

assumed to be equal. The following weighted average termination rate

constant is defined as

Kt ¼ VxK
w
t þ ð1� VxÞKd

t

The value Kd
t is known from homopolymerization data and Kw

t has

been assumed to be a quantity of the same order of magnitude. At

60�C, Kw
t is assumed to be 38:55� 1011 mL=g hr, K

p
t is

4:28� 1011 mL=g hr, and Kt is 29:98� 1011 mL=g hr.
5. The absorption rate constants K11, K12, K33, and K34 for homopolymer,

graft copolymer radicals, and dead molecules from water to droplet

phase have been assumed to be equal. These can be estimated [10]

using Kc ¼ 4prpDwNA, where rp is the particle radius (
 2:1� 10�7),
Dw is the diffusion coefficient (
 2:86� 10�8 cm2=sec), and NA is

Avogadro’s number (6:023� 1023). This gives K11, K12, K33, and K34

as 1:634� 1012 mL=g hr. In addition, we have assumed that the

desorption rate constants are zero; that is, K�11 ¼ K�12 ¼ K�33 ¼
K�34 ¼ 0:0.
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6. All of the transfer reaction rate constants K20 to K32 have been assumed

to be equal; that is, K20 ¼ K21 ¼ K22 ¼ K32 ¼ Ktr (say). The value of

Ktr that gives good fit of the data at 60�C is 1060mL=g hr.
The ordinary differential equations of Table 7.3 can be solved

numerically and the results have been plotted in Figure 7.12. Note the

decrease in the amount of homopolymer PMMA for large times and a

rapid increase in the formation of graft copolymer. This result could

not be predicted by the Smith–Ewart theory.

7.9 CONCLUSIONS

The molecular weight of the polymer formed in emulsion polymerization is

normally considerably higher than that formed in corresponding radical poly-

merization. As might be clear from the discussion of this chapter, this is largely

because of the presence of micelles present in the water where the polymerization

has been hypothesized to occur. The micelles offer a flexible cavity which serves

as a cage where polymer radicals can grow but cannot terminate due to

thermodynamic constraints. Similar results have been obtained when polymer-

ization is carried out in more rigid cages of lipid bylayers, liquid crystals, organic

crystals, inclusion complexes, microporous zeolites, and mesoporous materials

[31].

In Chapters 1–7, readers have been introduced to formulate polymers for a

given end use. The purpose of the remainder of the chapters is to make the

FIGURE 7.12 Numerical solution of differential equations of Table 7.3 and the

experimental results of Example 7.5. (From Ref. 29.)
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readers familiar with subjects relevant to polymer physics, such as characteriza-

tion, thermodynamics rheology and so forth.
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PROBLEMS

7.1. Take kp for styrene as 500 L=mol sec and [M] as 5.2mol=L at 50�C. Let
there be 1014 particles=cm3 of water. Let primary radicals be generated in

water at the rate of 1012 radicals=sec (cm3 of water) (¼ r). Calculate rp.

Calculate mn using the following relation:

mn;emulsion ¼
kpNt½M�

r

Compare this rate and mn for bulk polymerization at the same monomer

concentration and r.
7.2. Suppose that there is a chain transfer agent that is water soluble and does

not dissolve in the monomer at all. Would the expression for mn given in

Problem 7.1 be valid? What would happen to the overall rate?

7.3. Write the elementary reactions when styrene is polymerized in emulsion

with a transfer agent that is water insoluble but styrene soluble.
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7.4. In the derivation of the total number of particles, Nt, it was assumed that r
was constant. Supposing that the decomposition of initiator follows first-

order kinetics, determine the time at which the polymerization enters the

second stage.

7.5. In Problem 7.4, find out how the rate and DP would vary with time.

7.6. Within latex particles, the concentration of the polymer is much higher and

considerably restricts the motion of macroradicals. When the polymeriza-

tion temperature, T , is less than the glass transition temperature, Tg, of the

reaction mass, a limiting conversion x1 is approached. The free-volume

theory gives this to be

x1 ¼
ðrp=rmÞfp

1� ð1� rp=rmÞfp

T ¼ Tg ¼
apfpTgp þ amð1� fpÞTgm

apfp þ amð1� fpÞ
where fp is the volume fraction of the polymer, Tgp and Tgm are the Tg
values of the pure polymer and monomer, respectively, ap and am are the

differences in coefficients of the volumetric expansion of polymer (or

monomer) in the melt and glass state, respectively, and rp and rm are the

densities of the polymer and monomer, respectively. Using these equations,

plot T versus x1 for styrene, for which Tgp ¼ 92:5�C, Tgm ¼ �106�C,
ap ¼ 0:48� 10�3 C�1, and am ¼ 1:0� 10�3 C�1.

7.7. Consider the seed polymerization in which seeds of polymer particles (each

of volume v) are each charged to the reaction mass having monomer and

initiator. When desorption of radicals and water-phase termination of

radicals are neglected, the average number of growing polymer radicals n

can be derived:

�nn ¼ ða=4ÞI0ðaÞ
I1ðaÞ

where a2 ¼ 8rv=ðktN Þ, and N is the total number of particles. Derive an

expression for conversion as a function of time.

7.8. It is evident that kt and kp within polymer particles change with time and

have been modeled using the following:

k

k0
¼ D

D0

Determine the variation of kt and kp within the particle and write the

appropriate particle size and MWD equations.

7.9. The emulsion polymerization of vinyl acetate has been modeled as

consisting of the initiation of radicals in the water phase, the initiation of

particles in water phase, the entry of radicals into polymer particles, the
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termination of particles, the chain transfer to monomer in polymer

particles, and the escape of radicals in polymer particles. Write the

unsteady-state balance for the total number of particles NT and the

number of polymer radicals having 1 and 2 radicals (N1 and N2).

7.10. Latexes prepared by mixing methyl methacrylate and ionogenic monomers

containing carboxylic acid groups constitute a special class of latexes,

which are used in carpet backing, adhesives, surface coating, and paper

coating. List a few monomers that can be used for this purpose. Their

solubility improves by increasing pH.

7.11. To prepare a 340-nm sphere, the following recipe has been suggested:

19.9 g of methyl methacrylate, 3.5 g of methacrylic acid, 10.5 g of hydroxy-

ethyl methacrylate, 1.1 g of ethylene glycol dimethacrylate, and 0.1 g of

emulsifier sodium dodecyl sulfate (SDS) are added to 64.9 g of distilled

water. Polymerization is carried out for 1 hr at 98�C in a sealed tumbling

container. Write down the approximate molecular structure of the surface

and indicate whether the polymer particle would dissolve in any solvent.

7.12. The polymer particles formed in Problem 7.11 are suspended in water

adjusted to pH 10.5 with NaOH and activated at 25�C with 10mg of

cyanogen bromide per milliliter of suspension. After 15min, it is diluted

with equal volume of cold 0:1 M borate buffer at pH 8.5 and 4�C. The
immunolatex conjugates thus prepared are known to bind antigens. Explain

why this occurs.

7.13. In the carbodiimide method, the latex particles of Problem 7.11 are reacted

in an aqueous medium with water-soluble diimide. This can be reacted to

antibodies. Write down the chemical reactions.

7.14. Suppose two monomers in a 1 : 1 ratio (responding to radical initiators) are

mixed and copolymerized in an emulsion. These monomers dissolve in

water in the same proportion. Find the rate of polymerization.

7.15. In Problem 7.14, the resultant polymer is a copolymer. We know the values

of r1 and r2 from the study of bulk copolymerization. Can we use the same

values for emulsion copolymerization? Write down all the equations that

you would use for this case.

7.16. Suppose we want to copolymerize styrene and acrylonitrile in an emulsion.

The solubility of acrylonitrile is 7.4% and that of styrene is 0.04% by

weight in water. Let S (volume of styrene), w (volume of water), and a

(volume of acrylonitrile) be mixed together. Find the concentrations of

monomers in micelles (or polymer particles) at equilibrium. From the

results developed in Problem 7.14, calculate Fs, the fraction of styrene in

the resultant polymer.

7.17. We can carry out rigorous modeling of the molecular weight of polymer in

emulsion polymerization as follows. The state of the particle is defined by

the number of polymerization radicals in it. The following additional
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variables are defined:

Ni ¼ number of polymer particles in state i

Xi ¼ number of dead chains within particles in state i

Wi ¼ total weight of live chains in state i

Yi ¼ total weight of dead chains in state i

xi ¼ mean number of dead chains within particle in state i

yi ¼ mean total weight of dead chains per particle in state i

wi ¼ mean weight of live chains in state i

li ¼ mean weight of dead chains in state i

Write the contribution to W , Xi, Ni, and Yi from polymerization, radical

entry, radical exit, chain transfer, and bimolecular termination.

7.18. Derive overall expressions for Xi, Ni, Yi, and Wi. The mean dead weight per

particle in state i is given by

li ¼
Yi

Xi

and the grand mean is given by

l ¼
P1

i¼0 YiP1
i¼0 Xi

7.19. In inverse emulsion polymerization of acrylamide, we carry out polymer-

ization in iso-octane using nonionic emulsifier pentaerithritol myristate

(PEM) with oil-soluble azoinitiators (e.g., AIBN). The standard recipe (see

page 209 of Reichert and Geiseler) is as follows:

Oil phase Weight (g) Water phase Weight (g)

Iso-octane 649.64 Water 195.15

PEM 13.86 Acrylamide 53.31

AIBN 0.164

Show the schematic model of the inverse polymerization along with

various reactions occurring in different phases.

7.20. Acrylonitrile and methyl acrylate are mixed in water with a suitable water-

soluble initiator and emulsifier. Determine the composition of the polymer.
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8

Measurement of Molecular Weight
and Its Distribution

8.1 INTRODUCTION

A solid polymer is a mosaic of structures. For a crystallizable homopolymer, for

example, we can vary the amount and nature of crystallinity and the shape and

size of the crystals. In addition, we can vary the orientation of the polymer chains

in both the crystalline and amorphous phases. This variation can be brought about

either by changing material variables or process conditions. The former include

the chemical structure, the molecular weight and its distribution, the extent of

chain branching, and the bulkiness of the side groups. The latter include the

temperature and the deformation rate. It is the interplay within this multitude of

variables that leads to the physical structure visible in the finished product. This

structure, in turn, determines the properties of the solid polymer. In this chapter,

we examine the methods of measuring the polymer’s molecular weight and its

distribution. These quantities were defined in Chapter 1, and knowledge thereof

can be helpful to the process engineer in optimizing desired polymer properties.

These properties include mechanical properties such as impact strength, flow

properties such as viscosity, thermal properties such as the glass transition

temperature, and optical properties such as clarity.

There are several other reasons why we might want to measure the

molecular weight. The molecular weight and its distribution determine the

viscous and elastic properties of the molten polymer. This affects the processi-
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bility of the melt and also the behavior of the resulting solid material (see also

Chapter 12). To cite a specific example [1], a resin suitable for extrusion must

have a high viscosity at low shear rates so that the extrudate maintains its

integrity. To be suitable for injection molding, however, the same resin must have

a low viscosity at high shear rates so that the injection pressure not be excessive.

Both of these requirements can be satisfied by a proper adjustment of the

molecular-weight distribution. More often, though, different grades of the same

polymer are marketed for different products that are fabricated via different

polymer processing operations; the resin used for making polycarbonate water

bottles, for example, differs significantly in molecular weight from the poly-

carbonate that goes into compact disks. Differences in molecular-weight distribu-

tion also influence the extent of polymer chain entanglement and the amount of

melt elasticity, as measured by phenomena such as extrudate swell. The effect of

swell shows up during processing, wherein flow results in different amounts of

chain extension and orientation, which remain frozen within the solidified part.

As a consequence, two chemically similar polymers, processed identically, that

have the same molecular weight but different molecular-weight distributions may

result in products that show significantly different shrinkages, tensile properties,

and failure properties [2]. For this very important reason, it is advantageous to

know the molecular weight and molecular-weight distribution of the polymers

used. Furthermore, because polymers can mechanically degrade during proces-

sing and during use (polymers such as nylon can also increase in molecular

weight), a second measurement of the molecular weight can reveal the extent of

chain scission or postcondensation. These measurements are also useful in

verifying that the various kinetic schemes postulated for polymer synthesis in

Chapters 3–7 do, indeed, produce the molecular-weight distributions predicted

theoretically. Other situations where the molecular weight and its distribution

directly influence results include phase equilibrium and crystallization kinetics.

A variety of methods are available for molecular-weight determination and

they are applicable in different ranges of molecular weight. Also, they provide

different amounts and kinds of information. Thus, end-group analysis and

colligative property measurements yield the number-average molecular weight.

Light scattering, on the other hand, furnishes the weight-average molecular

weight and the size of the polymer in solution. Intrinsic viscosity supplies neither

number-average molecular weight ( �MMn) nor weight-average molecular weight

( �MMw); it gives a viscosity-average molecular weight. The entire distribution can be

obtained using either ultracentrifugation or size-exclusion chromatography.

However, the former technique is an absolute one, whereas the latter is indirect

and requires calibration. All of these methods mandate that the polymer be in

solution. Other, less commonly encountered methods are described elsewhere [3].
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8.2 END-GROUP ANALYSIS

The simplest conceptual method of measuring polymer molecular weight is to

count the number of molecules in a given polymer sample. The product of the

sample weight and Avogadro’s number when divided by the total number of

molecules gives the number-average molecular weight. This technique works best

with linear molecules having two reactive end groups that each can be titrated in

solution. Consequently, linear condensation polymers made by step-growth

polymerization and possessing carboxyl, hydroxyl, or amine chain ends are

logical candidates for end-group analysis.

Nylon 66, a polyamide and one of the earliest polymers to be synthesized,

contains amine and carboxyl end groups. The number of amine groups in a

sample can be determined by dissolving the polymer in a phenol–water solvent

[4]. Typically, ethanol and water are added to this solution and the mixture is

titrated to a conductometric end point with hydrochloric acid in ethanol. Because

the number of amine end groups may not equal the number of carboxyl end

groups, the acid groups are counted separately by dissolving the nylon in hot

benzyl alcohol, and titration is carried out with potassium hydroxide in benzyl

alcohol to a phenolphthalein end point. Finally, assuming that the reaction goes to

completion and that each nylon molecule has two titratable ends, it is possible to

calculate

�MMn ¼
2

½NH2� þ ½COOH�
ð8:2:1Þ

where the quantities in square brackets are concentrations of end groups in moles

per gram of polymer. Results are comparable in magnitude to those obtained

using osmotic pressure and vapor-pressure osmometry in the range of applic-

ability of these techniques [5].

In addition to polyamides, end-group analysis has been used with poly-

esters, polyurethanes, and polyethers. Besides titration, counting methods that

have been employed include spectroscopic analyses and radioactive labeling.

Because the number of chain ends for a given mass of sample reduces with

increasing molecular weight, the method becomes less and less sensitive as the

size of the polymer molecules increases. The molecular weight of most conden-

sation polymers, however, is less than 50,000, and in this range, end-group

analysis works fine [6]. Note also that the amount of polymer needed for end-

group analysis is relatively small.

Example 8.1: In order to determine the number of carboxyl end groups in a

sample of polyethylene terephthalate, Pohl dissolved 0.15 g of the polymer in hot

benzyl alcohol, to which some chloroform was subsequently added [7]. This

solution, when titrated with 0.105 N sodium hydroxide, required 35 mL of the
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alkali. If a blank solution of the benzyl alcohol plus chloroform required 5 mL of

the base, how many carboxyl end groups were contained in the polymer sample?

Solution: Because 30 mL of 0.105 gram equivalent per liter of the base reacted

with the polymer, the concentration of gram equivalents of end groups was

ð30Þð10�6Þð0:105Þ
0:15

¼ 21� 10�6 equivalents per gram

8.3 COLLIGATIVE PROPERTIES

It is easily observed that dissolving a nonvolatile solute in a liquid results in a

depression of the freezing point; that is, the temperature at which a solid phase is

formed from solution is lower than the temperature at which the pure solvent

freezes. This is the principle at work in an ice cream maker and in snow removal

when salt is used to melt and thereby remove snow and ice from roads. Besides

lowering the freezing point, the addition of a nonvolatile solute also reduces the

vapor pressure at a given temperature, with the consequence that the solution

boils at a higher temperature than the pure solvent does. Furthermore, a solution

can develop a large osmotic pressure (explained later), which can be measured

with relative ease. These four effects—depression of freezing point, elevation of

boiling point, lowering of solvent vapor pressure, and development of an osmotic

pressure—are called colligative properties and they depend only on the number

concentration of the solute in solution in the limit of infinite dilution. Thus,

beginning with a known mass of solute, a knowledge of any of these colligative

properties reveals the total number of molecules in solution, which, in turn,

allows computation of the number-average molecular weight. However, the

relative magnitude of these effects is such that as the molecular weight of the

solute increases and the number of molecules in a given sample mass decreases,

not all four colligative properties can be measured with equal accuracy or ease;

indeed, membrane osmometry is the method of choice for measuring the number-

average molecular weight of high polymers.

Phase equilibrium is the basic principle used to obtain expressions for the

magnitude of the different colligative properties. It is known from thermo-

dynamics that when two phases are in equilibrium, the fugacity, f̂f , of a given

component is the same in each phase. Thus, if, as shown in Figure 8.1, pure vapor

A is in equilibrium at temperature T and pressure P with a liquid mixture of A and

B, where B is a nonvolatile solute,

f vA ðT ; PÞ ¼ f̂f LA ðT ; P; xAÞ ð8:3:1Þ
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where the superscripts v and L denote vapor phase and liquid phase, respectively,

and xA is the mole fraction of A in the liquid phase. Also, a ‘‘hat’’ ( ^ ) on fA
signifies a component in solution as opposed to a pure component.

If the mixture of A and B is sufficiently dilute, it will behave as an ideal

solution, for which the following holds [8]:

f̂f LA ðT ; P; xAÞ ¼ f LA ðT ; PÞxA ð8:3:2Þ
and the result is known as the Lewis and Randall rule. Consequently,

f vA ðT ; PÞ ¼ f LA ðT ; PÞxA ð8:3:3Þ
If at the same pressure P, pure A boils at temperature Tb, then it is obvious that

f vA ðTb; PÞ ¼ f LA ðTb; PÞ ð8:3:4Þ
Dividing the left-hand side of Eq. (8.3.4) by the left-hand side of Eq. (8.3.3),

taking the natural logarithm, and equating the result to the logarithm of the ratio

of the corresponding right-hand sides gives the following:

ln
f vA ðTb; PÞ
f vA ðT ; PÞ


 �
¼ ln

f LA ðTb; PÞ
f LA ðT ; PÞ


 �
� ln xA ð8:3:5Þ

For a pure material,

d ln f

dT

� �
P

¼ h0 � h

RT 2
ð8:3:6Þ

where h is the specific enthalpy at temperature T and pressure P, and h0 is the

same quantity at temperature T but at a low enough pressure that the material

behaves as an ideal gas.

Integrating Eq. (8.3.6) from temperature Tb to temperature T at constant

pressure and noting that Tb � T and, therefore, TTb � T 2
b ,

ln
f ðT ; PÞ
f ðTb; PÞ


 �
¼ h0 � h

R

1

Tb
� 1

T


 �
¼ h0 � h

RT2
b

ðT � TbÞ ð8:3:7Þ

FIGURE 8.1 Pure solvent vapor in equilibrium with a polymer solution.
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Applying Eq. (8.3.7) to pure A in the vapor phase and then to pure A in the liquid

phase and introducing the results in Eq. (8.3.5) gives

� h0 � hv

RT 2
b


 �
DTb ¼ �

h0 � hL

RT 2
b


 �
DTb � ln xA ð8:3:8Þ

where DTb equals T � Tb, the elevation in boiling point.

Because ln xA equals lnð1� xBÞ, which for small xB is the same as �xB, we
see the following:

DTb ¼
ðRT2

b xBÞ
Dhv

ð8:3:9Þ

in which Dhv equals h
v � hL, the molar latent heat of vaporization of pure solvent

A. From the definition of the mole fraction,

xB ¼
Moles of B

Total moles in mixture

¼ Mass of B

ðMol: wt: of BÞðTotal molesÞ
Mixture volume

Mixture volume

� cvA
�MMn

ð8:3:10Þ

where c is the mass concentration of B, �MMn is the number-average molecular

weight of B, and vA is the molar volume of the solvent. Finally, we can derive

DTb
c
¼ RT2

b vA

Dhv �MMn

ð8:3:11Þ

which allows us to compute �MMn from a measurement of DTb. Note that one

typically extrapolates the left-hand side to c ¼ 0 in order to ensure ideal solution

behavior. This technique of molecular-weight measurement is also known as

ebulliometry.

If we consider the situation depicted in Figure 8.2 instead of that shown in

Figure 8.1, then an analysis similar to the one carried out earlier leads to an

expression for the depression in freezing point, which is identical to Eq. (8.3.11)

except that DT is now Tf � T, where Tf and T are the freezing points of the pure

solvent and the solution, respectively. Also, Dh becomes the molar latent heat of

fusion of the pure solvent, and Tb is replaced by Tf . This measurement is known

as cryoscopy.

For an ideal solution, the vapor pressure pA of the solvent in solution is

given by Raoult’s law as follows [8]:

pA ¼ xAPA ð8:3:12Þ
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where PA is the vapor pressure of the pure solvent at temperature T. This lowering

in vapor pressure is utilized for the measurement of molecular weight in the

technique known as vapor-pressure osmometry.

Figure 8.3 shows a schematic diagram of a vapor-pressure osmometer. Two

thermistor probes are positioned inside a temperature-controlled cell that is

saturated with solvent vapor. If syringes are used to introduce drops of pure

solvent on the thermistor probes, then at thermal equilibrium, the temperature of

the two probes is the same and an equal amount of solvent vaporizes and

condenses at each probe. If, however, one of the solvent drops is replaced by a

drop of solution, there is an initial imbalance in the amount of solvent condensing

and vaporizing at that probe. Because of the lowering in vapor pressure, less

solvent vaporizes than condenses, which leads to a rise in temperature due to

the additional heat of vaporization. When equilibrium is reestablished, the

temperature T at this probe is higher than the temperature TS at the other probe

which is in contact with the drop of pure solvent. Under these conditions, the

vapor pressure of pure solvent at temperature TS equals the vapor pressure of the

solvent in solution at temperature T , and the situation is analogous to ebullio-

metry. Therefore, we can use Eq. (8.3.11) again if we define DT as T � TS . The

temperature difference itself is measured as a difference in electrical resistance by

FIGURE 8.2 Pure solid solvent in equilibrium with a polymer solution.

FIGURE 8.3 Schematic drawing of a vapor-pressure osmometer.
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making the two thermistors be the two arms of a Wheatstone bridge. Commercial

instruments can, at best, measure DT down to about 5� 10�5�C. Because of heat
losses and solution nonidealities, the measured DT does not equal the value

calculated based on Eq. (8.3.11). It is necessary to calibrate the instrument using

a material of known molecular weight. The range of commercial vapor pressure

osmometers is from 40 to 50,000 g=mol, with the lower limit being set by solute

volatility [6].

For polymer molecular weights of 100,000 and greater, the temperature

differences predicted by Eq. (8.3.11) for a dilute polymer solution in a typical

organic solvent are about 10�5�C (see Table 8.1). Such small changes in

temperature are very difficult to measure with any degree of precision. Conse-

quently, when working with high-molecular-weight polymers, we turn to other

techniques of molecular-weight determination, especially osmotic pressure.

When a polymer solution is separated from the pure solvent by a

semipermeable membrane that allows passage of the solvent but not the solute,

then (as shown in Fig. 8.4) the tendency to equalize concentrations results in flux

of the solvent across the membrane and into the solution. As mass transfer

proceeds, a pressure head builds up on the solution side, tending to slow down

and ultimately stop the flow of solvent through the membrane. At equilibrium, the

liquid levels in the two compartments differ by h units; the difference in pressure

p is known as the osmotic pressure of the solution. Note that if additional

pressure is applied to the solution, solvent can be made to flow back to the solvent

side from the solution side; this is known as reverse osmosis. As the following

analysis demonstrates, osmotic pressure can be employed to measure the number-

average molecular weight of a polymeric solute.

If we designate solvent properties by subscript 1 and solute properties by

subscript 2, then the following relations hold at thermodynamic equilibrium,

using the condition of phase equilibrium:

f1ðT ; PÞ ¼ f̂f1ðT ; P þ p; x1Þ � x1 f1ðT ; P þ pÞ ð8:3:13Þ

TABLE 8.1 Colligative Properties of Polystyrene-in-Toluene Solutions at a Mass

Concentration of 0.01 g=cm3

�MMn DTb ðKÞ DTf ðKÞ p (cm of solvent at 25�C)

50,000 7:8� 10�4 8:5� 10�4 5.8

100,000 3:9� 10�4 4:25� 10�4 2.9

500,000 7:8� 10�5 8:5� 10�5 0.58

5,000,000 7:8� 10�6 8:5� 10�6 0.058
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where the second equality follows from the Lewis and Randall rule. Conse-

quently,

ln
f1ðT ; PÞ

f1ðT ; P þ pÞ
� �

¼ ln x1 ð8:3:14Þ

For a pure material, however, laws of thermodynamics give

d ln f

dP

� �
T

¼ v1
RT

ð8:3:15Þ

where v1 is the molar volume of the solvent. Integrating Eq. (8.3.15) between P

and P þ p at constant temperature yields

ln
f ðT ; P þ pÞ
f ðT ; PÞ


 �
¼ v1p

RT
ð8:3:16Þ

Comparing Eqs. (8.3.14) and (8.3.16) reveals

� ln x1 ¼
v1p
RT

ð8:3:17Þ

Because it is possible to write the left-hand side as x2 for dilute solutions, a

further use of Eq. (8.3.10) converts Eq. (8.3.17) to

p
c
¼ RT

�MMn

ð8:3:18Þ

where c is the mass concentration of the solute. Again, we typically extrapolate

p=c to c ¼ 0 to ensure that ideal solution behavior is obtained and Eq. (8.3.18)

FIGURE 8.4 Osmosis through a semipermeable membrane.
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holds. Expected values of the osmotic pressure for dilute solutions of polystyrene

in toluene are listed in Table 8.1.

A typical plot of experimental data for aqueous solutions of polyethylene

oxide at 20�C is shown in Figure 8.5 [9]; these data are extremely easy to obtain

even though 2 days are required for equilibrium to be reached. It is seen that the

plot has a nonzero slope, and significant error can occur if extrapolation to zero

concentration is not carried out. This nonzero slope can be theoretically predicted

if real solution theory is used instead of assuming ideal solution behavior. For

instance, if we employ the Flory–Huggins theory (considered in detail in Chapter

9) and equate the fugacities (or, equivalently, the chemical potentials) of the

solvent on both sides of the membrane, the use of Eq. (9.3.30) along with the

known dependence of the chemical potential on temperature leads to the

following result (see Chapter 9):

p ¼ �RT

v1
lnf1 þ f2 1� 1

m

� �
þ w1f

2
2


 �
ð8:3:19Þ

where f1 and f2 are the volume fractions of the two components, respectively, m

is the ratio of the molar volume of the solute to the molar volume of the solvent,

and w1 is the interaction parameter.

FIGURE 8.5 Osmotic pressure of aqueous polyethylene oxide solutions at 20�C. (From
Ref. 9.)
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On expanding lnf1 in a Taylor series about f2 ¼ 0 and noting that the

mass concentration c of the polymer equals �MMnf2=mv1, Eq. (8.3.19) becomes

p
c
¼ RT

�MMn

1þ 1

2
� w1

� �
mf2 þ

m

3
f2
2 þ � � �


 �
ð8:3:20Þ

which can be written in terms of the polymer density r because f2 equals c=r and

m equals �MMn=rv1. Finally,

p
c
¼ RT

�MMn

þ RT 1
2
� w1

� �
c

r2v1
þ RTc2

3r3v1
þ � � � ð8:3:21Þ

and it is seen that Eq. (8.3.18) is obtained by letting c tend to zero in Eq. (8.3.21).

As discussed in Chapter 9, the latter equation can be used to estimate the

interaction parameter if the polymer number-average molecular weight is known.

Because the Flory–Huggins theory is not strictly valid at low polymer

concentrations, it is common practice to rewrite Eq. (8.3.21) in the form of a virial

equation (as is done in thermodynamics):

p
c
¼ RT

1

�MMn

þ A2cþ A3c
2 þ � � �


 �
ð8:3:22Þ

in which A2 and A3 are known as the second and third virial coefficients,

respectively.

Commercial membrane osmometers are designed to reduce the time of

measurement from a few hours to a few minutes. This is done by reducing the cell

volume and increasing the membrane surface area. In addition, pressure trans-

ducers are used to detect solvent flow, and external pressure is applied to the

solution to help achieve rapid equilibrium. Molecular weights between 103 and

106 can be measured at temperatures exceeding 100�C. The lower limit on the

molecular weight is set by solute permeability, whereas the upper limit is

governed by the sensitivity and accuracy of the pressure measuring system.

Additional details may be found in the literature [6,10].

8.4 LIGHT SCATTERING

A beam of light is a transverse wave made up of sinusoidally varying electric and

magnetic field vectors that are perpendicular to each other and also to the

direction of propagation of the wave. Such a wave contains energy that is

measured in terms of the wave intensity I, defined as the power transmitted per

unit area perpendicular to the direction in which the wave is traveling. Using the

principles of physics [11], it is easy to show that the average intensity or the

power averaged over one cycle is proportional to the square of the wave

amplitude. When such a beam travels through a polymer solution, it can go
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through unaltered, but, more commonly, it is either absorbed or scattered.

Absorption occurs only if the wave frequency is such that the energy of radiation

exactly equals the energy gap between, say, the electronic or vibrational energy

levels of the molecules making up the liquid medium; this phenomenon is the

basis of methods such as infrared and nuclear magnetic resonance spectroscopy.

Scattering, on the other hand, involves attenuation of the incident beam with

simultaneous emission of radiation in all directions by the scattering molecules

due to the presence of induced instantaneous dipole moments. In this case, the

energy of the incident beam equals the sum of the energies of the transmitted

beam and all of the scattered beams. Here, scattered light has the same frequency

as the incident light, and the process is called elastic light scattering. Sometimes,

though, scattered light has a different frequency, which is called inelastic or

Raman scattering. From an observation of the time-averaged intensity of

elastically scattered light (called static light scattering), we can get information

about the weight-average molecular weight, the second virial coefficient, and the

size or radius of gyration (root-mean-square distance of chain elements from the

center of gravity of the molecule) of macromolecules. Instantaneous scattering

intensity or dynamic light scattering reveals, in addition, the translational

diffusion coefficient [12]. Note that, in recent times, dynamic light scattering

has also been applied to, among other things, studies of bulk polymers, micelles,

microemulsions, and polymer gels [13]. Here, however, we consider the applica-

tion of static light scattering to the determination of polymer molecular weight

under conditions where absorption effects are not important.

The theory of light scattering was developed many years ago; a review [14],

excellent books [15,16], and an elementary treatment [17] on the subject are

available. The essential features of elastic light scattering can be understood with

reference to Figure 8.6, which shows an unpolarized beam of light of intensity I0
and wavelength l passing through a cylindrical sample cell of unit volume. The

intensity Iy of the scattered beam is measured at a distance r from the cell and at

an angle y with the direction of the transmitted beam. If the cell contains N

noninteracting, identical particles of an ideal gas (polymer solutions are consid-

FIGURE 8.6 Schematic diagram of static light scattering.

Measurement of Molecular Weight 351

Copyright © 2003 Marcel Dekker, Inc.



ered later) and if the size of the scattering particles is small compared to the

wavelength of the incident light, then we have the following [15]:

Iy

I0
¼ 2p2ð1þ cos2 yÞðdn=dcÞ2Mc

NAl
4
r2

ð8:4:1Þ

in which n is the refractive index of the gas, c is the mass concentration, NA is

Avogadro’s number, and M is the molecular weight of the particles. According to

this equation, which is known as the Rayleigh equation, if N is fixed, the

scattering intensity is proportional to the square of the molecular weight because

c equals NM=NA. Thus, if there were a mixture of two kinds of particles, with one

kind being much larger than the other, the contribution of the larger particles to

the scattered light intensity would be the dominant one. This fact is used to great

advantage in determining the molecular weight of polymeric solutes in solution.

In this situation, for light scattering from an ideal polymer solution, Eq. (8.4.1) is

modified to read as follows [15]:

Iy

I0
¼ 2p2ð1þ cos2 yÞn20ðdn=dcÞ2c

NAl
4
r2=M

ð8:4:2Þ

in which n0 is the refractive index of the solvent and n now becomes the refractive

index of the solution, whereas M is the molecular weight of the polymer and c its

mass concentration.

Equation (8.4.2) is valid only at infinite dilution. For finite concentrations,

the use of a virial expansion of the type introduced in Eq. (8.3.22) leads to

Iy

I0
¼ 2p2ð1þ cos2 yÞn20ðdn=dcÞ2c

NAl
4
r2ð1=M þ 2A2cþ 3A3c

2 þ � � �Þ ð8:4:3Þ

and Eq. (8.4.3) properly reduces to Eq. (8.4.2) when c tends to zero.

For most polymer molecules, the limitation that the particle size be much

smaller than the wavelength of light, which, in practice, means that all molecular

dimensions should be less than l=20, is too restrictive. When the particle size

becomes comparable to the wavelength of the incident beam, scattering occurs

from different parts of the same molecule, resulting in interference due to phase

differences. This tends to progressively reduce Iy as y increases. The result can be

seen in Table 8.2, which lists data for polystyrene-in-toluene solutions. However,

because Eq. (8.4.3) still holds when y is zero, we can either make measurements

at different y values and extrapolate data to y equal to zero, or make measure-

ments at very small values of y. The latter situation is practical because the use of

lasers as light sources allows us to conduct experiments at y values as small as 4�.
Note that light scattering at nonzero y values depends on the geometric shape of

the scattering particle; it is from the deviation of the data from the predictions of

Eq. (8.4.3) that we estimate the radius of gyration of the polymer molecule.
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It is common practice to define a quantity Ry (called the Rayleigh ratio) as

follows:

Ry ¼
Iyr

2

I0ð1þ cos2 yÞ ð8:4:4Þ

so that Eq. (8.4.3) takes a form similar to Eq. (8.3.22):

Kc

Ry
¼ 1

M
þ 2A2cþ 3A3c

2 þ � � � ð8:4:5Þ

where K is a optical constant given by

K ¼ 2p2n20ðdn=dcÞ2
NAl

4
ð8:4:6Þ

and n0 and dn=dc are usually measured using a refractometer and a differential

refractometer, respectively [6].

On measuring Ry as a function of concentration at a low y value, Kc=Ry is

plotted versus c. The intercept of such a plot represents extrapolation to zero

concentration, and from Eq. (8.4.5), we have the following:

lim
c!0

Ry ¼ MKc ð8:4:7Þ

which yields the polymer molecular weight. Also, the slope of the plot allows us

to compute the second virial coefficient. If measurements are made at several

constant temperatures, the temperature value at which A2 equals zero is the y
temperature.

TABLE 8.2 Light-Scattering Data, Iy, in Arbitrary Units for Solutions of Polystyrene in

Toluene at 20�C

Concentration (g=cm3)

Scattering angle, y (deg) 0.0002 0.0004 0.001 0.002

25.8 3.49 5.82 7.86 8.65

36.9 2.98 4.88 7.38 8.02

53.0 2.19 3.82 6.37 7.41

66.4 1.74 3.12 5.58 6.88

90.0 1.22 2.25 4.42 5.95

113.6 0.952 1.80 3.73 5.35

143.1 0.763 1.48 3.15 4.79

Source: Ref. 18.
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If the polymer sample is polydisperse, then Ry can be written as a sum
P

Ri

over all of the molecular-weight fractions; so, Eq. (8.4.7) becomes

Ry ¼ K
P

Mici ¼ K
P

Mi

wi

v
ð8:4:8Þ

because the mass concentration of each molecular-weight fraction equals the ratio

of the respective mass divided by the solution volume. The total mass concentra-

tion c, however, is

c ¼Pwi

v
ð8:4:9Þ

so that

Ry

c
¼ K

P
MiwiP
wi

¼ K �MMw ð8:4:10Þ

and it is clear that, despite the similarities between Eqs. (8.3.22) and (8.4.5), light

scattering yields the weight-average molecular weight.

The usual range of molecular weights that can be measured by light

scattering is from a few thousand to a few million. A photomultiplier is used

as a detector; measurements can be made in either aqueous or organic solvents

and can be made in the presence of salts or buffers. However, care must be taken

to exclude dust particles, which can influence the results and introduce errors.

Light-scattering measurements are typically time-consuming, and the equipment

is significantly more expensive than that needed for colligative property measure-

ment. Nonetheless, light scattering is a powerful technique, especially when

coupled with other techniques such as gel permeation chromatography; the

combination of the two can give the complete molecular-weight distribution.

Additional applications of classical light scattering have been discussed in the

literature [19].

8.5 ULTRACENTRIFUGATION

In order to understand the theory of the ultracentrifuge, let us first consider an

analogous situation, that of a single sphere settling under gravity in a long tube

filled with a Newtonian liquid, as shown in Figure 8.7. If the sphere of mass m

and volume V is dropped from a state of rest, it initially accelerates, but soon

reaches a constant velocity, known as the terminal velocity, at which point the

vector sum of all the forces acting on the sphere is exactly zero. As long as

the tube radius is large compared to the sphere radius, the forces that act on the
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sphere are gravity, buoyancy, and the viscous drag of the liquid Fd tending to slow

down the sphere. At equilibrium, therefore,

rsVg � rVg � Fd ¼ 0 ð8:5:1Þ
where rs is the density of the sphere, r is the density of the liquid, and g is the

acceleration due to gravity.

As shown later in Section 13.4 of Chapter 13, the drag force on an isolated

sphere can be written in terms of the Stokes–Einstein equation as

Fd ¼
kTv

D
ð8:5:2Þ

in which k is Boltzmann’s constant, T is the absolute temperature, v is the terminal

velocity of the sphere, and D is the sphere diffusion coefficient. Introducing

Eq. (8.5.2) into Eq. (8.5.1), solving for the sphere volume, and multiplying the

result by the sphere density gives the following:

m ¼ kTv

Dg½1� ðr=rsÞ�
ð8:5:3Þ

On multiplying both sides of Eq. (8.5.3) by Avogadro’s number, the molecular

weight M of the sphere can be derived as

M ¼ RTv

Dg½1� ðr=rsÞ�
ð8:5:4Þ

FIGURE 8.7 Settling of a sphere in a Newtonian liquid.
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where R is the universal gas constant. It can be seen that a measurement of the

terminal velocity makes it possible to compute the molecular weight if the other

quantities in Eq. (8.5.4) are known.

If, instead of a single particle, a large number of particles are dropped into

the tube, then, in the absence of particle–particle interactions, the mass flux of

spheres at any cross section is given by

Flux ¼ vc ð8:5:5Þ
where c is the local mass concentration of spheres.

As time proceeds, spheres build up at the bottom of the tube, and the

tendency to equalize concentrations causes a diffusive flux of spheres upward in

the tube. The magnitude of the flux is given by Fick’s law (see Chapter 13) as

follows:

Flux ¼ D
dc

dz
ð8:5:6Þ

where D is the same diffusion coefficient appearing in Eq. (8.5.2) and z is the

distance measured along the tube axis. For a steady state to be reached in the

sphere concentration, the fluxes given by Eqs. (8.5.5) and (8.5.6) have to be equal

in magnitude. Equating these two quantities and replacing the terminal velocity

by an expression obtained with the help of Eq. (8.5.4) gives

dc

dz
¼ cMg

RT
1� r

rs


 �
ð8:5:7Þ

Separating the variables and integrating the result yields

ln c ¼ Mg

RT
1� r

rs

� �
zþ constant ð8:5:8Þ

and the slope of the straight-line plot of ln c versus z again allows for the

determination of the molecular weight. The advantage of using Eq. (8.5.8) instead

of Eq. (8.5.4) is that the value of the diffusion coefficient is not needed.

If we try to apply the foregoing theoretical treatment to the determination of

polymer molecular weight from the sedimentation of a dilute polymer solution,

we discover that, in practice, polymer molecules do not settle. This is the case

because the equivalent sphere radii are so small that colloidal forces [not

accounted for in Eq. (8.5.1)] predominate over gravitational forces and keep

the polymer molecules from settling. However, the situation is not irredeemable.

If the polymer solution is placed in a horizontal, pie-shaped cell and the cell is

rotated at a large angular velocity o about a vertical axis as shown in Figure 8.8,

the centrifugal force that develops can exceed the force of gravity by a factor of a

few hundred thousand. Indeed, the centrifugal force can and does cause

sedimentation of polymer molecules in the direction of increasing r. Because
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the centrifugal acceleration equals o2r, we can replace g by this quantity in

Eqs. (8.5.4) and (8.5.7). Also, v and z are replaced by dr=dt and r, respectively,

where r is the radial distance from the axis of rotation. With these modifications,

Eq. (8.5.4) is known as the Svedberg equation, and the quantity ðdr=dtÞ=ðo2rÞ is
known as the sedimentation coefficient, S. Also, Eq. (8.5.8) becomes

ln c ¼ Mo2

2RT
1� r

rs


 �
r2 þ constant ð8:5:9Þ

and it is now necessary to plot ln c versus r2.

The equipment used to measure polymer molecular weight according to

either the Svedberg equation or Eq. (8.5.9) is an ultracentrifuge, which can rotate

a horizontal cell in an evacuated chamber at tens of thousands of revolutions per

minute (rpm). These high rotational speeds are needed to give rise to measurable

sedimentation velocities. The sedimentation velocity itself is measured using

either ultraviolet (UV) absorption or with the help of Schlieren optics [20]; in the

latter technique, it is possible to determine the location of a change in

concentration by measuring the refractive index gradient as a function of position.

Much lower rotational speeds, of the order of 10,000 rpm, are needed to achieve

sedimentation equilibrium. However, the time needed to attain equilibrium can

easily be a couple of days. Molecular weights can be measured over a wide range

up to about 40� 106.

These techniques work well provided that the polymer solution is such that

the assumptions made in deriving either the Svedberg equation or Eq. (8.5.9)

remain valid. This is possible for biological molecules (such as proteins and

nucleic acids) that act like relatively compact and rigid spheres in solution. They

FIGURE 8.8 Schematic diagram of an ultracentrifuge.
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are also monodisperse. Even so, solvation effects make the effective sphere

density lower than the polymer density, and the large pressure developed due to

the centrifugal force alters both the solvent viscosity and density. In addition, it is

necessary to extrapolate data to infinite dilution; otherwise, the drag force

becomes concentration dependent due to polymer–polymer interactions.

The ultracentrifuge is rarely used to measure the molecular weight of

synthetic polymers, because these are permeable to the solvent and their size

changes easily depending on the process conditions. Furthermore, polydispersity

introduces both theoretical and experimental difficulties. During sedimentation,

for example, we no longer observe sharp concentration boundaries. Also, a plot

of ln c versus r2 is a curve rather than the straight line expected on the basis of

Eq. (8.5.9). In principle, though, data can be analyzed to yield the weight-average

molecular weight. These and other details are available elsewhere [6,15,20].

Example 8.2: Sedimentation data on aqueous solutions of hydroxypropyl guar, a

biopolymer, have been reported in the literature [21]. At low concentrations and a

rotational speed of 40,000 rpm, the sedimentation coefficient is 5:4� 10�13 sec at
20�C. If the measured diffusion coefficient is 0:32� 10�7 cm2=sec and 1� r=rs
equals 0.377, what is the molecular weight?

Solution: When applied to the ultracentrifuge, Eq. (8.5.4) is

M ¼ RTS

D½1� ðr=rsÞ�
where S and D are evaluated in the limit of infinite dilution. Inserting numbers

yields the following:

M ¼ 8:314� 107 ðerg=mol KÞ � 293 ðKÞ � 5:4� 10�13 ðsecÞ
0:32� 10�7 ðcm2=secÞ � 0:377

¼ 1:09� 106 g=mol

8.6 INTRINSIC VISCOSITY

It is an experimental fact that the viscosity of a polymer solution is generally

much larger than that of the solvent alone even at low polymer concentrations,

and it increases with increasing molecular weight at a fixed mass concentration.

The measurement of solution viscosity can, therefore, be used to estimate

polymer molecular weights. Indeed, a large number of sophisticated viscometers

exist for the accurate measurement of solution viscosity and its variation with

concentration, shear rate, and temperature. Details of these instruments and

methods of data analysis are discussed at length in Chapter 14. For molecular-
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weight measurements, however, it is customary to employ dilute polymer

solutions and to use glass capillary viscometers of the type illustrated in Figure

8.9. This particular instrument is known as a suspended level Ubbelhode

viscometer. In use, the bulb A is filled with a solution of known concentration.

A volume V of this solution is then transferred to completely fill bulb C between

marks E and F by closing arm N and applying a pressure down arm L. On

simultaneously opening N and releasing the pressure in L, excess liquid drains

back into A, leaving bulb C filled. At this stage, the pressure at point B at the

bottom end of the capillary is atmospheric. Further draining of liquid out of bulb

C is prevented by closing arm M, and the viscometer is transferred to a

thermostatted bath. Once thermal equilibrium is reached, the polymer solution

is allowed to flow under gravity through the capillary, and the time taken for the

liquid level to move from mark F to mark E is recorded. The process is then

repeated for the pure solvent and also for the polymer solution at different

concentrations. In each instance, the efflux time is noted.

If the radius of the capillary is R, its length is L, and the viscosity of the

solution (assumed Newtonian) is Z, then according to the well-known Hagen–

Poiseuille equation [22], the volumetric flow rate Q through the capillary is given

by

Q ¼ pR4Dp
8ZL

ð8:6:1Þ

FIGURE 8.9 An Ubbelhode viscometer.
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where Dp is the difference in dynamic pressure across the capillary and represents

the combined effect of static pressure and the gravitational force.

The efflux time t is given by

t ¼ V

Q
ð8:6:2Þ

and the ratio of the efflux time t of the solution to ts corresponding to that of the

solvent (because Dp is essentially the same in both cases if we neglect the minor

difference between the densities of the solution and the solvent) is

t

ts
¼ Z

Zs
ð8:6:3Þ

so that we may calculate Z knowing Zs, provided that non-Newtonian effects such

as shear thinning can be neglected. Therefore, we want to work with zero-shear-

rate viscosities. For this and other reasons explained later, it is essential to use low

polymer concentrations or to extrapolate data to infinite dilution. Note that the

ratio Z=Zs is generally known as the relative viscosity or the viscosity ratio and

denoted ZR.
Relating measured viscosity to molecular weight is generally done by first

relating viscosity to some measure of the size of polymer molecules in solution

and then relating the size to the molecular weight. The process begins by

appealing to the behavior of a dilute suspension of spheres in a Newtonian

liquid for which the relative viscosity is given by the Einstein result [23]:

ZR ¼ 1þ 2:5f ð8:6:4Þ
wherein f is the volume fraction of spheres.

If we consider each polymer molecule in dilute solution to be an isolated

random coil of spherical shape and volume ve, we may apply Eq. (8.6.4) with ZR
given by Eq. (8.6.3) and the volume fraction of polymer by

f ¼ n2ve
V

ð8:6:5Þ

where n2 is the number of polymer molecules in a solution of volume V.

Multiplying and dividing the right-hand side of Eq. (8.6.5) by MNA, the

product of the polymer molecular weight and Avogadro’s number, yields

f ¼ vecNA

M
ð8:6:6Þ

in which c is the mass concentration. Introducing this result into Eq. (8.6.4) and

rearranging gives

ZR � 1 ¼ 2:5vecNA

M
ð8:6:7Þ
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where the left-hand side is known as the specific viscosity, Zsp. The ratio of the

specific viscosity to the mass concentration of polymer is called the reduced

viscosity or the viscosity number. Thus,

Zsp
c
¼ 2:5veNA

M
ð8:6:8Þ

The viscosity number ought to be independent of polymer concentration.

However, the Einstein equation is valid only for noninteracting spheres; this

situation prevails as the concentration tends to zero. Consequently, we can

extrapolate data to infinite dilution, and the result is known as the intrinsic

viscosity or limiting viscosity number [Z]. In the past, this quantity was measured

in units of deciliters per gram; recent practice has been to use milliliters per gram.

Data can generally be represented in terms of the Huggins equation,

Zsp
c
¼ ½Z� þ k½Z�2c ð8:6:9Þ

where k is known as the Huggins constant. Alternatively, the Kraemer equation

can be used:

ln ZR
c
¼ ½Z� þ k 0½Z�2c ð8:6:10Þ

in which the left-hand side is known as the inherent viscosity or the logarithmic

viscosity number. That both of these methods of data representation yield the

same value of the intrinsic viscosity is demonstrated in Figure 8.10 using data on

solutions of nylon 66 in formic acid [24]. If the radius of each polymeric sphere is

taken to be proportional to the root-mean-square radius of gyration hs2i1=2, then,
using Eq. (8.6.8), we can derive

lim
c!0

Zsp
c
¼ ½Z�a hs

2i3=2
M
¼ hs

2i
M


 �3=2
M 1=2 ð8:6:11Þ

If a linear polymer molecule is represented as a freely jointed chain having n links

each of length l, then, as shown in Chapter 10,

hs2i / l2n ð8:6:12Þ
provided that there are no excluded volume effects that are long-range inter-

actions due to attraction and repulsion forces between widely separated chain

segments or between polymer segments and solvent molecules. This happens at

what is known as the theta condition.

Because the polymer molecular weight is also proportional to n, the ratio

hs2i=M must be independent of chain length or molecular weight. As a

consequence,

½Z� / M1=2 ð8:6:13Þ
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and a plot of log½Z� as a function of log M should be a straight line of slope 0.5.

In general, theta conditions do not occur, and polymer–solvent interactions

lead to coil expansion with the following result [25]:

hs2i ¼ a2hs2i0 ð8:6:14Þ
where a is a linear coil expansion factor that depends on n, and the subscript 0

denotes theta conditions. Because of this complication, it is difficult to modify

Eq. (8.6.13) theoretically. However, by experiment, we can find that

½Z� ¼ KMa ð8:6:15Þ
which is known as the Mark–Houwink equation. The values of the constants K

and a are determined experimentally using monodisperse polymer fractions, and

these may be found in standard handbooks [26]. The value of the exponent a

typically varies from 0.5 at the theta temperature to 0.8 for good solvents,

although values exceeding unity have been measured for extended chain poly-

mers [27]. Once the intrinsic viscosity has been related to the molecular weight,

we can also use the experimental data to relate the relative viscosity at a fixed

concentration to the molecular weight. Correlations of this kind are often used

FIGURE 8.10 Reduced viscosity and inherent viscosity of nylon 66 in 90% formic acid.

(From Ref. 24.)
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in industrial practice [28] and they may lead to a significant reduction in

experimental work.

Thus far, we have assumed that polymer molecules are monodisperse. For a

polydisperse sample, we introduce the Mark–Houwink equation into Eq. (8.6.7)

and write

Zsp ¼ K
P

ciM
a
i ð8:6:16Þ

Dividing both sides of this equation by the mass concentration of polymer and

noting that

c ¼P ci ¼
P niMi

NAV
ð8:6:17Þ

where ni is the number of molecules of molecular weight Mi; NA is Avogadro’s

number, and V is the sample volume, we find the following:

Zsp
c
¼ K

P
niM

aþ1
iP

niMi

ð8:6:18Þ

Accordingly, it is clear that the use of the Mark–Houwink equation gives an

average molecular weight �MMv known as the viscosity-average molecular weight

and defined by

�MMv ¼
P

niM
aþ1
iP

niMi

" #1=a

ð8:6:19Þ

which is generally intermediate between �MMn and �MMw but much closer to the latter

quantity.

Despite the fact that intrinsic viscosity measurements result in neither the

mass-average nor the weight-average molecular weight, the viscosity-average

molecular weight is a very commonly encountered quantity due to the ease of

measurement and also the simplicity and low cost of the viscometer. Regarding

the experimental determination of intrinsic viscosity, it is preferable to extrapolate

data to low concentrations rather than attempt measurements on very dilute

solutions. This is because errors associated with the dilution process become so

important that the overall result becomes worse following each dilution.

Example 8.3: If the Mark–Houwink exponent for nylon 66 dissolved in 90%

formic acid is 0.72, calculate �MMn; �MMw, and �MMv for a sample that contains 50% by

weight of a fraction having molecular weight 10,000 and 50% by weight of a

fraction of molecular weight 20,000.
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Solution:

�MMn ¼
1

0:5=10;000þ 0:5=20;000
¼ 13;333

�MMw ¼ ð10;000� 0:5Þ þ ð20;000� 0:5Þ ¼ 15;000

�MMv ¼
0:5

10;000
ð10;000Þ1:72 þ 0:5

20;000
ð20;000Þ1:72


 �1:39
¼ 14;876

In closing this section, we note that, from Eq. (8.6.8), ½Z�M=NA is the volume of a

polymer molecule multiplied by 2.5, whereas cNA=M is obviously the number of

polymer molecules per unit volume. As a consequence, ½Z�c, which is the product

of these two quantities, represents the volume fraction of polymer multiplied by

2.5. If this number is small compared to unity, the polymer solution is considered

to be dilute; if it is of the order of unity, the solution is considered moderately

concentrated with a near certainty of intermolecular interactions.

8.7 GEL PERMEATION CHROMATOGRAPHY

The simplest conceptual method of determining the molecular weight distribution

of a polymer sample is to separate the polydisperse sample into its constituent

fractions and then measure the molecular weight of each fraction using any of the

techniques discussed so far. This is exactly what used to be done until the

commercialization in the mid-1960s of the procedure known as gel permeation

chromatography (GPC) or size-exclusion chromatography. In the old method, a

polymer in solution was fractionated either by the sequential addition of

nonsolvents or by the progressive lowering of temperature (see Chapter 9 for

the theory of polymer–polymer phase equilibrium). However, this was a very

tedious and time-consuming process that was obviously ill-suited to routine

laboratory procedures. The new method of GPC uses the fact that large polymer

molecules are excluded from the small channels in a porous gel, with the result

that different molecular weight fractions travel down a column packed with the

porous medium at different rates, leading to separation based on size.

A schematic diagram of a GPC setup is shown in Figure 8.11. Solvent is

made to flow at a low but constant flow rate of about 1mL=min through a packed

column with the help of a pump. The solvent is typically an organic liquid such as

tetrahydrofuran or toluene for room-temperature work and methyl ethyl ketone

for high-temperature separations. Temperatures as high as 150�C can be achieved,

and these are needed while working with crystalline polymers, which can often

only be dissolved in supercritical solvents. The column is maintained at a

constant temperature and is packed with beads made from a cross-linked polymer

gel that can be swollen by the solvent used to dissolve the polymer being assayed.

In the case of organic solvents, the packing is usually cross-linked styrenedivi-
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nylbenzene; for water-soluble polymers, cross-linked methyl methacrylate is

used. For analytical work, the column is about 1 cm in diameter and 30–50 cm

long. Frequently, the column walls are flexible so that the packing material digs

into the side of the wall, which prevents channeling of fluid along the wall.

Once solvent flow has been established, a sample of polymer (less than

1mL of 0.1–1% solution) is injected upstream of the column. Depending on the

pore size in the packing (anywhere from 103 to 106 Å), molecules above a certain

size are completely excluded from the beads and continue flowing with the

mobile solvent. By contrast, very small molecules below a critical size are free to

enter even the smallest channel and tend to dissolve in the pure solvent that is

immobilized there; these, therefore, travel slowly through the column. Molecules

between these two size extremes travel at intermediate speeds and emerge from

the column at different times, resulting in separation based on molecular weight.

The mass concentration of the solute leaving the column is generally detected

with the help of a differential refractometer that measures the refractive index

difference between the solution and the solvent; a chromatogram might look like

the one shown in Figure 8.12. Instead of time, it is common practice to use as the

abscissa an equivalent quantity called the elution volume, which is the volume of

solvent emerging from the column from the instant of sample injection. If the

volume of the mobile solvent in the column is Vm and the volume of the

stationary solvent is Vs, then, assuming that equilibrium between the two phases

is achieved instantly, the elution volumes in Figure 8.11 will range from Vm to

Vm þ Vs. These two extremes correspond to the times taken for the largest and

smallest molecules, respectively, to flow out through the column.

Although we know that the polymer sample has been fractionated due to

passage through the column, we do not, in general, know the molecular weight

corresponding to a particular elution volume; therefore, Figure 8.12 is useful only

FIGURE 8.11 Schematic diagram of a gel permeation chromatograph.
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for comparative purposes. For quantitative work, we need a separate calibration

curve of the type shown in Figure 8.13, which relates the molecular weight to the

elution volume (or travel time through the column); sometimes, it is necessary to

use more than one column in series if the molecular-weight range of a single

column is inadequate for a sample at hand.

The calibration curve is best prepared using monodisperse samples of the

same polymer in the same solvent and at the same temperature. Unfortunately,

FIGURE 8.13 Characteristic shape of a GPC calibration curve.

FIGURE 8.12 A typical GPC chromatogram.
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extremely few polymers are available in narrow molecular-weight fractions, and it

is necessary to examine other possibilities for calibration. Because polymers such

as polystyrene, polyethylene oxide, polyethylene glycol, and polyacrylic acid are

commercially available over a wide range of narrow molecular weights, we use

these as calibration standards. Note that polystyrene and polyethylene are also

available as standard reference materials from the National Institute of Standards

and Technology. The hydrodynamic size of a polymer molecule in solution,

however, depends on both the temperature and the thermodynamic quality of the

solvent used. Consequently, a given polymer when dissolved in different solvents

or in the same solvent at different temperatures will have a different radius of

gyration in each case; the situation is similar for different polymers of the same

molecular weight that are dissolved in the same solvent. To get around this

problem and construct a universal calibration curve, we can make use of

Eq. (8.6.11), according to which the following holds:

½Z�M / hs2i3=2 ð8:7:1Þ

and because hs2i3=2 is proportional to the volume of a polymer molecule in

solution, this equation says that ½Z�M is a surrogate quantity for the hydrodynamic

volume. As a result, for a given column and specified set of operating conditions,

a plot of ½Z�M as a function of elution volume should be a universal curve

independent of polymer type. This is, indeed, found to be the case, and such a

curve is shown in Figure 8.14.

A knowledge of the elution volume (taken together with Fig. 8.14) there-

fore yields the product ½Z�M . The molecular weight is, in turn, obtained from a

measurement of the intrinsic viscosity. It is for this reason that modern GPCs

come equipped with instrumentation for viscosity measurement. Even if we do

not actually measure the intrinsic viscosity, we can still estimate the molecular

weight of each fraction with the help of Eq. (8.6.15) if the Mark–Houwink

constants are known. Thus, if the calibration curve is prepared using polystyrene,

we know the product ½Z�pMp corresponding to polystyrene. If the intrinsic

viscosity of the unknown polymer sample is ½Z�, then the molecular weight M

of the unknown sample is

M ¼ ½Z�pMp

½Z� ¼
½Z�pMp

KMa
ð8:7:2Þ

or

M ¼ ½Z�pMp

K


 �1=ð1þaÞ
ð8:7:3Þ
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in which all the quantities are known. Of course, the entire calibration problem is

avoided if light scattering is employed to determine the absolute molecular weight

of each molecular-weight fraction leaving the column.

Using any of these methods, we can easily convert the abscissa of Figure

8.12 to molecular weight. If we now consider a vertical slice as shown in Figure

8.12, the shaded area equals the product of the mass concentration ci and the

volume Dv. This equals the mass wi of the polymer contained in the fraction of

molecular weight Mi. By repeating this process for similar slices, we obtain the

entire molecular-weight distribution. Note that the upper limit on the molecular

weight for GPC is almost 107 for commercial instruments. Note also that these

data allow for the determination of the polydispersity index (PDI). As mentioned

in earlier chapters, the PDI can be close to unity for anionic polymerization,

whereas for step-growth polymerization, it approaches 2 for 100% conversion; for

chain-growth polymerization, the PDI can range between 2 and 5.

FIGURE 8.14 Examples of the universal calibration curve for GPC. (a) Universal

calibration for tetrahydrofuran solution at ambient temperature: d, linear polystyrene;

u, polybutadiene; s, branched polystyrene; �, polymethyl methacrylate; n, styrene=
methyl methacrylate copolymer; j, poly(phenyl siloxane). (b) Universal calibration for

various types of polyethylene. Solvent, o-dichlorobenzene at 130�C. d, linear polyethy-

lene fractions; open symbols, branched polyethylene fractions. (From Ref. 6.)
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8.8 CONCLUSION

In this chapter, we have introduced a variety of techniques that can be utilized to

measure either a particular molecular-weight average or the entire molecular-

weight distribution of a given sample. Although each method has its advantages

and disadvantages, the two techniques that are encountered most commonly are

intrinsic viscosity and GPC. These are both easy to use and are employed for

routine quality control purposes. GPC has proved to be a rapid and precise

method of molecular-weight determination, often requiring as little as a half hour

per sample. One increasingly frequent industrial application that calls for

measurement of molecular-weight distribution is polymer recycling. Mixtures

of virgin and reground material rarely have the same molecular-weight distribu-

tion or even the same average molecular weight if the recycled material comes

from unknown sources. Therefore, it is necessary to ensure that the molecular-

weight distribution of the mixture does not change significantly from batch to

batch, or else the properties of the fabricated part will also vary, sometimes in an

unacceptable manner [29]. For this and the other reasons enumerated in Section

8.1, it is essential that the practicing polymer engineer be thoroughly familiar

with methods of molecular-weight measurement.

Finally, we mention that a number of technologically important polymers,

especially fluoropolymers, are insoluble in suitable solvents, and their molecular-

weight distributions cannot be determined using the methods outlined in this

chapter. Consequently, indirect methods are needed, and one such method is

based on the theory of linear melt viscoelasticity [30]; this is explained in Chapter

14. We also mention that commercial polymers normally contain additives that

serve to minimize changes in molecular weight during processing and use. In the

case of polyolefins, molecular-weight changes are the result of the generation of

free radicals. This process can be arrested by the addition of phenolics that can

donate a hydrogen atom; these phenolics are known as primary antioxidants. Also

commonly added are phosphites, called secondary antioxidants, because they act

in concert with the phenolics to retard the formation of free radicals.
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PROBLEMS

8.1. If the polymer sample in Example 8.1 contains 1% by weight of an

impurity having a molecular weight of 500 and containing one carboxyl

group per molecule, calculate the percentage error that would result in the

determination of carboxyl end groups in the polymer due to the presence of

the impurity.

8.2. Starting from first principles, derive the expression for DTf for cryoscopy
measurements.

8.3. If you had the choice of using either water or camphor as the solvent for

cryoscopy, which one would you prefer? Justify your answer by doing

some theoretical calculations.

8.4. If a polymer were soluble in both water and toluene, which of the two

would be the preferred solvent for vapor pressure osmometry? Why?

8.5. Calculate the colligative properties of aqueous polyethylene oxide solutions

and compare the results with the polystyrene–toluene system data given in

Table 8.1.

8.6. Repeat Problem 8.5 for aqueous sodium chloride solutions.

8.7. If the room temperature varies by 10�C over the course of osmotic pressure

measurements, what is the maximum percentage error that is likely to result?

8.8. In the Zimm method of representing light-scattering data [18], C=Iy is

plotted against sin2ðy=2Þ þ kc, where k is an arbitrary constant picked to

yield a reasonable spread of points. Show that a grid of points is obtained if

the data given in Table 8.2 are plotted in this manner. Join points corre-

sponding to a given angle and extrapolate to zero concentration. Next, use

the extrapolated points to show that in the limit of zero concentration and

zero scattering angle, C=Iy equals 3:47� 10�5 in this case.
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8.9. Instead of measuring the intensity of scattered light, it is possible to

measure the intensity I of transmitted or unscattered light. If the fractional

change in light intensity due to unit distance traveled through the sample

equals the product of the number of scattering particles per unit volume N

and their cross-sectional area (csa), how might one experimentally deter-

mine the turbidity t defined as N � csa? If I � I0, show that t equals

ðIs=I0Þ=l, where Is is the total scattered light intensity and l is the sample

thickness.

8.10. According to Stokes’ law, the drag force Fd on an isolated sphere of

diameter D and moving through a Newtonian liquid of viscosity Z is

Fd ¼ 3pZDv

where v is the velocity of the sphere. Use this relationship to calculate the

terminal velocity of a 1-mm glass sphere of 2.5 g=cm3 density in a

concentrated sugar syrup of 1.4 g=cm3 density and 100 P viscosity. What

is the corresponding value of the diffusion coefficient at a temperature of

25�C?
8.11. When the polymer in Example 8.2 was mechanically sheared, it tended to

degrade with a reduction in molecular weight. If, after shearing, the

measured sedimentation and diffusion coefficients were 3:82� 10�13 sec
and 1:27� 10�7 cm2=sec, respectively, what was the percent reduction in

molecular weight?

8.12. Show that ½ln ZR� equals Zsp when ZR is only slightly larger than unity and,

thus, demonstrate that Eqs. (8.6.9) and (8.6.10) must necessarily yield the

same value for intrinsic viscosity.

8.13. Han [31] measured efflux times of neutrally buoyant glass spheres

suspended in a hydraulic oil, and his results are listed below.

Volume fraction of spheres Efflux time (sec)

0.0047 454.3

0.0094 459.6

0.0141 465.2

0.0188 470.5

If the efflux time of the oil alone is 449.3 sec, do these results validate

Eq. (8.6.4)?

8.14. Listed below are values of the intrinsic viscosity as a function of the degree

of polymerization for solutions of hydrophobically modified (hydro-

xyethyl) cellulose in 0.1% sodium oleate [32]. Determine the Mark–

Houwink parameters.
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Degree of polymerization Intrinsic viscosity (dL=g)

630 3.16

1250 5.62

2510 10.5

4000 15.8

8.15. The cumulative molecular-weight distribution for a polyethylene sample as

obtained using gel permeation chromatography is given below [33].

Determine �MMn; �MMw, and the polydispersity index.

logM Wt% logM Wt% logM Wt%

2.800 0.0 4.014 15.2 5.065 90.7

2.865 0.005 4.070 18.1 5.113 92.2

2.929 0.020 4.126 21.5 5.161 93.7

2.992 0.052 4.182 25.2 5.209 94.8

3.056 0.105 4.237 29.3 5.256 95.8

3.119 0.185 4.292 33.7 5.303 96.6

3.181 0.343 4.346 38.5 5.349 97.3

3.243 0.475 4.440 43.4 5.395 97.9

3.305 0.706 4.454 48.5 5.440 98.4

3.366 0.999 4.507 53.5 5.485 98.7

3.427 1.38 4.560 58.3 5.530 99.1

3.488 1.88 4.612 62.9 5.574 99.3

3.548 2.51 4.664 67.3 5.618 99.5

3.607 3.30 4.715 71.4 5.662 99.7

3.667 4.28 4.766 75.1 5.705 99.8

3.725 5.46 4.817 78.15 5.789 99.9

3.784 6.87 4.868 81.6 5.87 100.0

3.842 8.56 4.918 84.4

3.900 10.50 4.967 86.7

3.957 12.7 5.016 88.9

8.16. Use the data given in Problem 8.15 to plot the mole fraction distribution

and the weight fraction distribution as a function of the logarithm of the

degree of polymerization.
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9

Thermodynamics of Polymer
Mixtures

9.1 INTRODUCTION

As with low-molecular-weight substances, the solubility of a polymer (i.e., the

amount of polymer that can be dissolved in a given liquid) depends on the

temperature and pressure of the system. In addition, however, it also depends on

the molecular weight. This fact can be used to separate a polydisperse polymer

sample into narrow molecular-weight fractions in a conceptually easy, albeit

tedious, manner. It is obvious that any help that thermodynamic theory could

afford in selecting solvent and defining process conditions would be quite useful

for optimizing polymer fractionation. Such polymers having a precise and known

molecular weight are needed in small quantities for research purposes. Although

today we use gel permeation chromatography for polymer fractionation, a

working knowledge of polymer solution thermodynamics is still necessary for

several important engineering applications [1].

In the form of solutions, polymers find use in paints and other coating

materials. They are also used in lubricants (such as multigrade motor oils), where

they temper the reduction in viscosity with increasing temperature. In addition,

aqueous polymer solutions are pumped into oil reservoirs for promoting tertiary

oil recovery. In these applications, the polymer may witness a range of

temperatures, pressures, and shear rates, and this variation can induce phase

separation. Such a situation is to be avoided, and it can be, with the aid of
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thermodynamics. Other situations in which such theory may be usefully applied

are devolatilization of polymers and product separation in polymerization

reactors. There are also instances in which we want no polymer–solvent

interactions at all, especially in cases where certain liquids come into regular

contact with polymeric surfaces.

In addition, polymer thermodynamics is very important in the growing and

commercially important area of selecting components for polymer–polymer

blends. There are several reasons for blending polymers:

1. Because new polymers with desired properties are not synthesized on a

routine basis, blending offers the opportunity to develop improved

materials that might even show a degree of synergism. For engineering

applications, it is generally desirable to develop easily processible

polymers that are dimensionally stable, can be used at high tempera-

tures, and resist attack by solvents or by the environment.

2. By varying the composition of a blend, the engineer hopes to obtain a

gradation in properties that might be tailored for specific applications.

This is true for miscible polymer pairs such as polyphenylene oxide

and polystyrene that appear and behave as single-component polymers.

3. If one of the components is a commodity polymer, its use can reduce

the cost or, equivalently, improve the profit margin for the more

expensive blended product.

Although it is possible to blend two polymers by either melt-mixing in an

extruder or dissolving in a common solvent and removing the solvent, the

procedure does not ensure that the two polymers will mix on a microscopic

level. In fact, most polymer blends are immiscible or incompatible. This means

that the mixture does not behave as a single-phase material. It will, for example,

have two different glass transition temperatures, which are representative of the

two constituents, rather than a single Tg. Such incompatible blends can be

homogenized somewhat by using copolymers and graft polymers or by adding

surface-active agents. These measures can lead to materials having high impact

strength and toughness.

In this chapter, we present the classical Flory–Huggins theory, which can

explain a large number of observations regarding the phase behavior of concen-

trated polymer solutions. The agreement between theory and experiment is,

however, not always quantitative. Additionally, the theory cannot explain the

phenomenon of phase separation brought about by an increase in temperature. It

is also not very useful for describing polymer–polymer miscibility. For these

reasons, the Flory–Huggins theory has been modified and alternate theories have

been advanced, which are also discussed.
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9.2 CRITERIA FOR POLYMER SOLUBILITY

A polymer dissolves in a solvent if, at constant temperature and pressure, the

total Gibbs free energy can be decreased by the polymer going into solution.

Therefore, it is necessary that the following hold:

DGM ¼ DHmix � TDSmix < 0 ð9:2:1Þ
For most polymers, the enthalpy change on mixing is positive. This necessitates

that the change in entropy be sufficiently positive if mixing is to occur. These

changes in enthalpy and entropy can be calculated using simple models; these

calculations are done in the next section. Here, we merely note that Eq. (9.2.1) is

only a necessary condition for solubility and not a sufficient condition. It is

possible, after all, to envisage an equilibrium state in which the free energy is still

lower than that corresponding to a single-phase homogeneous solution. The

single-phase solution may, for example, separate into two liquid phases having

different compositions. To understand which situation might prevail, we need to

review some elements of the thermodynamics of mixtures.

A partial molar quantity is the derivative of an extensive quantity M with

respect to the number of moles ni of one of the components, keeping the

temperature, the pressure, and the number of moles of all the other components

fixed. Thus,

�MMi ¼
@M

@ni

� �
T ;P;nj

ð9:2:2Þ

It is easy to show [2] that the mixture property M can be represented in

terms of the partial molar quantities as follows:

M ¼P
i

�MMini ð9:2:3Þ

For an open system at constant temperature and pressure, however,

dM ¼P
i

�MMi dni ð9:2:4Þ

but Eq. (9.2.3) gives

dM ¼P
i

�MMi dni þ
P
i

ni d �MMi ð9:2:5Þ

so thatP
i

ni d
�MMi ¼ 0 ð9:2:6Þ

which is known as the Gibbs–Duhem equation.
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Let us identify M with the Gibbs free energy G and consider the mixing of

n1 moles of pure component 1 with n2 moles of pure component 2. Before

mixing, the free energy of both components taken together, Gcomp, is

Gcomp ¼
P2
i¼1

gini ð9:2:7Þ

where gi is the molar free energy of component i. After mixing, the free energy of

the mixture, using Eq. (9.2.3), is as follows:

Gmixture ¼
P2
i¼1

�GGini ð9:2:8Þ

Consequently, the change in free energy on mixing is

DGM ¼
P2
i¼1
ð �GGi � giÞni ð9:2:9Þ

and dividing both sides by the total number of moles, n1 þ n2, yields the

corresponding result for 1mol of mixture,

Dgm ¼
P2
i¼1
ð �GGi � giÞxi ð9:2:10Þ

where xi denotes mole fraction.

It is common practice to call the partial molar Gibbs free energy �GGi the

chemical potential and write it as mi. Clearly, gi is the partial molar Gibbs free

energy for the pure component. Representing it as m0i , we can derive from

Eq. (9.2.10) the following:

Dgm ¼ x1Dm1 þ x2Dm2 ð9:2:11Þ
where Dm1 ¼ m1 � m01 and Dm2 ¼ m2 � m02. Because x1 þ x2 equals unity,

Eq. (9.2.11) can be written

Dgm ¼ Dm1 þ x2ðDm2 � Dm1Þ ð9:2:12Þ
Differentiating this result with respect to x2 gives

dDgm
dx2
¼ dm1

dx2
þ ðDm2 � Dm1Þ þ x2

dm2
dx2
� dm1

dx2

� �
ð9:2:13Þ

¼ ðDm2 � Dm1Þ þ x2
dm2
dx2
þ x1

dm1
dx2

From Eq. (9.2.6), however,
P2

1 xi dmi equals 0. Therefore, Eq. (9.2.13) becomes

dDgm
dx2
¼ Dm2 � Dm1 ð9:2:14Þ
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and solving Eq. (9.2.14) simultaneously with Eq. (9.2.11) yields

Dm1 ¼ Dgm � x2
dDgm
dx2

ð9:2:15Þ

Dm2 ¼ Dgm þ x1
dDgm
dx2

ð9:2:16Þ

Thus, if Dgm can be obtained by some means as a function of composition, the

chemical potentials can be computed using Eqs. (9.2.15) and (9.2.16). The

chemical potentials are, in turn, needed for phase equilibrium calculations.

Let us now return to the question of whether a single-phase solution or two

liquid phases will be formed if the DGM of a two-component system is negative.

This question can be answered by examining Figure 9.1, which shows two

possible Dgm versus x2 curves; these two curves may correspond to different

temperatures. It can be reasoned from Eqs. (9.2.15) and (9.2.16) that the chemical

potentials at any composition x2 can be determined simply by drawing a tangent to

the Dgm curve at x2 and extending it until it intersects with the x2 ¼ 0 and x2 ¼ 1

axes. The intercept with x2 ¼ 0 gives Dm1, whereas that with x2 ¼ 1 gives Dm2.
Following this reasoning, it is seen that the curve labeled T1 has a one-to-

one correspondence between Dm1 and x2 or, for that matter, between Dm2 and x2.

This happens because the entire curve is concave upward. Thus, there are no two

composition values that yield the same value of the chemical potential. This

implies that equilibrium is not possible between two liquid phases of differing

compositions; instead, there is complete miscibility. At a lower temperature T2,

however, the chemical potential at x02 equals the chemical potential at x002.
Solutions of these two compositions can, therefore, coexist in equilibrium. The

points x02 and x002 are called binodal points, and any single-phase system having a

composition between these two points can split into these two phases with relative

FIGURE 9.1 Free-energy change of mixing per mole of a binary mixture as a function

of mixture composition.
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amounts of each phase determined by a mass balance. Phase separation occurs

because the free energy of the two-phase mixture denoted by the point marked Dg
is less than the free energy Dg* of the single-phase solution of the same average

composition. Points S0 and S00 are inflection points called spinodal points, and

between these two points the Dgm curve is concave downward. A solution having

a composition between these two points is unstable to even the smallest

disturbance and can lower its free energy by phase separation. Between each

spinodal point and the corresponding binodal point, however, Dgm is concave

upward and, therefore, stable to small disturbances. This is called a metastable

region; here, it is possible to observe a single-phase solution—but only for a

limited period of time.

The presence of the two-phase region depends on temperature. For some

solutions, at a high enough temperature called the upper critical solution

temperature, the spinodal and binodal points come together and only single-

phase mixtures occur above this temperature. This situation is depicted in Figure

9.2 on a temperature–composition diagram. Here, the locus of the binodal points

is called the binodal curve or the cloud point curve, whereas the locus of the

spinodal points is called the spinodal curve. Next, we direct our attention to

determining the free-energy change on mixing a polymer with a low-molecular-

weight solvent.

9.3 THE FLORY^HUGGINS THEORY

The classical Flory–Huggins theory assumes at the outset that there is neither a

change in volume nor a change in enthalpy on mixing a polymer with a low-

molecular-weight solvent [3–5]; the influence of non-athermal (DHmixing 6¼ 0)

behavior is accounted for at a later stage. Thus, the calculation of the free-energy

FIGURE 9.2 Temperature–composition diagram corresponding to Figure 9.1.
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change on mixing at a constant temperature and pressure reduces to a calculation

of the change in entropy on mixing. This latter quantity is determined with the

help of a lattice model using formulas from statistical thermodynamics.

We assume the existence of a two-dimensional lattice with each lattice site

having z nearest neighbors, where z is the coordination number of the lattice; an

example is shown in Figure 9.3. Each lattice site can accommodate a single

solvent molecule or a polymer segment having a volume equal to a solvent

molecule. Polymer molecules are taken to be monodisperse, flexible, initially

disordered, and composed of a series of segments the size of a solvent molecule.

The number of segments in each polymer molecule is m, which equals V2=V1, the

ratio of the molar volume of the polymer to the molar volume of the solvent. Note

that m is not the degree of polymerization.

We begin with an empty lattice and calculate the number of ways, O, of
arranging n1 solvent molecules and n2 polymer molecules in the n0 ¼ n1 þ mn2
lattice sites. Because the heat of mixing has been taken to be zero, each

arrangement has the same energy and is equally likely to occur. The only

restriction imposed is by the connectivity of polymer chain segments. It must

be ensured that two segments connected to each other lie on the nearest

neighboring lattice sites. Once O is known, the entropy of the mixture is given

by k lnO; where k is Boltzmann’s constant.

9.3.1 Entropy Change on Mixing

In order to calculate the entropy of the mixture, we first arrange all of the polymer

molecules on the lattice. The identical solvent molecules are placed thereafter. If j

FIGURE 9.3 Schematic diagram of a polymer molecule on a two-dimensional lattice.
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polymer molecules have already been placed, the number of lattice sites still

available number n0 � jm. Thus, the first segment of the ð j þ 1Þst molecule can

be arranged in n0 � jm ways. The second segment is connected to the first one

and so can be placed only in one of the z neighboring sites. All of these may,

however, not be vacant. If the polymer solution is relatively concentrated so that

chain overlap occurs, we would expect that, on average, the fraction of

neighboring sites occupied ð f Þ would equal the overall fraction of sites occupied.

Thus, f ¼ jm=n0. As a result, the second segment of the ð j þ 1Þst molecule can

be placed in zð1� f Þ ways. Clearly, the third segment can be placed in

ðz� 1Þð1� f Þ ways, and similarly for subsequent segments. Therefore, the

total number of ways Ojþ1 in which the ð j þ 1Þst polymer molecule can be

arranged is the product of the number of ways of placing the first segment with

the number of ways of placing the second segment and the number of ways of

placing each subsequent segment. Thus,

Ojþ1 ¼ ðn0 � jmÞzð1� f Þ Qm
3

ðz� 1Þð1� f Þ ð9:3:1Þ

where the symbol
Q

denotes product. As a consequence,

Ojþ1 ¼ ðn0 � jmÞzðz� 1Þm�2ð1� f Þm�1

ffi ðn0 � jmÞðz� 1Þm�1ð1� f Þm�1

¼ ðn0 � jmÞðz� 1Þm�1 1� jm

n0

� �m�1

¼ ðn0 � jmÞm z� 1

n0

� �m�1
ð9:3:2Þ

The total number of ways of arranging all of the n2 polymer molecules, Op, is the

product of the number of ways of arranging each of the n2 molecules in sequence.

This fact and Eq. (9.3.2) yield

Op ¼
Qn2�1
j¼0
ðn0 � jmÞm z� 1

n0

� �m�1" #
ð9:3:3Þ

where the index only goes up to n2 � 1 because j ¼ 0 corresponds to the first

polymer molecule. The development so far assumes that all of the polymer

molecules are different. They are, however, identical to each other. This reduces

the total number of possible arrangements by a factor of n2!, and it is therefore

necessary to divide the right-hand side of Eq. (9.3.3) by n2!.

Having arranged all of the polymer molecules, the number of ways of

fitting all of the indistinguishable solvent molecules into the remaining lattice
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sites is exactly one. As a result, Op equals O, the total number of ways of placing

all the polymer and solvent molecules on to the lattice. Finally, then,

Smixture ¼ k lnO ð9:3:4Þ

and using Eq. (9.3.3) properly divided by n2!:

Smixture

k
¼ � lnðn2!Þ þ m

Pn2�1
j¼0

lnðn0 � jmÞ þ ðm� 1Þ Pn2�1
j¼0

ln
z� 1

n0

� �
ð9:3:5Þ

Because j does not appear in the last term on the right-hand side of Eq. (9.3.5),

that term adds up to ðm� 1Þn2 ln½ðz� 1Þ=n0�. Also, the first term can be replaced

by Stirling’s approximation:

ðn2!Þ ¼ n2 ln n2 � n2 ð9:3:6Þ

Now, consider the summation in the second term:

Pn2�1
j¼0

lnðn0 � jmÞ ¼ Pn2�1
j¼0

ln



m

�
n0

m
� j

��
¼ n2 lnmþ

Pn2�1
j¼0

ln

�
n0

m
� j

�
ð9:3:7Þ

Furthermore,

Pn2�1
j¼0

ln

�
n0

m
� j

�
¼ ln

�
n0

m

�
þ ln

�
n0

m
� 1

�
þ � � � þ ln

�
n0

m
� n2 þ 1

�
¼ ln

n0

m

� � n0

m
� 1

� � n0

m
� 2

� �
� � � n0

m
� n2 þ 1

� �h i
¼ ln

n0

m

� � n0

m
� 1

� �
� � � n0

m
� n2 þ 1

� � n0

m
� n2

� �
� � � 1

n0

m
� n2

� �
� � � 1

8><>:
9>=>;

¼ ln
ðn0=mÞ!
ðn0=m� n2Þ!

 �

ð9:3:8Þ
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Combining all of these fragments and again using Stirling’s approximation in

Eq. (9.3.8) yields

Smixture

k
¼ �n2 ln n2 þ n2 þ m



n2 lnmþ

�
n0

m

�
ln

�
n0

m

�
� n0

m

�
�
n0

m
� n2

�
ln

�
n0

m
� n2

�
þ
�
n0

m
� n2

��
þ ðm� 1Þn2 ln

z� 1

n0

� �
ð9:3:9Þ

which, without additional tricks, can be simplified to the following:

Smixture

k
¼ �n2 ln

�
n2

n0

�
þ n2 � mn2 � n1 ln

n1

n0

� �
ð9:3:10Þ

þ ðm� 1Þ½n2 lnðz� 1Þ�
Adding to and subtracting n2 lnm from the right-hand side of Eq. (9.3.10) gives

the result

Smixture

k
¼ �n2 ln

mn2

n0

� �
� n1 ln

n1

n0

� �
þ n2½ðm� 1Þ lnðz� 1Þ þ ð1� mÞ þ lnm� ð9:3:11Þ

The entropy of the pure polymer S2 can be obtained by letting n1 be zero and n0
be mn2 in Eq. (9.3.11):

S2

k
¼ n2½ðm� 1Þ lnðz� 1Þ þ ð1� mÞ þ lnm� ð9:3:12Þ

Similarly, the entropy of the pure solvent S1 is obtained by setting n2 equal to zero

and n1 equal to n0:

S1

k
¼ 0 ð9:3:13Þ

Using Eqs. (9.3.11)–(9.3.13),

DSmixing ¼ DSmixture � S1 � S2

¼ �k n1 ln
n1

n0

� �
þ n2 ln

mn2

n0

� �
 �
ð9:3:14Þ

From the way that m and n0 have been defined, it is evident that n1=n0 equals f1,

the volume fraction of the solvent, and mn2=n0 equals f2, the volume fraction of

the polymer. As a result,

DS ¼ �k½n1 lnf1 þ n2 lnf2� ð9:3:15Þ
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which is independent of the lattice coordination number z. The change in entropy

on mixing n1 moles of solvent with n2 moles of polymer will exceed by a factor

of Avogadro’s number the change in entropy given by Eq. (9.3.15); multiplying

the right-hand side of this equation by Avogadro’s number gives

DS ¼ �R½n1 lnf1 þ n2 lnf2� ð9:3:16Þ
where R is the universal gas constant and n1 and n2 now represent numbers of

moles. Note that if m were to equal unity, f1 and f2 would equal the mole

fractions and Eq. (9.3.16) would become identical to the equation for the change

in entropy of mixing ideal molecules [2]. Note also that Eq. (9.3.16) does not

apply to dilute solutions because of the assumption that f equals jm=n0 and is

independent of position within the lattice.

Example 9.1: One gram of polymer having molecular weight 40,000 and density

1 g=cm3 is dissolved in 9 g of solvent of molecular weight 78 and density

0.9 g=cm3.

(a) What is the entropy change on mixing?

(b) How would the answer change if a monomer of molecular weight 100

were dissolved in place of the polymer?

Solution:

(a) n1 ¼ 9=78 ¼ 0:115; n2 ¼ 2:5� 10�5; f1 ¼ ð9=0:9Þ=½ð9=0:9Þ þ 1� ¼
0:909; f2 ¼ 0:091. Therefore, DS ¼ �R½0:115 ln 0:909þ 2:5�
10�5 ln 0:091� ¼ 0:011R.

(b) In this case, DS ¼ �R½n1 ln x1 þ n2 ln x2�, with n2 ¼ 0:01; x1 ¼ 0:92,
and x2 ¼ 0:08 so that DS ¼ 0:035R.

9.3.2 Enthalpy Change on Mixing

If polymer solutions were truly athermal, DG of mixing would equal �TDS, and,
based on Eq. (9.3.16), this would always be a negative quantity. The fact that

polymers do not dissolve very easily suggests that mixing is an endothermic

process and DH > 0. If the change in volume on mixing is again taken to be zero,

DH equals DU , the internal energy change on mixing. This latter change arises

due to interactions between polymer and solvent molecules. Because intermole-

cular forces drop off rapidly with increasing distance, we need to consider only

nearest neighbors in evaluating DU . Consequently, we can again use the lattice

model employed previously.

Let us examine the filled lattice and pick a polymer segment at random. It is

surrounded by z neighbors. Of these, zf2 are polymeric and zf1 are solvent. If the
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energy of interaction (a negative quantity) between two polymer segments is

represented by e22 and that between a polymer segment and a solvent molecule by

e12, the total energy of interaction for the single polymer segment is

zf2e22 þ zf1e12

Because the total number of polymer segments in the lattice is n0f2, the

interaction energy associated with all of the polymer segments is

z

2
n0f2ðf2e22 þ f1e12Þ

where the factor of 1
2
has been added to prevent everything from being counted

twice.

Again, by similar reasoning, the total energy of interaction for a single

solvent molecule picked at random is

zf1e11 þ zf2e12

where e11 is the energy of interaction between two solvent molecules. Because

the total number of solvent molecules is n0f1, the total interaction energy is

zn0f1

2
ðf1e11 þ f2e12Þ

For the pure polymer, the energy of interaction between like segments before

mixing (using a similar lattice) is

n0f2ze22

2

For pure solvent, the corresponding quantity is

n0f1ze11

2

From all of these equations, the change in energy on mixing, DU , is the

difference between the sum of the interaction energy associated with the polymer

and solvent in solution and the sum of the interaction energy of the pure

components. Thus,

DU ¼ z

2
n0f2ðf2e22 þ f1e12Þ þ

zn0f1

2
ðf1e11 þ f2e12Þ

� n0f2ze22

2
� n0f1ze11

2

¼ zn0

2
½2f1f2e12 � f1f2e11 � f1f2e22�

¼ Dezn0f1f2 ð9:3:17Þ
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where De ¼ ð1=2Þð2e12 � e11 � e22Þ, and the result is found to depend on the

unknown coordination number z. Because z is not known, it makes sense to lump

De along with it and define a new unknown quantity w1, called the interaction

parameter:

w1 ¼
zDe
kT

ð9:3:18Þ

whose value is zero only for athermal mixtures. For endothermic mixing, w1 is

positive (the more common situation), whereas for exothermic mixing, it is

negative. Combining Eqs. (9.3.17) and (9.3.18) yields

DHM ¼ DUM ¼ kTw1n0f1f2 ð9:3:19Þ
¼ kTw1n1f2

and the magnitude of w1 has to be estimated by comparison with experimental

data.

9.3.3 Free-Energy Change and Chemical
Potentials

If we assume that the presence of a nonzero DHM does not influence the

previously calculated DSM, a combination of Eqs. (9.2.1), (9.3.15), and

(9.3.19) yields

DGM ¼ kT ½n1 lnf1 þ n2 lnf2 þ w1n1f2� ð9:3:20Þ

Because volume fractions are always less than unity, the first two terms in

brackets in Eq. (9.3.20) are negative. The third term depends on the sign of the

interaction parameter, but it is usually positive. From Eq. (9.3.18), however, w1
decreases with increasing temperature so that DGM should always become

negative at a sufficiently high temperature. It is for this reason that a polymer–

solvent mixture is warmed to promote solubility. Also note that if one increases

the polymer molecular weight while keeping n1; f1; f2, and T constant, n2
decreases because the volume per polymer molecule increases. The consequence

of this fact, from Eq. (9.3.20), is that DGM becomes less negative, which implies

that a high-molecular-weight fraction is less likely to be soluble than a low-

molecular-weight fraction. This also means that if a saturated polymer solution

containing a polydisperse sample is cooled, the highest-molecular-weight compo-

nent will precipitate first. In order to quantify these statements, we have to use the

thermodynamic phase equilibrium criterion [2]

mAi ¼ mBi ð9:3:21Þ
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where i ¼ 1; 2 and A and B are the two phases that are in equilibrium. In writing

Eq. (9.3.21), it is assumed that the polymer, component 2, is monodisperse. The

effect of polydispersity will be discussed later.

The chemical potentials required in Eq. (9.3.21) can be computed using

Eq. (9.3.20), the definition of the chemical potential as a partial molar Gibbs

free energy, and the fact that

DGM ¼ Gmixture � G1 � G2 ð9:3:22Þ

so that

Gmixture ¼ n1g1 þ n2g2 þ RT ½n1 lnf1 þ n2 lnf2 þ w1n1f2� ð9:3:23Þ

where n1 and n2 now denote numbers of moles rather than numbers of molecules,

and g1 and g2 are the molar free energies of the solvent and polymer, respectively.

Differentiating Eq. (9.3.23) with respect to n1 and n2, in turn, gives the following:

m1 ¼
@Gmixture

@n1

¼ g1 þ RT lnf1 þ
n1

f1

@f1

@n1
þ n2

f2

@f2

@n1
þ w1f2 þ w1n1

@f2

@n1


 �
ð9:3:24Þ

m2 ¼
@Gmixture

@n2

¼ g2 þ RT
n1

f1

@f1

@n2
þ lnf2 þ

n2

f2

@f2

@n2
þ w1n1

@f2

@n2


 �
ð9:3:25Þ

Recognizing that

f1 ¼
n1

n1 þ mn2
and f2 ¼

mn2

n1 þ mn2

gives the following:

@f1

@n1
¼ f2

n1 þ mn2
ð9:3:26Þ

@f1

@n2
¼ � mf1

n1 þ mn2
ð9:3:27Þ

@f2

@n1
¼ � f2

n1 þ mn2
ð9:3:28Þ

@f2

@n2
¼ mf1

n1 þ mn2
ð9:3:29Þ
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Introducing these results into Eqs. (9.3.24) and (9.3.25) and simplifying gives

m1 � m01
RT

¼ lnð1� f2Þ þ f2 1� 1

m

� �
þ w1f

2
2 ð9:3:30Þ

m2 � m02
RT

¼ ð1� f2Þð1� mÞ þ lnf2 þ w1mð1� f2Þ2 ð9:3:31Þ

in which g1 and g2 have been relabeled m01 and m02, respectively. The preceding

two equations can now be used for examining phase equilibrium.

9.3.4 Phase Behavior of Monodisperse
Polymers

If we mix n1 moles of solvent with n2 moles of polymer having a known molar

volume or molecular weight (i.e., a known value of m), the chemical potential of

the solvent in solution is given by Eq. (9.3.30). If we fix w1, we can easily plot

ðm1 � m01Þ=RT as a function of f2. By changing w1 and repeating the procedure,

we get a family of curves at different temperatures, because there is a one-to-one

correspondence between w1 and temperature. Such a plot is shown in Figure 9.4

for m equaling 1000, taken from the work of Flory [3,5]. Note that increasing w1
is equivalent to decreasing temperature.

By examining Figure 9.4, we find that for values of w1 below a critical value

wc, there is a unique relationship between m1 and f2. Above wc, however, the plots
are bivalued. Because the same value of the chemical potential occurs at two

different values of f2, these two values of f2 can coexist at equilibrium. In other

words, two phases are formed whenever w1 > wc. To calculate the value of wc,
note that at w1 ¼ wc, there is an inflection point in the m1 versus f2 curve. Thus,

we can obtain wc by setting the first two derivatives of m1 with respect to f2 equal

to zero. Using Eq. (9.3.30) to carry out these differentiations,

@m1
@f2

¼ � 1

1� f2

þ 1� 1

m

� �
þ 2w1f2 ð9:3:32Þ

@2m1
@f2

2

¼ � 1

ð1� f2Þ2
þ 2w1 ð9:3:33Þ

At w1 ¼ wc and f2 ¼ f2c; these two derivatives are zero. Solving for wc from

each of the two equations yields the following:

wc ¼
1

2f2cð1� f2cÞ
� 1� 1

m

� �
ð2f2cÞ�1 ð9:3:34Þ

wc ¼
1

2ð1� f2cÞ2
ð9:3:35Þ
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Equating the right-hand sides of the two previous equations gives

f2c ¼
1

1þ ffiffiffiffi
m
p ð9:3:36Þ

which means that

wc ¼
1

2
þ 1ffiffiffiffi

m
p þ 1

2m
ð9:3:37Þ

and wc ! 1
2
as m becomes very large. Thus, knowing m allows us to derive wc or,

equivalently, the temperature at which two liquid phases first begin to appear; this

is the upper critical solution temperature (UCST) shown in Figure 9.2. The

corresponding UCST for polymer of infinite molecular weight is known as the

Flory temperature or theta temperature, and it is higher than the UCSTof polymer

having a finite molecular weight. It is clear, however, that if the theory is valid,

complete solubility should be observed for w1 � 0:5. It is also desirable to plot the
binodal or the temperature–composition curve separating the one- and two-phase

FIGURE 9.4 Solvent chemical potential as a function of polymer volume fraction for

m ¼ 1000. The value of w1 is indicated on each curve. (Reprinted from Paul J. Flory,

Principles of Polymer Chemistry. Copyright #1953 Cornell University and copyright #
1981 Paul J. Flory. Used by permission of the Publisher, Cornell University Press.)
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regions. The procedure for doing this is deferred until after we discuss the method

of numerically relating w1 to temperature.

9.3.5 Determining the Interaction Parameter

The polymer–solvent interaction parameter w1 can be calculated from Eq. (9.3.30)

in conjunction with any experimental technique that allows for a measurement of

the chemical potential. This can be done via any one of several methods,

including light scattering and viscosity, but most commonly with the help of

vapor-pressure or osmotic pressure measurements [1–6]. Let us examine both.

If we consider a pure vapor to be ideal, then the following is true at constant

temperature:

dm ¼ dg ¼ v dP ¼ RT

P
dP ð9:3:38Þ

where g and v are the molar free energy and molar volume, respectively.

Integrating from a pressure P0 to pressure P gives

mðT ; PÞ � mðT ; P0Þ ¼ RT ln
P

P0

� �
ð9:3:39Þ

The equivalent expression for a component, say 1, in a mixture of ideal gases

with mole fraction y1 is given by the following [2]:

m1ðT ; P; y1Þ � m1ðT ; P0Þ ¼ RT ln
Py1

P0

� �
ð9:3:40Þ

If the vapor is in equilibrium with a liquid phase, the chemical potential of each

component has to be the same in both phases. Also, for a pure liquid at

equilibrium, P equals the vapor pressure P0
1. Thus, denoting as m01 the pure

liquid 1 chemical potential, we can derive the following, using Eq. (9.3.39):

m01 ¼ m1ðT ; P0Þ þ RT ln
P0
1

P0

� �
ð9:3:41Þ

Similarly, for component 1 in a liquid mixture in equilibrium with a mixture of

gases, the liquid-phase chemical potential is, from Eq. (9.3.40),

m1 ¼ m1ðT ; P0Þ þ RT ln
Py1

P0

� �
ð9:3:42Þ

Subtracting Eq. (9.3.41) from Eq. (9.3.42) to eliminate m1ðT ; P0Þ gives the

following [7]:

m1 � m01 ¼ RT ln
Py1

P 0
1

� �
ð9:3:43Þ
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but Py1 is the partial pressure P1 of component 1 in the gas phase. Combining

Eqs. (9.3.30) and (9.3.43) gives

ln
P1

P0
1

� �
¼ lnð1� f2Þ þ f2 1� 1

m

� �
þ w1f

2
2 ð9:3:44Þ

where the left-hand side is also written as a1, in which a1 is the solvent activity.

Thus, measurements of P1 as a function of f2 can be used to obtain w1 over a

wide range of concentrations.

The situation with osmotic equilibrium is shown schematically in Figure

8.4, and it has been discussed previously in Chapter 8. At equilibrium, the

chemical potential of the solvent is the same on both sides of the semipermeable

membrane. Thus,

m1ðT ; PÞ ¼ m1ðT ; P þ p; x1Þ ð9:3:45Þ
where p is the osmotic pressure and x1 is the mole fraction of solvent in solution.

From elementary thermodynamics, however,

m1ðT ; P þ p; x1Þ ¼ m1ðT ; P; x1Þ þ
ðPþp
P

�VV1 dP ð9:3:46Þ

in which �VV1 is the partial molar volume. The term m1ðT ; PÞ is the same as what

we have been calling m01; therefore, Eqs. (9.3.45) and (9.3.46) imply that

m1 � m01 ¼ �
ðPþp
P

�VV1 dP ffi �v1 dp ð9:3:47Þ

because the partial molar volume is not too different from the molar volume of

the solvent.

Using the Flory–Huggins expression for the difference in chemical poten-

tials in Eq. (9.3.47) gives

p ¼ � RT

v1

� �
lnð1� f2Þ þ 1� 1

m

� �
f2 þ w1f

2
2


 �
ð9:3:48Þ

which can be rewritten in a slightly different form if we expand 1 � f2 in a Taylor

series about f2 ¼ 0. Retaining terms up to f3
2, we get

p ¼ RT

v1

� �
f2

m
þ 1

2
� w1

� �
f2
2 þ

f3
2

3
þ � � �

" #
ð9:3:49Þ

which can again be used to evaluate w1 using experimental data. A comparison of

Eq. (9.3.49) with Eq. (8.3.22) shows that the second virial coefficient is 0 at the

theta temperature because w1 equals 0.5 at that condition.

Typical data for w1 as a function of f2 obtained using these methods are

shown in Figure 9.5 [5]. It is found that although solutions of rubber in benzene
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behave as expected, most systems are characterized by a concentration-dependent

interaction parameter [5,8]. In addition, w1 does not follow the expected inverse

temperature dependence predicted by theory [5]. This suggests that DHM is not

independent of temperature. To take the temperature dependence of DHM into

account, Flory uses the following expression for w1 that involves two new

constants, y and c [5]:

w1 ¼
1

2
� c 1� y

T

� �
ð9:3:50Þ

One way of determining these constants is to first determine the upper critical

solution temperature, Tc, as a function of polymer molecular weight. At Tc, w1 is
equal to wc. Equations (9.3.37) and (9.3.50) therefore yield

1

2
þ 1ffiffiffiffi

m
p þ 1

2m
¼ 1

2
� c 1� y

Tc

� �
ð9:3:51Þ

or, upon rearrangement,

1

Tc
¼ 1

y
1þ 1

c
1

2m
þ 1ffiffiffiffi

m
p

� �
 �
ð9:3:52Þ

FIGURE 9.5 Influence of composition on the polymer–solvent interaction parameter.

Experimental values of the interaction parameter w1 are plotted against the volume fraction

f2 of polymer. Data for polydimethylsiloxane (M ¼ 3850) in benzene (n), polystyrene in

methyl ethyl ketone (d), and polystyrene in toluene (s) are based on vapor-pressure

measurements. Those for rubber in benzene (.) were obtained using vapor-pressure

measurements at higher concentrations and isothermal distillation equilibration with

solutions of known activities in the dilute range. (Reprinted from Paul J. Flory, Principles

of Polymer Chemistry. Copyright # 1953 Cornell University and copyright # 1981 Paul

J. Flory. Used by permission of the Publisher, Cornell University Press.)
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so that a plot of 1=Tc versus ½ð1=2mÞ þ ð1=
ffiffiffiffi
m
p Þ� should be a straight line with a

slope of 1=yc and an intercept of 1=y. These are, in fact, the results obtained by

Schultz and Flory [9], and this allows for easy determination of c and y. Clearly,
w1 equals 0.5 when T equals y and, therefore, the parameter y is the theta

temperature referred to earlier and is the maximum in the cloud point curve for an

infinite-molecular-weight polymer. It can be shown that at the theta temperature,

the effect of attraction between polymer segments exactly cancels the effect of the

excluded volume and the random coil described in the next chapter exactly obeys

Gaussian statistics. Also, the Mark–Houwink exponent equals 1
2
under theta

conditions.

The value of the interaction parameter is often used as a measure of solvent

quality. Solvents are normally designated as ‘‘good’’ if w1 < 0:5 and ‘‘poor’’ if

w1 > 0:5; an interaction parameter value of exactly 0.5 denotes an ideal solvent or

a theta solvent.

Example 9.2: Listed in Table 9.1 are data for the upper critical solution

temperature of six polystyrene (PS)-in-dioctylphthalate (DOP) solutions as a

function of molecular weight [10]. Also given is the corresponding ratio of molar

volumes. Determine the temperature dependence of the interaction parameter.

Solution: The data of Table 9.1 are plotted in Figure 9.6 according to

Eq. (9.3.52). From the straight-line graph, we find that c ¼ 1:45 and

y ¼ 288K. This value of the theta temperature is bracketed by similar values

estimated by viscometry and light-scattering techniques [10].

9.3.6 Calculating the Binodal

Once the interaction parameter in the form of Eq. (9.3.50) has been determined,

the entire temperature–composition phase diagram or the binodal curve can be

calculated using the conditions of phase equilibrium. At a chosen temperature, let

the two polymer compositions in equilibrium with each other be fC
2 and fD

2 . Let

TABLE 9.1 UCST Data for Solutions of PS in DOP

Molecular weight (�10�5) UCST (�C) Molar volume ratio (�10�3)
2.00 5.9 0.456

2.80 7.4 0.639

3.35 8.0 0.770

4.70 8.8 1.072

9.00 9.9 2.069

18.00 12.0 4.131

Source: Ref. 10.
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the corresponding chemical potentials be mC2 and mD2 . Because the latter two

values must be equal to each other, Eq. (9.3.31) implies the following:

lnfC
2 � ðm� 1Þð1� fC

2 Þ þ w1mð1� fC
2 Þ2

¼ lnfD
2 � ðm� 1Þð1� fD

2 Þ þ w1mð1� fD
2 Þ2 ð9:3:53Þ

This equation can be solved to give w1 in terms of fC
2 and fD

2 . Another expression

for w1 in terms of fC
2 and fD

2 can be obtained by using Eq. (9.3.30) to equate the

chemical potentials of the solvent in the two phases. These two expressions for w1
can be used to obtain a single equation relating fC

2 to fD
2 . Thereafter, we simply

pick a value of fC
2 and solve for the corresponding value of fD

2 . By picking

enough different values of fC
2 , we can trace the entire binodal curve because the

value of w1 and, therefore, T is known for any ordered pair fC
2 ; fD

2 . Approximate

analytical expressions for the resulting compositions and temperature have been

provided by Flory [5], and sample results for the polyisobutylene-in-diisobutyl

ketone system are shown in Figure 9.7 [5,9]. Although the theoretical predictions

are qualitatively correct, the critical point occurs at a lower than measured

concentration. Also, the calculated binodal region is too narrow. Tompa has

shown that much more quantitative agreement could be obtained if w1 were made

to increase linearly with polymer volume fraction [11]. We shall, however, not

pursue this aspect of the theory here.

In closing this subsection, we note that the phase equilibrium calculation

for polydisperse polymers is conceptually straightforward but mathematically

tedious. Each polymer fraction has to be treated as a separate species with its own

chemical potential given by an equation similar to Eq. (9.3.31). The interaction

parameter, however, is taken to be independent of molecular weight. It is

FIGURE 9.6 Plot of the reciprocal of the critical precipitation temperatures (1=Tc)
against ½1= ffiffiffiffi

m
p þ 1=ð2mÞ� for six polystyrene fractions in DOP. (From Ref. 10.)
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necessary to again equate chemical potentials in the two liquid phases and carry

out proper mass balances to obtain enough equations in all of the unknowns.

Details are available elsewhere [12]. The procedure can be used to predict the

results of polymer fractionation [13].

9.3.7 Strengths and Weaknesses of the
Flory^Huggins Model

The Flory–Huggins theory, which has been described in detail in this chapter, is

remarkably successful in explaining most observations concerning the phase

behavior of polymer–solvent systems. For a binary mixture, this theory includes

the prediction of two liquid phases and the shift of the critical point to lower

concentrations as the molecular weight is increased (see Fig. 9.7). In addition, the

theory can explain the phase behavior of a three-component system—whether it

is two polymers dissolved in a common solvent or a single polymer dissolved in

two solvents. The former situation is relevant to polymer blending [14], whereas

the latter is important in the formation of synthetic fibers [15] and membranes

[16] by phase inversion due to the addition of nonsolvent. Computation of the

phase diagram is straightforward [5], and results are represented on triangular

FIGURE 9.7 Phase diagram for three polyisobutylene fractions (molecular weights

indicated) in diisobutyl ketone. Solid curves are drawn through the experimental points.

The dashed curves have been calculated from theory. (Reprinted with permission from

Shultz, A. R., and P. J. Flory: ‘‘Phase Equilibria in Polymer-Solvent Systems,’’ J. Am.

Chem. Soc., vol. 74, pp. 4760–4767, 1952. Copyright 1952 American Chemical Society.)
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diagrams. Note, though, that the index i in Eq. (9.3.21) ranges from 1 to 3 and, in

general, we have three separate interaction parameters relating the three different

components. We may also use the theory to interpret the swelling equilibrium of

cross-linked polymers brought into contact with good solvents [5]. Because a

cross-linked polymer cannot dissolve, it imbibes solvent in a manner similar to

that in osmosis. As with osmosis, the process is again self-limiting because

swelling causes polymer coil expansion, generating a retractile force (see Chapter

10) that counteracts further absorption of the solvent. The extent of swelling can

be used to estimate the value of the polymer–solvent interaction parameter. A

technological application of this phenomenon is in the synthesis of porous

polymer sorbents as replacements for activated carbon used in the removal of

volatile organic compounds from wastewater streams. In this process, a nonpor-

ous polymer is lightly cross-linked and then made to swell with the help of an

appropriate solvent [17]. Further cross-linking in the swollen state gives a

material having a very high degree of porosity.

The Flory–Huggins theory has weaknesses, however. Although some

quantitative disagreement between the observed and predicted size of the binodal

region has already been noted, the major failure has to do with the inability to

predict phase separation above a critical temperature, known as the lower critical

solution temperature. Freeman and Rowlinson have found that even nonpolar

polymers that do not interact with the solvent would demix with increasing

temperature [18]. Because the DS of mixing is always positive in the Flory–

Huggins theory and because w1 always decreases with increasing temperature,

such a phase separation is totally inexplicable. The resolution of this enigma is

discussed in the next section. We close this section by also noting that the Flory–

Huggins theory fails for very dilute solutions due to the breakdown of the

spatially uniform polymer concentration assumption. The actual entropy change

on mixing is found to be less than the predicted theoretical value because polymer

molecules in dilute solution exist as isolated random coils whose sizes are a

function of the molecular weight. This makes w1 a function of the polymer chain

length [5,19].

Note that the Flory–Huggins theory applies to flexible macromolecules

only. Rodlike particles can be treated in an analogous manner [20] and the results

can be used to explain the behavior of polymeric liquid crystals.

9.4 FREE-VOLUME THEORIES

A basic assumption in the Flory–Huggins theory is the absence of a change in

volume on mixing. This, however, is not exactly true. As Patterson explains in his

very readable review [21], the free volume of the polymer differs markedly from

the solvent free volume. (See Chapter 13 for an extensive discussion about the
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free volume.) The solvent is much more ‘‘expanded’’due to its larger free volume.

When mixing occurs, the solvent loses its free volume and there is a net decrease

in the total volume. This result is analogous to, but not the same as, the process of

condensation of a gas; in a condensation process, latent heat is evolved and there

is an increase in order. Thus, both DH and DS are negative. This happens even

when the polymer and the solvent are chemically similar. Both of these

contributions need to be included in the free-energy change on mixing. As the

free-volume dissimilarity between the polymer and the solvent increases with

increasing temperature, the free-volume effect is likely to be more important at

elevated temperatures. One way of accounting for this effect is to consider the

interaction parameter w1 to be composed of an entropic part in addition to the

enthalpic part. Thus,

w1 ¼ wH þ wS ð9:4:1Þ

Indeed, Eq. (9.3.50) already does this, with wH being cy=T and wS being ð12� cÞ.
Now, we also have to add the free-volume contributions. This is done using an

equation of state that allows for a calculation of the volume, enthalpy, and entropy

change on mixing from a knowledge of the pure-component properties and a

limited amount of solution data. Qualitatively, though, we expect the w1
contribution arising from free-volume effects to increase with increasing tempera-

ture. This is shown in Figure 9.8. When this free-volume contribution is added to

the interaction parameter given by Eq. (9.3.50), the result is a minimum in the w1
versus temperature curve. Because phase separation originates from a large

FIGURE 9.8 (a) Phase diagram of a polymer solution showing the phase separation

occurring at high temperatures above the lower critical solution temperature (LCST). (b)

The temperature dependence of the w1 parameter: curve 3, total w1; curve 2, contribution to

w1 due to free-volume dissimilarity between polymer and solvent; curve 1, contribution to

w1 due to contact-energy dissimilarity between polymer and solvent. (Reprinted with

permission from Patterson, D.: ‘‘Free volume and Polymer Solubility: A Qualitative View,’’

Macromolecules, vol. 2, pp. 672–677, 1969. Copyright 1969 American Chemical Society.)
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positive value of w1 and because this can now happen at both low and high

temperatures, the phenomenon of a lower critical solution temperature is easily

understood. Note that the critical value of w1 is still given by Eq. (9.3.37), but, as

seen from Figure 9.8, it now corresponds to two different temperatures—a lower

critical solution temperature and an upper critical solution temperature. Except

for this change, the phase boundaries are again computed using the procedure

outlined in Section 9.3.6. A description of the actual procedure for computing the

modified w1 versus temperature curve shown schematically in Figure 9.8 is

beyond the scope of this book, but details are available in the literature [22–24].

Note that using the free-volume theory permits us to explain the existence of an

interaction parameter that depends on both temperature and concentration in a

manner that logically leads to the prediction of a lower critical solution

temperature.

9.5 THE SOLUBILITY PARAMETER

The solubility parameter of Hildebrand [25], generally denoted d, is a useful

alternative to the interaction parameter w1 in many situations. It is used to estimate

the endothermic heat of mixing that accompanies the dissolution of an amor-

phous polymer by a low-molecular-weight solvent. The technique has been used

extensively in the paint and rubber industries [26]. In the former application, the

parameter is used for identifying appropriate solvents, and in the latter, it is used

for preventing the swelling of volcanized rubber by solvents. As will be seen

here, the major argument in favor of using the solubility parameter is that solution

properties are not required; all necessary information can be obtained from data

on pure components.

For purposes of motivation, let us consider the mixing of n1 molecules of a

low-molecular-weight species with n2 molecules of another low-molecular-

weight species having the same volume v per molecule. Then, using the same

argument enunciated in Section 9.3.2 [setting m as unity in Eq. (9.3.17)], the

following can be derived:

DHM ¼ znf1f2½e12 � 1
2
ðe11 þ e22Þ� ð9:5:1Þ

in which n equals n1 þ n2 and the eij terms are all negative quantities. Denoting

Avogadro’s number by NA and the total mixture volume by V, Eq. (9.5.1) can be

rewritten as

DHM ¼
Vf1f2

NAv
�NAz je12j þ

NA

2
z je11j þ

NAz

2
je22j


 �
ð9:5:2Þ

in which v is the volume per molecule. To make further progress, we assume that

je12j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
je11jje22j

p
ð9:5:3Þ
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This assumption is reasonable when there are no specific interactions among

molecules, as is true for nonpolar molecules [26], and it allows us to replace a

mixture property in terms of pure component properties. Introducing Eq. (9.5.3)

into Eq. (9.5.2) yields

DHM ¼
Vf1f2

NAv

NAz

2
je11j

� �1=2

� NAz

2
je22j

� �1=2
" #2

ð9:5:4Þ

If one goes back to the lattice model, NAz=2 represents the total number of

interactions among 1mol of molecules. Multiplication with jeiij yields the molar

internal energy change, DUi, for vaporizing species i. Thus,

DHM ¼
Vf1f2

NAv
ðDU1=2

1 � DU 1=2
2 Þ2

¼ Vf1f2

DU1

NAv

� �1=2

� DU2

NAv

� �1=2
" #2

¼ Vf1f2ðd1 � d2Þ2 ð9:5:5Þ
where the solubility parameters d1 and d2 are defined by the above equation, Eq.

(9.5.5). The quantity d2 is usually called the cohesive energy density. Its value

ðDU=NAvÞ is obtained by dividing the molar energy of vaporization by the molar

volume. It is obvious that a material with a high cohesive energy density prefers

its own company. It is, therefore, more difficult to disperse than a material with a

low cohesive energy density.

We can extend the concept of the solubility parameter to macromolecules

by defining the solubility parameter of a polymer as

dp ¼
NAz jeppj
2Vp

 !1=2

ð9:5:6Þ

where jeppj is the energy of interaction between two polymer segments and Vp is

the volume of 1mol of polymer segments. Because polymers generally decom-

pose on heating, dp cannot be obtained using data on the energy of vaporization,

and an indirect method is needed.

An examination of Eq. (9.5.5) shows that DHM vanishes when the

solubility parameters of the two components equal each other. Because the

theory assumes a positive DSM , the free-energy change on mixing is the most

negative when the solubility parameters are matched. A cross-linked polymer

would, therefore, swell the most when its solubility parameter equaled that of the

solvent. This suggests that one ought to slightly cross-link the polymer whose

solubility parameter is sought to be measured and allow it to swell in various

solvents having known solubility parameters. The unknown solubility parameter
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is then equal to the solubility parameter of the liquid that gives rise to the

maximum amount of swelling. The same logic also provides the reason for

tabulating solubility parameters in the first place: We can select the best solvent

for a given polymer simply by finding a liquid with a solubility parameter of the

same value.

If we equate the right-hand side of Eq. (9.3.19) to the right-hand side of

Eq. (9.5.5), we can relate the interaction parameter to the solubility parameter as

follows:

w1 ¼
Vpðd1 � d2Þ2

RT
ð9:5:7Þ

Small values of w1 promote polymer solubility. Because d is a surrogate for w1, it
can be used in much the same way as the interaction parameter. Naturally, it

suffers from the same drawbacks, as well as those resulting from the assumption

embodied in Eq. (9.5.3). Values of the solubility parameter for selected polymer

and nonpolar solvents are listed in Table 9.2. These may also be estimated using

the method of group contributions [27]. For a mixture of solvents, the solubility

parameter may be taken to be a weighted average of the solubility parameters of

the constituents; weighting is done with respect to the volume fraction of the

components.

TABLE 9.2 Representative Solubility

Parameter Values for Nonpolar Liquids and

Amorphous Polymers

Compound d (cal=cm3)1=2

Liquid

n-Pentane 7.1

n-Hexane 7.3

1-Hexene 7.3

n-Octane 7.5

n-Hexadecane 8.0

Toluene 8.9

Benzene 9.2

Styrene 9.3

Carbon disulfide 10

Polymer

Polytetrafluoroethylene 6.2

Polyethylene 7.9

Polyisobutylene 8.1

Polybutadiene 8.6

Polystyrene 9.1

Source: Ref. 22.
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Example 9.3: Based on the solubility parameter concept, which solvent should

be used for polystyrene?

Solution: According to Table 9.2, the solubility parameter of polystyrene is 9.1.

This suggests the use of either benzene (which has a solubility parameter of 9.2)

or toluene (which has a solubility parameter of 8.9). Indeed, these two solvents

have been used extensively with polystyrene.

Hansen [28] has suggested one way of modifying the solubility parameter

to account for the presence of specific interactions between the polymer and

solvent. In this approach, the solubility parameter is considered to be a vector

made up of three components: one due to hydrogen-bonding, another due to

dipole interactions, and a third due to dispersive forces. Values of each of the

three components for different polymers and different solvents have been

determined based on experimental observations as well as on theoretical model-

ing, and these have been tabulated in books [28]. A polymer is found to be

soluble in a liquid when the magnitude of the vector difference between the two

vectors representing the Hansen solubility parameters of the polymer and the

liquid is less than a certain amount. This method has found widespread

application in the paint industry.

9.6 POLYMER BLENDS

As explained in Section 9.1, it is much more cost-effective to blend polymers of

known properties than it is to try to synthesize new polymers having properties as

yet unknown. Therefore, the driving force is the same as the one for the

development of composite materials. Indeed, we can look upon immiscible

polymer blends as composites on a microscopic scale. It is for this reason that

miscibility, by itself, is not the paramount criterion for utility [26]. A specific

example in which immiscibility is beneficial is the impact modification of

(relatively brittle) polystyrene by rubber; energy absorption results from crazing

(see Chapter 12) of the polystyrene matrix in the region between the rubber

particles. On the other hand, miscibility is important in applications where

segregation of the constituents could lead to deleterious mechanical properties,

such as might happen at a weld line in injection molding (see Chapter 15). In

addition, because polymers can be processed only between the glass transition

temperature and the temperature at which chemical degradation sets in, the

addition of a lower-Tg miscible component can often open a processing window

whose size depends on the proportion of the material added. An example of this is

the commercial blend of polystyrene and high-Tg poly(2,6-dimethyl-1, 4-pheny-

lene oxide) (PPO). Miscible blends of the two materials have an intermediate

value of Tg, which suggests that PPO can be processed at temperatures lower than

Thermodynamics of Polymer Mixtures 401

Copyright © 2003 Marcel Dekker, Inc.



would otherwise be possible. This intermediate value is given by the Flory–Fox

equation [26].

1

Tg
¼ w1

Tg1
þ w2

Tg2
ð9:6:1Þ

where Tgi is the Tg of component i and wi is its mass fraction. Extensive

tabulations of commercial blends (both miscible and immiscible), their proper-

ties, and their applications are available in the literature [26,29,30]. Mixing rules

for predicting blend properties are also available [31].

In order to predict polymer–polymer miscibility, we might turn to the

Flory–Huggins theory, where each lattice site has an interacting segment volume

vs. Dividing both sides of Eq. (9.3.20) by the total mixture volume V and using

the definition of the interaction parameter given by Eq. (9.3.18) yields

DGM

V
¼ kT

n1v1
v1V

lnf1 þ
n2v2
v2V

lnf2


 �
þ Dezn0f1f2

V
ð9:6:2Þ

where v1 and v2 are the volume per molecule of the two polymers, respectively.

From the definitions of vs and the volume fractions, we have

DGM

V
¼ kT

f1

v1
lnf1 þ

f2

v2
lnf2


 �
þ Dez

vs
f1f2 ð9:6:3Þ

Because both v1 and v2 are substantially greater than vs, the first two terms

on the right-hand side of Eq. (9.6.2) are negligible compared to the third term. As

a consequence, DGM ffi DHM and miscibility depends entirely on the energetics

of intermolecular interactions. In other words, a negative value of De or,

equivalently, of the interaction parameter is needed to assure polymer–polymer

miscibility.

Example 9.4: If the 1 g of polymer of Example 9.1 is dissolved in 9 g of a

different polymer of molecular weight 80,000, what would be the entropy change

on mixing? Assume that the density of the two polymers is the same.

Solution: According to Eq. (9.3.16),

DS ¼ �R ln 0:1

40;000
þ 9

80;000
ln 0:9


 �
¼ 6:94� 10�5R

This number is almost three orders of magnitude smaller than those calculated in

Example 9.1.

There is no general theory that might predict a priori as to which polymer

pairs are likely to be miscible with each other. However, if the solubility

parameters of two polymers are matched, then any favorable interactions between
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the two different kinds of macromolecules are likely to make the enthalpy of

mixing be negative; these interactions might include [14] hydrogen-bonding, as in

the case of polyvinyl chloride and polyester, and electron donor–electron acceptor

molecular complex formation, as in the case of PPO and polystyrene. An

indication of whether two polymers may show exothermic mixing may be

gained by examining their low-molecular-weight analogs. If these mix in an

exothermic manner, the polymers might do as well; if the enthalpy change on

mixing is endothermic, then the corresponding polymers will certainly not

interact in a favorable manner. Modifications of the Flory–Huggins theory that

account for specific interactions, especially hydrogen-bonding, have been

discussed at length by Coleman et al. [32].

9.7 CONCLUSION

In this chapter, we have seen how classical and statistical thermodynamics

coupled with simple ideas of lattice theory can be used to predict the phase

behavior of polymer solutions. For polymers dissolved in low-molecular-weight

solvents, the Flory–Huggins theory and its various modifications can adequately

explain data obtained for quiescent solutions. More recently, the theory has been

applied to predict the shift in the binodal under the influence of an imposed shear

deformation [33]. For macromolecular solvents, however, development of the

theory has not reached the same stage of maturity as for low-molecular-weight

solvents. This remains an area of current and active research.
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PROBLEMS

9.1. What is the value of m, the ratio of the molar volume of polymer to the

molar volume of solvent, for polystyrene of 250,000 molecular weight

dissolved in toluene? Thus, determine wc and the polymer volume fraction

corresponding to the upper critical solution temperature. Assume that the

density of polystyrene is 1.1 g=cm3 and that of toluene is 0.86 g=cm3.

9.2. By noting the significance of intrinsic viscosity and by examining the data

given in Figure 8.10, determine the lower limit of polymer concentration at

which you might expect the Flory–Huggins theory to apply to the polymer

solution at 24�C. Note that concentration is measured in units of grams per

deciliter.

9.3. Use Eq. (9.3.30) to obtain an equation similar to Eq. (9.3.53). Then, use the

data given in Figure 9.7 to compute the interaction parameter for poly-

isobutylene in diisobutyl ketone at 15�C for the 22,700 molecular-weight

polymer. Assume that 1=m is negligible compared to unity.

9.4. Show that it is possible to determine the solvent activity needed in

Eq. (9.3.44) from measurements of the boiling point elevation. In

particular, show that

� ln a1 ¼
Dhv1
RT2

b

DTb

9.5. How will the slope of the straight-line plot in Figure 8.5 change as the

solvent becomes a progressively better solvent? In other words, how does

the second virial coefficient depend on solvent quality?

9.6. A polymer sample dissolves in toluene but not in ethyl acetate. Is the

polymer likely to be polyisobutylene or polystyrene?

9.7. Why does vinyl upholstery become less and less flexible with use?

9.8. What is one likely to observe if a solution of polystyrene in a mixture of

dichloromethane and diethyl ether is added dropwise to a beaker containing

water?

9.9. What simplification occurs in Eq. (9.3.44) as the polymer molecular weight

increases? Further, if the solvent volume fraction is small, show that

P1 ¼ P0
1f1e

1þw1
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9.10. Use the procedure outlined in Section 9.3.6 to predict the solubility

diagram for the polystyrene–DOP system using data for the 200,000

molecular-weight polymer listed in Table 9.1.

9.11. Use the Flory–Huggins theory to calculate the free-energy change on

mixing polystyrene of 200,000 molecular weight with DOP at a concen-

tration of 0.05 g=cm3 of solution. The molecular weight of DOP is 390 and

its density is 0.98 g=cm3.

(a) Would you expect to see a single-phase solution or two phases at

a temperature of 1�C? At 15�C?
(b) Are the results obtained in part (a) consistent with those of

Problem 9.6?

9.12. Under what conditions does a polymer solution in a mixed solvent act as if

the polymer were dissolved in a single solvent?

9.13. A good solvent can be looked upon as one that promotes polymer–solvent

interactions leading to a larger size of the polymer coil in solution as

compared to the corresponding coil size in a theta solvent. Based on this

reasoning, how do you expect the viscosity of a solution of polyisobutylene

in n-hexadecane to vary as increasing amounts of carbon disulfide are

added to the solution? Assume that the viscosity of each of the two solvents

is the same.

9.14. Use literature values of the molar energy of vaporization and the molar

volume to estimate the solubility parameter of water at 25�C.
9.15. The glass transition temperature of poly(ether ether ketone) (PEEK), a

semicrystalline polymer, is 145�C, whereas that of poly(ether imide) (PEI),

an amorphous polymer miscible with PEEK, is 215�C. What will be the Tg
of a blend of these two materials containing 10% by weight PEI? Speculate

on what the presence of the PEI in the blend might do to the rate of

crystallization of PEEK.

9.16. Would a polymer that hydrogen-bonds with itself be more likely or less

likely to form miscible blends with other polymers compared with a

polymer that does not hydrogen-bond with itself?

9.17. Use the results of Example 9.2 and the data given in Table 9.2 to estimate

the value of the solubility parameter of DOP at 20�C.
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10

Theory of Rubber Elasticity

10.1 INTRODUCTION

As mentioned in Chapter 2, all polymers are stiff, brittle, glassy materials below

their glass transition temperature, Tg. However, they soften and become pliable

once above Tg and, ultimately, flow at still higher temperatures. For crystalline

polymers, the flow temperature is slightly above the crystalline melting point. In

this chapter, we examine the mechanical behavior of solid polymers above Tg ,

whereas polymer crystallization is considered in Chapter 11, and the deformation

and failure properties of glassy polymers are presented in Chapter 12. The stress-

versus-strain behavior of amorphous polymers above Tg is similar to that of

natural rubber at room temperature and very different from that of metals and

crystalline solids. Although metals can be reversibly elongated by only a percent

or so, rubber can be stretched to as much as 10 times its length without damage.

Furthermore, the stress needed to achieve this deformation is relatively low. Thus,

polymers above Tg are soft elastic solids; this property is known as rubberlike

elasticity. Other extraordinary properties of rubber have also been known for a

long time. Gough’s experiments in the early 1800s revealed that, unlike metals, a

strip of rubber heats up on sudden elongation and cools on sudden contraction

[1]. Also, its modulus increases with increasing temperature. These properties are

lost, however, if experiments are performed in cold water. Explaining these

remarkable observations is useful not only for satisfying intellectual curiosity but

also for the purpose of generating an understanding that is beneficial for tailoring
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the properties of rubberlike materials (called elastomers) for specific applications.

Recall that rubber (whether natural or synthetic) is used to manufacture tires,

adhesives, and footwear, among other products. Note also that because polymer

properties change so drastically around Tg, the use temperature of most polymers

is either significantly below Tg (as in the case of plastics employed for structural

applications) or significantly above Tg (as in the case of elastomers).

Chemically, rubber is cis-1,4-polyisoprene, a linear polymer, having a

molecular weight of a few tens of thousands to almost four million, and a wide

molecular-weight distribution. The material collected from the rubber tree is a

latex containing 30–40% of submicron rubber particles suspended in an aqueous

protein solution, and the rubber is separated by coagulation caused by the

addition of acid. At room temperature, natural rubber is really an extremely

viscous liquid because it has a Tg of �70�C and a crystalline melting point of

about �5�C. It is the presence of polymer chain entanglements that prevents flow

over short time scales.

In order to explain the observations made with natural rubber and other

elastomers, it is necessary to understand the behavior of polymers at the

microscopic level. This leads to a model that predicts the macroscopic behavior.

It is surprising that in one of the earliest and most successful models, called the

freely jointed chain [2,3], we can entirely disregard the chemical nature of the

polymer and treat it as a long slender thread beset by Brownian motion forces.

This simple picture of polymer molecules is developed and embellished in the

sections that follow. Models can explain not only the basics of rubber elasticity

but also the qualitative rheological behavior of polymers in dilute solution and as

melts. The treatment herein is kept as simple as possible. More details are

available in the literature [1–7].

10.2 PROBABILITY DISTRIBUTION FOR THE
FREELY JOINTED CHAIN

One of the simplest ways of representing an isolated polymer molecule is by

means of a freely jointed chain having n links each of length l. Even though real

polymers have fixed bond angles, such is not the case with the idealized chain. In

addition, there is no correspondence between bond lengths and the dimensions of

the chain. The freely jointed chain, therefore, is a purely hypothetical entity. Its

behavior, however, is easy to understand. In particular, as will be shown in this

section, it is possible to use simple statistical arguments to calculate the

probability of finding one end of the chain at a specified distance from the

other end when one end is held fixed but the other end is free to move at random.

This probability distribution can be coupled with statistical thermodynamics to

obtain the chain entropy as a function of the chain end-to-end distance. The
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expression for the entropy can, in turn, be used to derive the force needed to hold

the chain ends a particular distance apart. This yields the force-versus-displace-

ment relation for the model chain. If all of the molecules in a block of rubber act

similarly to each other and each acts like a freely jointed chain, the stress–strain

behavior of the rubber can be obtained by adding together contributions from

each of the chains. Because real polymer molecules are not freely jointed chains,

the final results cannot be expected to be quantitatively correct. The best that we

can hope for is that the form of the equation is correct. This equation obviously

involves the chain parameters n and l, which are unknown. If we are lucky, all of

the unknown quantities will be grouped as one or two constants whose values can

be determined by experiment. This, then, is our working hypothesis.

To proceed along this path, let us conduct a thought experiment. Imagine

holding one end of the chain fixed at the origin of a rectangular Cartesian

coordinate system (as shown in Fig. 10.1) and observe the motion of the other

end. You will find that the distance r between the two ends ranges all the way

from zero to nl even though some values of the end-to-end distance occur more

frequently than others. In addition, if we use spherical coordinates to describe the

location of the free end, different values of y and f arise with equal frequency. As

a consequence, the magnitude of the projection on any of the three axes x, y, and z

of a link taken at random will be the same and equal to l=
ffiffiffi
3
p

.

To determine the probability distribution function for the chain end-to-end

distance, we first consider a freely jointed, one-dimensional chain having links of

length lx ¼ l=
ffiffiffi
3
p

, which are all constrained to lie along the x axis. What is the

probability that the end-to-end distance of this one-dimensional chain is mlx? The

FIGURE 10.1 The unconstrained freely jointed chain.
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answer to this question can be obtained by analyzing the random walk of a person

who starts out from the origin and takes n steps along the x axis; nþ of these steps

are in the positive x direction and n� are in the negative x direction, and there is

no relation between one step and the next one. Clearly, m equals ðnþ � n�Þ.
From elementary probability theory, the probability that an event will occur

is the ratio of the number of possible ways in which that event can occur to the

total number of events. As a consequence, the probability, p(m), of obtaining an

end-to-end distance of mlx is the number of ways in which one can take nþ
forward steps and n� backward steps out of n steps divided by the total number of

ways of taking n steps. The numerator, then, is the same as the number of ways of

putting n objects (of which nþ are of one kind and n� are of another kind) into a

container having n compartments. This is n!=ðnþ!n�!Þ. Because any given step

can either be a forward step or a backward step, each step can be taken in two

ways. Corresponding to each way of taking a step, the next step can again be

taken in two ways. Thus, the total number of ways of taking n steps is 2n, which

gives us

pðmÞ ¼ n!

2nnþ!n�!
ð10:2:1Þ

We can rewrite nþ and n� as follows:

nþ ¼
1

2
ðnþ mÞ ð10:2:2Þ

n� ¼
1

2
ðn� mÞ ð10:2:3Þ

For large n we can use Stirling’s formula:

n! ¼
ffiffiffiffiffiffi
2p
p

nð2nþ1Þ=2

en
ð10:2:4Þ

In Eq. (10.2.1), introduce Eqs. (10.2.2) and (10.2.3) in the result and simplify to

obtain the following:

pðmÞ ¼
ffiffiffiffiffiffi
2

np

r
1þ m

n

� �ðnþmþ1Þ=2
1� m

n

� �ðn�mþ1Þ=2
 ��1
ð10:2:5Þ

Taking the natural logarithm of both sides of Eq. (10.2.5) and recognizing that

ln 1þ m

n

� �
ffi m

n
� m2

2n2
ð10:2:6Þ

provided that m=n is small,

ln pðmÞ ¼ 1

2
ln

2

np

� �
� m2

2n
þ m2

2n2
ð10:2:7Þ
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Neglecting the very last term in Eq. (10.2.7),

pðmÞ ¼ 2

np

� �1=2

e�m
2=2n ð10:2:8Þ

which is known as a Gaussian or Normal distribution. Note that for all of these

relations to be valid, n has to be large and m=n has to be small.

Equation (10.2.8) represents a discrete probability distribution and is the

probability that x lies between mlx and ðmþ 2Þlx. This is because if nþ increases

by 1, n� has to decrease by 1 and m increases by 2. Simultaneously, the distance

between the chain ends goes up by 2lx. To obtain the continuous probability

distribution pðxÞ dx, which is the probability that the end-to-end distance ranges

from x to xþ dx, we merely multiply pðmÞ by dx=ð2lxÞ. Furthermore, because m

equals x=lx,

pðxÞ dx ¼ ð2npl2x Þ�1=2e�x
2=2nl2x dx ð10:2:9Þ

In order to extend the one-dimensional results embodied in Eq. (10.2.9) to

the three-dimensional case of practical interest, we use the law of joint prob-

ability. According to this law, the probability of a number of events happening

simultaneously is the product of the probabilities of each of the events occurring

individually. Thus, the probability, pðrÞ dr, that the unconstrained end of the

freely jointed chain lies in a rectangular parallelepiped defined by

x; y; z; xþ dx; yþ dy, and zþ dz (see Fig. 10.1) is the product

pðxÞ dx pð yÞ dy pðzÞ dz, where pð yÞ dy and pðzÞ dz are defined in a manner

analogous to pðxÞ dx. Therefore,

pðrÞ dr ¼ ð2npÞ�3=2ðl2x l2y l2z Þ�1=2 exp �
1

2n

x2

l2x
þ y2

l2y
þ z2

l2z

 !" #
dx dy dz

ð10:2:10Þ
Denoting the sum ðx2 þ y2 þ z2Þ as r2 and recalling that l2x ¼ l2y ¼ l2z ¼ l2=3,

pðrÞ dr ¼ 3

2npl2

� �3=2

e�3r
2=2nl2 dx dy dz ð10:2:11Þ

To obtain the probability that the free end of the chain lies not in the

parallelepiped shown in Figure 10.1 but anywhere in a spherical shell of radius

r and thickness dr, we appeal to the law of addition of probabilities. According to

this law, the probability that any one of several events may occur is simply the

sum of the probabilities of each of the events. Thus, the probability that the chain

end may lie anywhere within the spherical shell is the sum of the probabilities of

finding the chain end in each of the parallelepipeds constituting the spherical

shell. Using Eq. (10.2.11) to carry out this summation, we see that the result is
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again Eq. (10.2.11), but with the right-hand side modified by replacing dx dy dz

with 4pr2 dr, the volume of the spherical shell. Finally, then, we have

pðrÞ dr ¼ 3

2npl2

� �3=2

e�3r
2=2nl24pr2 dr ð10:2:12Þ

which represents the probability that the free end of the chain is located at a

distance r from the origin and contained in a spherical shell of thickness dr. This

is shown graphically in Figure 10.2. Note that the presence of r2 in Eq. (10.2.12)

causes pðrÞ to be zero at the origin, whereas the negative exponential drives pðrÞ
to zero at large values of r. As seen in Figure 10.2, pðrÞ is maximum at an

intermediate value of r2. Also, because the sum of all the probabilities must equal

unity,
Ð1
0

pðrÞ dr ¼ 1.

At this point, it is useful to make the transition from the behavior of a single

chain to that of a large collection of identical chains. It is logical to expect that the

end-to-end distances traced out by a single chain as a function of time would be

the same as the various end-to-end distances assumed by the collection of chains

at a single time instant. Thus, time averages for the isolated chain ought to equal

ensemble averages for the collection of chains. Using Eq. (10.2.12), then, the

average values of the chain’s end-to-end distance and square of the chain’s end-to-

end distance are as follows:

hri ¼
ð1
0

rpðrÞ dr ¼ 2l
2n

3p

� �1=2

ð10:2:13Þ

hr2i ¼
ð1
0

r2 pðrÞ dr ¼ nl2 ð10:2:14Þ

FIGURE 10.2 Distribution function pðrÞ given by Eq. (10.2.12). (Reprinted from

Treloar, L. R. G.: The Physics of Rubber Elasticity, 3rd ed., Clarendon, Oxford, U.K.,

1975, by permission of Oxford University Press.)

412 Chapter 10

Copyright © 2003 Marcel Dekker, Inc.



where the angular brackets denote ensemble averages. Because the fully extended

length of the chain (also called the contour length) is nl, Eq. (10.2.14)

demonstrates that the mean square end-to-end distance is very considerably

less than the square of the chain length. Therefore, the freely jointed chain

behaves like a random coil and this explains the enormous extensibility of rubber

molecules.

Having obtained the average value of the square of the chain end-to-end

distance and the distribution of end-to-end values about this mean, it is worth

pausing and again asking if there is any relation between these results and results

for real polymer molecules. In other words, how closely do freely jointed chains

approximate actual macromolecules? If the answer is ‘‘not very closely,’’ then how

do we modify the freely jointed chain results to make them apply to polymers?

The first response is that most polymer molecules do, indeed, resemble long

flexible strings. This is because linear (unbranched) polymers with a large degree

of polymerization have aspect ratios that may be as high as 104. They are thus

fairly elongated molecules. Furthermore, despite the restriction to fixed bond

angles and bond lengths, the possibility of rotation about chemical bonds means

that there is little correlation between the position of one bond and another one

that is five or six bond lengths removed. However, two consequences of these

restrictions are that the contour length becomes less than the product of the bond

length and the number of bonds and that the mean square end-to-end distance

becomes larger than that previously calculated.

If bond angles are restricted to a fixed value y, the following can be shown

[4]:

hr2i ¼ nl2
ð1� cos yÞ
ð1þ cos yÞ ð10:2:15Þ

If, in addition, there is hindered rotation about the backbone due to, say, steric

effects, then we have

hr2i ¼ nl2
ð1� cos yÞð1þ coshfiÞ
ð1þ cos yÞð1� coshfiÞ ð10:2:16Þ

where hf2i is the average value of the torsion angle. Small-angle neutron

scattering data have supported this predicted proportionality between hr2i and nl2.
Because hr2i increases with each additional restriction but remains propor-

tional to hr2i for a freely jointed chain, we can consider a polymer molecule a

freely jointed chain having n0 links, where n0 is less than the number of bonds, but

the length of each link l0 is greater than the bond length, so that hr2i is again n0l02

and the contour length is n0l0.

Example 10.1: Polyethylene has the planar zigzag structure shown in Figure

10.3. If the bond length is l and the valence angle y is 109:5�, what are the
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contour length R and the mean square end-to-end distance? Let the chain have n

bonds and let there be free rotation about the bonds.

Solution: From Figure 10.3, it is clear that the projected length of each link is

l sinðy=2Þ. Using the given value of y and noting that there are n links, the fully

extended chain length is given by

R ¼ nl sinð54:75�Þ ¼
ffiffiffiffi
2

3

r
nl

The mean square end-to-end distance is obtained from Eq. (10.2.15) as follows:

hr2i ¼ 2nl2

When the mean square end-to-end distance of a polymer is given by Eq.

(10.2.16), the polymer is said to be in its ‘‘unperturbed’’ state. What causes the

polymer to be ‘‘perturbed’’ is the fact that in the derivation of Eq. (10.2.16), we

have allowed for the possibility of widely separated atoms that make up different

portions of the same polymer molecule to occupy the same space. In reality, those

arrangements that result in overlap of atoms are excluded. This is known as the

excluded-volume effect, and it results in dimensions of real polymer molecules

becoming larger than the unperturbed value. It is customary to quantify this

phenomenon by defining a coil expansion factor that is the ratio of the root mean

square end-to-end distance of the real chain to the corresponding quantity for the

unperturbed chain. In a very good solvent, there is a further increase in size, as

determined by intrinsic viscosity measurements, and the coil-expansion factor can

become as large as 2. In a poor solvent, on the other hand, the molecule shrinks,

and if the solvent quality is poor enough, the coil expansion factor can become

unity. In such a case, the solvent is called a theta solvent, and we have the theta

condition encountered earlier in Chapter 9. It is, therefore, seen that the theta

condition can be reached either by changing temperature without changing the

solvent or by changing the solvent under isothermal conditions.

In closing this section, we re-emphasize that the size of a polymer molecule

measured using the light-scattering technique discussed in Chapter 8 is the mean

FIGURE 10.3 The planar zigzag structure of polyethylene.
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square radius of gyration hs2i. For a freely jointed chain this quantity, defined as

the square distance of a chain element from the center of gravity, is given by

hs2i ¼ 1

6
hr2i ð10:2:17Þ

The radius of gyration is especially useful in characterizing branched molecules

having multiple ends where the concept of a single end-to-end distance is not

particularly meaningful.

10.3 ELASTIC FORCE BETWEEN CHAIN ENDS

If we return to the unconstrained chain depicted in Figure 10.1 and measure the

time-dependent force needed to hold one of the chain ends at the origin of the

coordinate system, we find that the force varies in both magnitude and direction,

but its time average is zero due to symmetry. If, however, the other chain end is

also held fixed so that a specified value of the end-to-end distance is imposed on

the chain, the force between the chain ends will no longer average out to zero.

Due to axial symmetry, though, the line of action of the force will coincide with r,

the line joining the two ends. For simplicity of analysis, let this line be the x axis.

In order to determine the magnitude of the force between the chain ends, let

us still keep one end at the origin but apply an equal and opposite (external) force

f on the other end so that the distance between the two ends increases from x to

xþ dx. The work done on the chain in this process is

dW ¼ �f dx ð10:3:1Þ
where the sign convention employed is that work done by the system and heat

added to the system are positive.

If chain stretching is done in a reversible manner, a combination of the first

and second laws of thermodynamics yields

dW ¼ T dS � dU ð10:3:2Þ
where S is entropy and U is internal energy. Equating the right-hand sides of Eqs.

(10.3.1) and (10.3.2) and dividing throughout by dx gives

f ¼ �T dS

dx
þ dU

dx
ð10:3:3Þ

From statistical thermodynamics, the entropy of a system is related to the

probability distribution through the following equation:

S ¼ k ln pðxÞ ð10:3:4Þ
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where k is Boltzmann’s constant. In the present case, pðxÞ is given by Eq. (10.2.9)

so that

f ¼ �T d

dx
� k

2
lnð2npl2x Þ �

kx2

2nl2x

� �
þ dU

dx
ð10:3:5Þ

and carrying out the differentiation,

f ¼ kTx

nl2x
þ dU

dx
¼ 3kTx

nl2
þ dU

dx
ð10:3:6Þ

The internal energy term in this equation is related to changes in the internal

potential energy arising from the making and breaking of van der Waals bonds.

Because rubbers elongate very easily, we find that the second term on the right-

hand side of Eq. (10.3.6) is small compared to the first term. Consequently,

f ¼ 3kT

nl2
x ð10:3:7Þ

which is a linear relationship between the force and the distance between chain

ends and is similar to the behavior of a linear spring. The constant of

proportionality, 3kT=nl2, is the modulus of the material and its value increases

as temperature increases. This explains why a stretched rubber band contracts on

heating when it is above the polymer glass transition temperature.

The positive force f in Eq. (10.3.7) is externally applied and is balanced by

an inward-acting internal force, which, in the absence of the external force, tends

to make the end-to-end distance go to zero. This, however, does not happen in

practice because the spring force is not the only one acting on the chain; the

equilibrium end-to-end distance is given by a balance of all the forces acting on

the polymer molecule. This aspect of the behavior of isolated polymer molecules

will be covered in greater detail in the discussion of constitutive equations for

dilute polymer solutions in Chapter 14.

If we were not aware of the assumptions that have gone into the derivation

of Eq. (10.3.7), we might conclude that the force between the chain ends

increases linearly and without bound as x increases. Actually, Eq. (10.3.7) is

valid only for values of x that are small compared to the contour length of the

chain. For larger extensions exceeding one-third the contour length, f increases

nonlinearly with x, and we know that for values of x approaching nl, chemical

bonds begin to be stretched. It can be shown that the right-hand side of Eq.

(10.3.7) is merely the first term in a series expansion for f [1]:

f ¼ kT

l

3x

nl
þ 9

5

x

nl

� �3
þ 297

175

x

nl

� �5
þ � � �


 �
¼ kT

l
L�1

x

nl

� �
ð10:3:8Þ

416 Chapter 10

Copyright © 2003 Marcel Dekker, Inc.



where L�1 is called the inverse Langevin function. The Langevin function itself is

defined as

LðxÞ ¼ coth x� 1

x
ð10:3:9Þ

Equations (10.3.7) and (10.3.8) are plotted in Figure 10.4 to show the region in

which it is permissible to use the simpler expression, Eq. (10.3.7).

Example 10.2: What is the percentage error involved in using Eq. (10.3.7) when

x=nl equals (a) 0.25? (b) 0.5?

Solution:

(a) According to Eq. (10.3.8), f ¼ 0:78ðkT=lÞ, whereas according to Eq.

(10.3.7), f ¼ 0:75ðkT=lÞ. Thus, the percentage error is 3.85%.

(b) The corresponding values for f now are 1:78ðkT=lÞ and 1:5ðkT=lÞ. The
percentage error, therefore, increases to 15.7%.

A closer examination of Eq. (10.3.3) reveals a significant difference

between the nature of rubbers and the nature of crystalline solids. In general, f

includes contributions due to changes in entropy as well as changes in internal

energy. In crystalline solids, the change in entropy on deformation is small and all

FIGURE 10.4 Force-extension relation for a freely jointed chain. (Reprinted from

Treloar, L. R. G.: The Physics of Rubber Elasticity, 3rd ed., Clarendon, Oxford, UK,

1975, by permission of Oxford University Press.)
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the work goes into increasing the internal (potential) energy. For rubbery

polymers, on the other hand, the entropy change dominates and f depends entirely

on changes in entropy. It is for this reason that polymer molecules are said to act

as entropy springs. Note that the spring constant decreases (i.e., the spring

becomes softer) as the polymer chain length increases. Also, because DU on

deformation is zero, a consequence of entropic elasticity is that the work done on

stretching a rubber must result in a release of heat if the process is isothermal. If

the stretching is rapid, however, adiabatic conditions may result so that the

temperature rises. The reverse situation occurs when the stretched rubber is

released. For crystalline materials, on the other hand, stretching results in a

storage of energy. On removal of load, no work is done against any external force

and the recovered internal energy shows up as an increase in temperature.

10.4 STRESS^STRAIN BEHAVIOR

In this section, we are interested in determining how a block of rubber deforms

under the influence of an externally applied force. The procedure for doing this is

the same as the one employed for the isolated chain in the previous section. We

assume that there are N chains per unit volume, and each behaves like an isolated

chain in its unstrained, equilibrium state. When the block of rubber deforms, each

chain making up the block of rubber deforms as well. It is assumed that the

deformation is affine; that is, there is no slippage past chains and the macroscopic

strain equals the microscopic strain. In other words, changes in the length of

individual chains correspond exactly to changes in length of corresponding lines

drawn on the exterior of the bulk rubber.

This assumption makes it possible to calculate the change in entropy on

deformation of a single chain for a specified macroscopic strain. A summation

over all chains gives the macroscopic change in entropy of the rubber block, and

the subsequent application of Eq. (10.3.3) yields the desired force or stress

corresponding to the imposed strain. Let us illustrate this process for some

idealized situations. The more general case will be considered later.

Before proceeding further, we must define strain. In a tensile test, we find

that materials such as metals extend only by 1% or less. We, therefore, define

strain as the increase in length divided by either the original length or the final

length. For rubbers, however, a doubling in length is easily accomplished, and the

initial length l0 and final length l are dramatically different. Consequently, the

measure of infinitesimal strain that works for metals is inappropriate in this case;

a measure of finite strain is needed instead. One popular measure is the Hencky

strain ln l=l0 and another is the extension ratio l ¼ l=l0. The latter quantity is

more easily related to the force acting on one face of a block of rubber.

Consider, for example, a normal force F acting perpendicular to one face of

an initially unstrained cube of rubber of edge l0. Under the influence of this force,
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the cube transforms into a rectangular prism having dimensions l1; l2, and l3, as

shown in Figure 10.5. If we define l1 as l1=l0, l2 as l2=l0, and l3 as l3=l0, then the

affine deformation assumption implies that the coordinates of the end-to-end

vector of a typical polymer chain change from ðx0; y0; z0Þ to ðl1x0; l2y0; l3z0Þ.
Under this change in dimensions, the change in entropy of the chain is, from

Eqs. (10.2.11) and (10.3.4), as follows:

DS ¼ � 3k

2nl2
ðl21x20 þ l22 y

2
0 þ l23z

2
0 � x20 � y20 � z20Þ ð10:4:1Þ

Because the chain is randomly oriented before it is stretched,

x20 ¼ y20 ¼ z20 ¼
r20
3
¼ nl2

3
ð10:4:2Þ

The change in entropy DSt of all the chains in the cube of rubber is Nl30 times the

change in entropy of a single chain. In view of Eqs. (10.4.1) and (10.4.2), this

quantity is

DSt ¼ �
k

2
Nl30ðl21 þ l22 þ l23 � 3Þ ð10:4:3Þ

and the work done on the rubber is

W ¼ �NkT

2
l30ðl21 þ l22 þ l23 � 3Þ ð10:4:4Þ

which is also known as the strain-energy function. Note that, thus far, the

treatment has been quite general, and the specific nature of the stress distribution

has not been used.

Because rubber is incompressible, its volume does not change on deforma-

tion. Therefore, it must be true that

l1l2l3 ¼ 1 ð10:4:5Þ
For the tensile deformation considered here, l2 ¼ l3 from symmetry, so that a

combination of Eqs. (10.4.4) and (10.4.5) yields

W ¼ �NkT

2
l30 l21 þ

2

l1
� 3

� �
ð10:4:6Þ

FIGURE 10.5 Uniaxial extension of a block of rubber.
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From the definition of l1 it is obvious that Dl1 equals Dx=l0. Because W must

also equal � Ð F dx, F is obtained by dividing the right-hand side of Eq. (10.4.6)

by l0 and differentiating the result with respect to l1. Thus,

F

l20
¼ NkT ðl1 � l�21 Þ ð10:4:7Þ

It can be shown that the form of this equation is unaffected by the presence of

chains of unequal lengths; only the numerical value of the coefficient changes.

The quantity NkT is called the modulus G of the rubber. The left-hand side of

Eq. (10.4.7) is recognized to be the stress based on the undeformed area.

Example 10.3: When rubber is brought into contact with a good solvent, it

swells in an isotropic manner. Consider a cube of rubber, initially of unit volume,

containing N polymer chains. If in the swollen state the polymer volume fraction

is f2 and the length of each edge is l, how much work is done in the process of

swelling?

Solution: Here, we use Eq. (10.4.4), with each extension ratio being equal to l.
Note that Eq. (10.4.5) does not apply because there is an obvious increase in

volume. The total volume of the swollen rubber is equal to 1=f2, so l ¼ f�1=32 .

Consequently,

W ¼ 3NkT

2
ðf�2=32 � 1Þ

This problem considers a particular kind of deformation–uniaxial extension. The

same procedure can be applied to other kinds of deformation, and the result is a

‘‘material function’’ or, in the case of rubber, a material constant that relates a

component of the stress to a component of the strain imposed on the material.

More generally, though, we can determine the relationship between an arbitrary,

three-dimensional deformation and the resulting three-dimensional stress. Such a

relationship is called the stress constitutive equation. We will develop such a

relationship for rubbers after we review the definitions of stress and the strain in

three dimensions.

10.5 THE STRESS TENSOR (MATRIX)

If we isolate a rectangular parallelepiped of material having infinitesimal dimen-

sions, as shown in Figure 10.6, we find that two kinds of forces act on the material

element. These are body forces and surface forces. Body forces result from the

action of an external field such as gravity upon the entire mass of material. Thus,

the force of gravity in the z direction is gzr dx dy dz, where gz is the component
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of the acceleration due to gravity in the positive z direction. Surface forces, on the

other hand, express the influence of material outside the parallelepiped but

adjacent to a given surface. Dividing the surface force by the area on which it

acts yields the stress vector. Because the parallelepiped has six surfaces, there are

six stress vectors. Because each of the 6 vectors can be resolved into 3

components parallel to each of the 3 coordinate axes, we have a total of 18

components. These are labeled Tij, where the two subscripts help to identify a

specific component. The first subscript, i, identifies the surface on which the force

acts; the surface, in turn, is identified by the direction of the outward drawn

normal. If the normal points in the positive coordinate direction, the surface is a

positive surface; otherwise it is negative. The second subscript, j, identifies the

direction in which the stress component acts. According to convention, a stress

component is positive when directed in the positive coordinate direction on a

positive face. It is also positive when directed in the negative direction on a

negative face. Nine of the 18 components can be represented using a 3� 3

matrix, called the stress tensor:

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

0@ 1A
Tzz, for example, is the z component of the stress vector acting on the face whose

outward drawn normal points in the positive z direction; Tzy is the corresponding

component acting in the y direction. These are shown in Figure 10.6. The other

nine components are the same as these, but they act on opposite faces.

By means of a moment balance on a cubic element, it can be shown (as in

any elementary textbook of fluid mechanics) that Tij equals Tji. Thus, only six of

the nine components are independent components. The utility of the stress tensor

is revealed by examining the equilibrium of the tetrahedron shown in Figure 10.7.

FIGURE 10.6 The stress matrix (tensor).
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It can be demonstrated that if the normal to the inclined surface is n̂n, then the

components of the surface stress f acting on that surface in a rectangular

Cartesian coordinate system are as follows [8]:

fx ¼ Txxnx þ Txyny þ Txznz

fy ¼ Txynx þ Tyyny þ Tyznz ð10:5:1Þ
fz ¼ Txznx þ Tyzny þ Tzznz

where

n̂n ¼ nx îiþ nyĵjþ nzk̂k ð10:5:2Þ
f ¼ fx îiþ fy ĵjþ fzk̂k ð10:5:3Þ

and îi; ĵj, and k̂k are the three unit vectors.

If we represent x by 1, y by 2, and z by 3, Eq. (10.5.1) can be written in

matrix notation as follows:

f1
f2
f3

0@ 1A ¼ T11 T12 T13
T12 T22 T23
T13 T23 T33

0@ 1A n1
n2
n3

0@ 1A ð10:5:4Þ

or even more compactly as follows:

f ¼
~
T � n̂n ð10:5:5Þ

FIGURE 10.7 Equilibrium of a tetrahedron.

422 Chapter 10

Copyright © 2003 Marcel Dekker, Inc.



Knowing the six independent components of the stress tensor (matrix)
~
T,

therefore, allows us to obtain the stress vector acting on any plane described

by the unit normal n̂n.

Throughout this chapter, we have discussed stress and strain, and in the

minds of most people these two terms are intimately connected. Therefore, it is

logical to ask if strain or deformation always results from the presence of a

nonzero stress component. The answer is ‘‘not necessarily.’’ Indeed, if a material

is incompressible, no amount of pushing (i.e., the application of hydrostatic

pressure) will cause it to compress or reduce in volume. It is only when pressures

are unequal that a strain, which can be understood as a change in the distance

between two neighboring particles, occurs. In essence, if we try to push the

material in from one side, all it can do is squeeze out from another side. It is for

this reason that it is usual to separate the stress tensor into two parts:

T11 T12 T13
T12 T22 T23
T13 T23 T33

0@ 1A ¼ �p 0 0

0 �p 0

0 0 �p

0@ 1Aþ t11 t12 t13
t12 t22 t23
t13 t23 t33

0@ 1A ð10:5:6Þ

where p is the isotropic pressure whose presence causes no strain or deformation

for incompressible materials, and the tij terms are the components of the extra

stress tensor whose presence causes strain to take place. Strain is therefore related

to the extra stress
~
t rather than the total stress

~
T.

10.6 MEASURES OF FINITE STRAIN

When a material translates or rotates, it moves as a rigid body. In addition, it can

deform (i.e., the distances between neighboring points can change). In general,

we can relate the distance vector dx at time t between two neighboring points in a

body to the distance vector dx0 at time t0 between the same two points after

motion and deformation through an equation of the type

dx0 ¼
~
F dx ð10:6:1Þ

where
~
F is a 3� 3 matrix called the deformation gradient. Let the components of

dx be dx1; dx2, and dx3 and those of dx0 be dx01; dx02, and dx03. This situation is

depicted in Figure 10.8. If the coordinates x0i at time t0 of a point located at

position xi at time t are represented as

x01 ¼ x1 þ X1ðx1; x2; x3; t0; tÞ
x02 ¼ x2 þ X2ðx1; x2; x3; t0; tÞ ð10:6:2Þ
x03 ¼ x3 þ X3ðx1; x2; x3; t0; tÞ
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where Xi represents unknown functions, then, by similar reasoning, we have

x01 þ dx01 ¼ x1 þ dx1 þ X1ðx1 þ dx1; x2 þ dx2; x3 þ dx3; t0; tÞ
x02 þ dx02 ¼ x2 þ dx2 þ X2ðx1 þ dx1; x2 þ dx2; x3 þ dx3; t0; tÞ ð10:6:3Þ
x03 þ dx03 ¼ x3 þ dx3 þ X3ðx1 þ dx1; x2 þ dx2; x3 þ dx3; t0; tÞ

Subtracting Eq. (10.6.2) from Eq. (10.6.3) and using a Taylor series expansion

yields

dx01 ¼ dx1 þ
@X1

@x1
dx1 þ

@X1

@x2
dx2 þ

@X1

@x3
dx3

dx02 ¼ dx2 þ
@X2

@x1
dx1 þ

@X2

@x2
dx2 þ

@X2

@x3
dx3 ð10:6:4Þ

dx03 ¼ dx3 þ
@X3

@x1
dx1 þ

@X3

@x2
dx2 þ

@X3

@x3
dx3

Equation (10.6.2), however, gives the following:

@X1

@x1
¼ @x01

@x1
� 1 ð10:6:5Þ

@X1

@x2
¼ @x01

@x2
ð10:6:6Þ

and so on. Equation (10.6.4) therefore becomes

dx0i ¼
P3
j¼1

@x0i
@xj

dxj; i ¼ 1; 2; 3 ð10:6:7Þ

FIGURE 10.8 Deformation of a line element.
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Comparing Eqs. (10.6.1) and (10.6.7) gives

Fij ¼
@x0i
@xj

ð10:6:8Þ

In general, the deformation gradient depends on position. However, if it is

independent of position, the displacement is said to be homogeneous. Note that a

nonzero value of the deformation gradient does not, ipso facto, imply that

deformation has taken place; for this to happen, distances between neighboring

points must change. Let us pursue this point further.

If, as shown in Figure 10.8, e and e0 are unit vectors along dx and dx0,
respectively, then the following relations hold:

dx ¼ dx e ð10:6:9Þ
dx0 ¼ dx0 e0 ð10:6:10Þ

where dx is the magnitude of dx and dx0 is that of dx0. The terms dx and dx0 are,
however, also related through Eq. (10.6.1). Therefore,

dx0 e0 ¼
~
F � ðdx eÞ ð10:6:11Þ

or

dx0

dx
e0 ¼

~
F � e ð10:6:12Þ

from which it follows that

dx0

dx
e0

� �T

� dx0

dx
e0

� �
¼ ð

~
F � eÞT � ð

~
F � eÞ ð10:6:13Þ

where the superscript T denotes transpose, or

dx0

dx

� �2

¼ eT �
~
FT �

~
F � e ð10:6:14Þ

because the dot product of the transpose of a unit vector with itself is unity.

Equation (10.6.14) can be rewritten as

dx0

dx

� �2

¼ eT �
~
C � e ð10:6:15Þ

where the product

~
C ¼

~
FT �

~
F ð10:6:16Þ
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is called the Cauchy tensor. Clearly, if
~
C ¼

~
1; dx0 ¼ dx and there is no

deformation. Only if
~
C 6¼

~
1 does deformation take place and interparticle

distances change. In terms of components,

Cij ¼
P3
k¼1

FkiFkj ¼
P3
k¼1

@x0k
@xi

@x0k
@xj

ð10:6:17Þ

which shows that
~
C is a symmetric matrix. It can be proven that for small strains,

the Cauchy strain tensor defined as
~
C� 1 reduces properly to the usual

infinitesimal strain matrix encountered in mechanics. However, this is not the

only possible measure of large strain. In fact, the matrix inverse of
~
C—called the

Finger tensor,
~
B—is another valid measure of finite strain. Physically,

~
B can be

shown to be related to changes in distance between neighboring planes. In

component form, the Finger tensor is given by

Bij ¼
P3
k¼1

@xi
@x0k

@xj
@x0k

ð10:6:18Þ

Additional discussion of strain measures may be found in the literature [9].

Example 10.4: Obtain expressions for the deformation gradient and Cauchy

tensors for the shear deformation illustrated in Figure 10.9. Here, the only

nonzero velocity component is v1, and it equals _ggx2, where _gg is the constant shear
rate.

Solution: From the problem statement, it is clear that

x01 ¼ x1 þ _ggDtx2
x02 ¼ x2

x03 ¼ x3

FIGURE 10.9 Shearing at constant shear rate.
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where Dt equals t0 � t. Using Eq. (10.6.8), then,

Fij ¼
1 _ggDt 0

0 1 0

0 0 1

0@ 1A
and with the help of Eq. (10.6.16) or (10.6.17),

Cij ¼
1 0 0

_ggDt 1 0

0 0 1

0@ 1A 1 _ggDt 0

0 1 0

0 0 1

0@ 1A ¼ 1 _ggDt 0

_ggDt 1þ ð_ggDtÞ2 0

0 0 1

0@ 1A
Thus, it is clear that strain has taken place.

10.7 THE STRESS CONSTITUTIVE EQUATION

Let us revisit the stretching of the block of rubber pictured in Figure 10.5 and let

us obtain expressions for the components of the Finger tensor. Even though it

seems appropriate to denote distances in the stretched state by a prime and those

in the equilibrium state without a prime, actual practice is just the reverse. This is

the case because we want to use the same formalism for both liquids and solids;

the absence of an equilibrium unstrained state for polymeric liquids forces us to

use the current state at time t as the reference state. As a consequence, the

deformed state is at a prior time t0. This somewhat confusing situation is clarified

in Figure 10.10, which shows how the deformation is visualized. Clearly, then, we

have the following:

x1 ¼ l1x
0
1

x2 ¼ l�1=21 x02 ð10:7:1Þ
x3 ¼ l�1=21 x03

FIGURE 10.10 Uniaxial extension of rubber. Change in the reference state.
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so that

C�111 ¼ l21
C�122 ¼ l�11 ð10:7:2Þ
C�133 ¼ l�11

with all other components being zero.

Because no shear stresses have been imposed, the nonzero components of

the stress tensor are [in view of Eq. (10.5.6)] as follows:

T11 ¼ �pþ t11
T22 ¼ �pþ t22 ð10:7:3Þ
T33 ¼ �pþ t33

From equilibrium, at time t,

T11 ¼ �pa þ
F

l22

T22 ¼ �pa ð10:7:4Þ
T33 ¼ �pa

where pa is atmospheric pressure. Eliminating this quantity by taking differences

between stress components gives the following:

T11 � T22 ¼
F

l22
¼ t11 � t22 ð10:7:5Þ

From the discussion following Eq. (10.4.6) and from Problem 10.6, we have

F

l22
¼ Gðl21 � l�11 Þ ð10:7:6Þ

so that

t11 � t22 ¼ Gðl21 � l�11 Þ ð10:7:7Þ
which can also come about if we let

tij ¼ GC�1ij ð10:7:8Þ
Equation (10.7.8) is called a stress constitutive equation, and it relates a three-

dimensional measure of strain to the three-dimensional stress. For rubbers, Eq.

(10.7.8) obviously holds for the specialized case of uniaxial extension. By similar

reasoning, it can be shown to hold for other idealized deformations such as

biaxial extension and shear. Indeed, Eq. (10.7.8) is valid for all volume-

preserving deformations [10]. The only material quantity appearing in this
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constitutive equation is the modulus G; its value is obtained by comparing

predictions with experimental observations.

10.8 VULCANIZATION OF RUBBER AND
SWELLING EQUILIBRIUM

Raw rubber behaves as an elastic solid only over a short time scale. At longer

times, polymer chains in the stretched rubber begin to disentangle and slip past

each other. This happens because natural rubber is a thermoplastic. For the same

reason, it becomes soft and sticky in summer and, due to the onset of crystal-

lization, hard and brittle in winter (recall Gough’s cold water experiments) [11].

To overcome these problems, we cross-link rubber in its randomly coiled state

using a material such as sulfur. This process is known as vulcanization, and the

resulting cross-links prevent slippage of polymer chains. Indeed, as little as 1% of

added sulfur is effective in ensuring that rubber retains its desired elasticity.

Excessive cross-linking, though, makes the polymer hard and brittle, and this is

similar to the influence of crystallization. Regarding the foregoing theory, we now

assume that there are N chain segments per unit volume, where a chain segment is

defined as the length of chain between cross-link points. Provided that a chain

segment is long enough, it behaves like an isolated chain and all of the previous

equations remain unchanged.

To determine the chain density N, we can compare the predictions of Eq.

(10.4.7) with appropriate experimental data. This is done in Figure 10.11 using

the uniaxial elongation data of Treloar on a sample of vulcanized natural rubber

[1,12]. The theoretical line in the figure has been drawn using the best-fit value

of the modulus, and there is fair agreement with data over a significant range of

extension ratio values. Nonetheless, there is a slight mismatch at small values of

l1 and a very large mismatch at values of l1 exceeding 6. The cause of the latter

deviation is strain-induced crystallization in rubber; the crystallites that form at

large extension ratios act as cross-links, resulting in an increase in the modulus.

At moderate extensions, on the other hand, the affine deformation assumption

begins to fail [7,13] and junction fluctuations cause a reduction in the modulus. In

general, though, an increase in the cross-link density results in an increase in the

best-fit modulus, but the cross-link density estimated from the extent of cross-

linking is usually lower than the experimentally determined best-fit value. A part

of the discrepancy is thought to be due to the presence of physical entanglements

that act as cross-links over the time scale of the experiment.

A consequence of cross-linking is that the resulting gigantic molecule does

not dissolve in any solvent; all it can do is swell when brought into contact with a

good solvent. The equilibrium extent of swelling is determined by an interplay

between the reduction in free energy due to polymer–solvent mixing and an
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increase in free energy due to stretching of polymer chains. If we use the Flory–

Huggins expression, Eq. (9.3.20), for the former free-energy change and the

result of Example 10.3 for the latter free-energy change, then the total change in

free energy on mixing unit volume of polymer containing n2 moles of chain

segments with n1 moles of solvent is

DGM ¼ RT ðn1 lnf1 þ n2 lnf2 þ w1n1f2Þ þ
3n2RT

2
ðf�2=32 � 1Þ ð10:8:1Þ

FIGURE 10.11 Simple extension. Comparison of experimental curve with theoretical

form. (Reprinted from Treloar, L. R. G., The Physics of Rubber Elasticity, 3rd ed.,

Clarendon Oxford, UK, 1975, by permission of Oxford University Press.)
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Noting that the total volume of the swollen rubber is the sum of the polymer and

solvent volumes, we have

1

f2

¼ 1þ n1V1 ð10:8:2Þ

where V1 is the molar volume of the solvent.

Combining the two previous equations and recalling the definition of the

free-energy change on mixing, we find that

Gmixture ¼ n1g1 þ n2g2 þ RT ðn1 lnf1 þ n2 lnf2 þ w1n1f2Þ
þ 3n2RT

2
½ð1þ n1V1Þ2=3 � 1� ð10:8:3Þ

where g1 and g2 are the molar free energies of the solvent and polymer,

respectively.

Differentiating Eq. (10.8.3) with respect to n1 and using the results of Eq.

(9.3.30) gives the solvent chemical potential as

m1 ¼
@Gmixture

@n1
¼ g1 þ RT lnð1� f2Þ þ f2 1� 1

m

� �
þ w1f

2
2


 �
þ RTn2f

1=3
2 V1 ð10:8:4Þ

At phase equilibrium between the swollen rubber and the pure solvent, m1 must

equal g1, so that

lnð1� f2*Þ þ f2*þ w1f2*
2 þ n2V1f2*

1=3 ¼ 0 ð10:8:5Þ
in which f2* is the polymer volume fraction at equilibrium. Also, 1=m has been

neglected in comparison with unity. A measurement of the equilibrium amount of

swelling, together with a knowledge of the polymer–solvent interaction para-

meter, then allows us to compute the chain density n2. Indeed, Eq. (10.8.5) has

proved to be a popular alternative to Eq. (10.4.7) for the determination of the

number of chain segments per unit volume. We note, though, that as far as data

representation is concerned, better agreement is obtained if, instead of Eq.

(10.4.7), we use

F

l20
¼ 2ðl1 � l�21 ÞðC1 þ C2l

�1
1 Þ ð10:8:6Þ

which can be derived in a phenomenological way by using the Mooney strain–

energy function instead of Eq. (10.4.4) [14]. Here, C1 and C2 are constants. Note,

again, that all comparisons with theory have to be made with data generated

above the polymer glass transition temperature. Below Tg, polymer chains cannot

move and rotate freely; they lose their elasticity and become glassy. The theory

developed in this chapter is then inapplicable.
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Example 10.5: Estimate a value for the chain density in units of moles per cubic

centimeter for butyl rubber if the equilibrium swelling ratio, q, in cyclohexane is

8. Here, the swelling ratio is defined as the ratio of the equilibrium swollen

volume to the original unswollen volume. In accordance with the data of Flory

[15], let w1 be 0.3. The molar volume of cyclohexane is 105 cm3.

Solution: From the definition of the swelling ratio, it is clear that f2* ¼ 1=q, and
the polymer volume fraction in the swollen network equals 0.125. Introducing

this value into Eq. (10.8.5) along with the given values of w1 and V1, we find that

n2 ¼ 7:32� 10�5 mol=cm3.

10.9 CONCLUSION

We have seen that the use of a very simple model, the freely jointed chain, is

adequate for explaining all of the qualitative observations made with elastomers.

To obtain quantitative agreement, though, the theory needs to be modified, but

without sacrificing the basic principles presented here; these modifications are

explored elsewhere [5]. The utility of the theory, however, does not end with

explaining the behavior of cross-linked rubber. A knowledge of the fundamentals

of rubber elasticity allows us to synthesize other elastomers and to modify and

optimize their properties. Indeed, the total production of synthetic rubbers such as

styrene–butadiene rubber today exceeds that of natural rubber, and synthetic

routes to polyisoprene have also been developed. Natural rubber, however, is not

likely to disappear any time soon. Its superior heat-dissipation properties make it

the preferred choice for the manufacture of heavy-duty truck tires. Another class

of synthetic rubbers is that of thermoplastic elastomers, initially developed by the

Shell Chemical Company in 1965 [6,16]. These are A-B-A-type block copoly-

mers, where A is a thermoplastic such as polystyrene and B is an elastomer such

as polybutadiene. These can be processed like thermoplastics because the hard

segment, the A block, permits flow upon heating above its glass transition

temperature. On cooling, the glassy domains of A act like cross-links within B

and the copolymer has rubberlike properties. As a consequence, vulcanization is

not required.

Rubberlike elasticity theory also has relevance beyond elastomers. On the

practical side, networks that can imbibe large amounts of liquid form gels that act

as superabsorbents. A common example is the use of such polymers in disposable

diapers. A more ‘‘high-tech’’ application is the use of gels for concentrating dilute

macromolecular solutions [17]. Such a ‘‘swellex process’’ can compete with

membrane separation processes for purifying and separating biotechnology

products such as proteins and enzymes [18]. On the theoretical side, rubberlike

elasticity theory can be employed to derive equations of state for molten
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polymers. We assume that the cross-link density in Eq. (10.7.8) is not constant.

This is done by identifying physical entanglements in polymer melts with cross-

links in vulcanized rubber and by allowing the entanglements to be continually

created and destroyed by flow. The resulting model is known as the rubberlike

liquid model [19], and it has enjoyed great popularity among polymer rheologists.

Polymer rheology is considered further in Chapter 14.

Before leaving the topic of elastomers, we mention that there is less than

complete understanding of some rather important issues. One such issue is the

mechanism by which added particulates influence the mechanical properties of

rubbers. Carbon black, for example, is added [6,20,21] to natural rubber and

silica is added [22] to silicone rubber to improve the tear strength and abrasion

resistance of the elastomer. A second issue is the impact modification of polymers

during the formation of microcomposites or macrocomposites by the addition of a

rubbery phase. An example of this is high-impact polystyrene (HIPS); adding

rubber to glassy polymers can raise their impact strength by an order of

magnitude [23]. On a macrolevel, we use polyvinyl butyral as an interlayer in

laminated safety glass to resist penetration from impacts; understanding the

mechanism of window glazing continues to be a subject of current research.
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PROBLEMS

10.1. Give the chemical structure and unique characteristics of each of the

following synthetic rubbers: styrene–butadiene rubber, polybutadiene,

neoprene, butyl rubber, nitrile rubber, and silicone rubber.

10.2. Two identical-looking, elastomeric balls are dropped from the same height

onto a hard surface. One ball is made from neoprene (Tg ¼ �42�C,
maximum elongation of 500% at room temperature), whereas the other

is made from polynorbornene, a linear polymer containing one rigid,

five-membered ring and one double bond in each repeating unit

(Tg ¼ �60�C, maximum elongation of 400% at room temperature).

(a) Which ball will bounce to a higher height at room temperature?

Why?

(b) What happens to the amount of bounce as the temperature is

lowered? Why?

(c) If the two balls are cooled in ice water and then allowed to

bounce, which one will bounce higher? Why?

10.3. Consider the polyethylene chain of Example 10.1. Determine the values n0

and l0 (in terms of n and l ) of an equivalent freely jointed chain so that the
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two chains have the same contour length and the same mean square end-

to-end distance.

10.4. If the polyethylene molecule can be considered a freely jointed chain,

what will be the mean square end-to-end distance if the polymer

molecular weight is 140,000? The length of a single bond is 1.54 Å. If

the polymer sample contains Avogadro’s number of molecules, how many

molecules (at a given time) will actually have this end-to-end distance?

10.5. Seven identical spheres are located at equal intervals along a straight line.

If each sphere has unit mass and if the distance between the centers of

neighboring spheres is unity, what is the radius of gyration?

10.6. Obtain the equivalent form of Eq. (10.4.7) if stress is defined based on the

deformed (actual) area.

10.7. Instead of the uniaxial deformation shown in Figure 10.5, consider equal

biaxial extension: a force F acting parallel to the x axis and an identical

force F acting parallel to the y axis. Relate F=l20 to an appropriately

defined extension ratio.

10.8. Repeat Problem 10.7 for the case in which the two forces are not the same

and equal F1 and F2, respectively. Relate F1=l
2
0 to l1 and l2 and F2=l

2
0 to

l1 and l2.
10.9. A catapult is made using a strip of the butyl rubber of Example 10.5. If, at

25�C, the strip is extended to twice its original length and used to hurl a

10-g projectile, what will be the maximum possible speed of the

projectile? Let the volume of the rubber band be 1 cm3.

10.10. What is the Young’s modulus of the rubber sample used in Figure 10.11?

How does it compare with the corresponding value for steel?

10.11. Does a block of rubber obey Hooke’s law in (a) extension? (b) shear?

Justify your answer.

10.12. Aweight is attached to a 6-cm-long rubber band and the stretched length

is measured as a function of temperature. Are the results shown here [24]

quantitatively consistent with the theory of rubber elasticity?

Temperature (�C) Length (mm)

20 163.0

35 158.5

45 155.5

48 154.0

57 151.0

61 149.0

10.13. Determine the Finger tensor for the shearing deformation considered in

Example 10.4. Show that the same result is obtained by inverting the
~
C

matrix calculated in that example.
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10.14. A sample of the rubber used in Example 10.5 is stretched rapidly to five

times its original length. If the temperature increases from 25�C to 35�C,
what is the polymer specific heat? The density of rubber is 0:97 g=cm3.

10.15. Show that for large values of the swelling ratio q, Eq. (10.8.5) reduces to

q5=3 ¼ ð1=2� w1Þ
n2V1
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11

Polymer Crystallization

11.1 INTRODUCTION

Low-molecular-weight materials, such as metals, typically exist as crystals in the

solid state. The driving force behind the formation of crystals, which are

structures having a long-range periodic order, is the lowering in free energy

that accompanies the process of crystallization. Thus, if we were to plot the Gibbs

free energy per unit volume, G, of a material in both the solid crystalline and

molten forms as a function of temperature, we would get a plot of the type shown

in Figure 11.1; the decrease in free energy with increasing temperature for both

phases is due to the relative increase in the temperature–entropy term. The point

of intersection of the two curves is the equilibrium melting point T0
M , whereas the

vertical difference between them represents the free-energy change, DGv, between

the two states at any temperature. Note that many materials (such as iron) exhibit

polymorphism; that is, they exist in more than one crystalline form. In such a

case, each form has its own G versus temperature curve.

Long-chain molecules can also crystallize, and they do so for the same

energetic reasons as short-chain molecules. However, for a polymer to be

crystallizable, its chemical structure should be regular enough that the polymer

molecule can arrange itself into a crystal lattice. Thus, isotactic and syndiotactic

polypropylenes crystallize easily, but atactic polypropylene does not. For the

same reason, the presence of bulky side groups (as in polystyrene) hinders

crystallization, but the possibility of hydrogen-bonding (as in polyamides)
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promotes the process. Figure 11.2 shows a schematic representation of nylon 66

[1]. A unit cell contains a total of one chemical repeat unit, and the molecules are

in the fully extended zigzag conformation. The polymer chain direction is

generally labeled the c axis of the cell. The cell itself is triclinic, which means

that magnitudes of the three axes and the three interaxial angles are all different.

A sketch of the unit cell is shown in Figure 11.3, in which arrows are used to

designate hydrogen bonds. Whether a crystallizable polymer actually crystallizes

or not, though, depends on the thermal history of the sample. For macromole-

cules, polymer mobility exists only above the glass transition temperature, and

because the energetics are favorable only below the melting point, crystallization

can take place only in a temperature range between T0
m and Tg. However,

crystallization is not an instantaneous process; it takes place by nucleation and

growth, and these steps take time. If the rate of cooling from the melt is rapid

enough, a completely amorphous polymer can result. This is shown schematically

in Figure 11.4, which is a continuous-cooling transformation curve [2]. If the

cooling rate is such that we can go from T 0
m to Tg without intersecting the curve

labeled ‘‘crystallization begins in quiescent melts,’’ no crystallization takes place.

Therefore, it is possible to obtain completely amorphous samples of a slowly

crystallizing polymer such as polyethylene terephthalate, but it is not possible for

a rapidly crystallizing polymer such as polyethylene. In addition to temperature,

the extent of crystallization also depends on factors such as the applied stress

during processing, which tends to align polymer chains in the stress direction.

This can alter the energetics of phase change and can lead to a very significant

enhancement of the rate of crystallization. The phenomenon can be understood as

a shift to the left in Figure 11.4, from the curve indicating the onset of quiescent

crystallization to the curve labeled ‘‘crystallization begins in stretched melts.’’

Because polymers are rarely completely crystalline, they are called semicrystal-

line.

FIGURE 11.1 Variation with temperature of the Gibbs free energy per unit volume.
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FIGURE 11.2 Schematic representation of nylon 66. (From Ref. 1.)

FIGURE 11.3 Perspective drawing of a unit cell of nylon 66. The viewpoint is 11 Å up,

10 Å to the right, and 40 Å back from the lower left corner of the cell. (From Ref. 1.)
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Crystallizable polymers that dissolve in a solvent can also be made to

crystallize from solution. When this is done using dilute solutions, single crystals

can be obtained [3]. The crystals can have a large degree of perfection and are

usually in the form of lamellae or platelets having thickness of the order of 100 Å

and lateral dimensions of the order of microns. The observed thickness depends

on the temperature of crystallization. As shown in Figure 11.5, a single lamella is

composed of chain-folded polymer molecules. Lamellae of different polymers

have been observed in the form of hollow pyramids and hexagonal structures.

When crystallized from quiescent melts, though, spherical structures called

spherulites are observed. These spheres, which can grow to a few hundred

microns in diameter, are made up of lamellae that arrange themselves along the

FIGURE 11.4 Schematic illustration of the concept of a ‘‘continuous-cooling trans-

formation curve’’ showing the anticipated effect of stress in shifting such curves. (From

Ref. 2.)

FIGURE 11.5 A chain-folded crystal lamella.
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radial direction in the sphere, as shown in Figure 11.6. The interlamellar regions

as well as the region between spherulites are composed of amorphous or

noncrystallizable fractions of the polymer. When crystallization takes place

from a strained (deforming) solution or strained melt, the crystal shape can

change to that of a shish kebab in the former case and to a row-nucleated crystal

in the latter case; these are shown in Figure 11.7 [4]. The chain orientation in

solution initially results in the formation of extended chain crystals, which give

rise to the central core or ‘‘shish’’; the ‘‘kebabs,’’ which are lamellar, then grow

radially outward from the shish. If the polymer sample is polydisperse, the higher-

molecular-weight fraction crystallizes first, and this results in fractionation.

From this discussion, it should be clear that a solid semicrystalline polymer

is a two-phase structure consisting essentially of an amorphous phase with a

FIGURE 11.6 Schematic diagram of a spherulite. Each ray is a lamella.

FIGURE 11.7 Oriented morphologies appearing in polyethylene. (Reprinted from

Gedde, U. W., Polymer Physics, Figure 7.38, copyright 1995, Chapman and Hall. With

kind permission of Kluwer Academic.)
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dispersed crystalline phase. Each phase is characterized by different values of a

given physical property. The density of the crystals, for instance, is always greater

than that of the amorphous polymer. Furthermore, process conditions determine

the volume fraction of crystals, their shape, size, and size distribution, the

orientation of polymer chains within the two phases, and how the crystalline

regions are connected to the amorphous regions. Thus, whereas the properties of

an amorphous polymer can be described as glassy or rubbery (depending on

whether the temperature of measurement is below or above the glass transition

temperature), the behavior of a semicrystalline polymer is much more compli-

cated and is often anisotropic: If polymer chains are aligned in a particular

direction, the material will be very strong in that direction but weak in a direction

perpendicular to it. However, one of the two phases may be dominant in terms of

influencing a particular overall property of the polymer. Thus, regarding mechan-

ical properties, we find that increasing the spherulite size results in a decrease in

the impact strength, an increase in the yield stress, and a reduction in the

elongation to break in a tensile experiment while the Young’s modulus goes

through a maximum [5]. The solubility of a molecule in a polymer and also its

diffusivity, though, are determined by the amorphous phase. As a consequence,

the permeability, which is a product of these two quantities, decreases as the

extent of crystallinity increases. The breakdown of electrical insulation, on the

other hand, depends on the properties of the interspherulitic region in the polymer

[6]. Other factors that are influenced by the structure include brittleness,

environmental degradation, thermal properties, melting point, and glass transition

temperature. If the solid structure that is formed is a nonequilibrium one, it can

change later if conditions (especially temperature) are such that equilibrium can

be approached. Thus, a polymer sample whose chains have been frozen in an

extended position can shrink when chain alignment is lost on heating to a

temperature above the glass transition temperature.

Although some of the influence of structure on properties can be rationa-

lized by thinking of crystallites either as filler particles in an amorphous matrix or

as permanent cross-links (as in vulcanized rubber), a proper understanding of

structure development during processing is necessary to satisfy intellectual

curiosity and to utilize crystallization knowledge for economic gain. As a

result, we need to know what structure arises from a given set of processing

conditions, how we can characterize (or measure) this structure, and how it affects

a property of interest. It is, of course, much more difficult to reverse the process

of thinking and inquire how we might obtain a particular structure in order to get

specified values of properties of interest. This is the realm of engineered material

properties and the subject of research of many industrial research laboratories.

Before tackling greater problems, though, we must first get acquainted with some

rather fundamental concepts.
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11.2 ENERGETICS OF PHASE CHANGE

If the temperature of a liquid is lowered to below the melting point, material tends

to solidify. As mentioned previously, the process is neither sudden nor instanta-

neous. Indeed, it proceeds relatively slowly and on a small scale if the temperature

is only slightly below the melting point, and it involves two distinct steps.

Initially, nuclei of the new phase must be formed, and the ease with which this

happens depends on the extent of supercooling. This step is followed by growth

of the nuclei, a procedure that involves diffusion of material to the phase

boundary. The combined process of nucleation and growth is the same regardless

of whether the crystallization behavior being observed is that of molten metals or

molten polymers.

11.2.1 Homogeneous Nucleation

To understand the thermodynamics of nucleation, let us first consider homo-

geneous nucleation, also called sporadic nucleation, from an isothermal, quies-

cent melt whose temperature T is kept below the melting point T0
m. Here,

‘‘homogeneous’’ refers to the appearance of the new solid phase in the middle

of the old liquid phase.

Based on Figure 11.1, we would expect nucleation to be accompanied by a

reduction in the Gibbs free energy equal to DGv per unit volume. However, the

system free energy is not reduced by the full amount of DGv. This is because

surface energy equal to g per unit area has to be expended in creating the surface

that bounds the nuclei. Thus, if the typical nucleus is a sphere of radius r, the net

change in the free energy due to the formation of this particle is

DG ¼ 4pr2gþ 4

3
pr3DGv ð11:2:1Þ

where DGv is a negative number. For a small sphere, the surface area-to-volume

ratio can be fairly large; therefore, DG initially increases with increasing r and

goes through a maximum before becoming negative. This maximum (positive)

value DG* represents an energy barrier and must be overcome by the thermal

motion of the molecules before a stable nucleus can be formed.

If we set the derivative of DG with respect to r equal to zero, then using

Eq. (11.2.1) we find that r*, the value of r corresponding to DG*, is

r* ¼ � 2g
DGv

ð11:2:2Þ

with the following result:

DG* ¼ 16pg3

3ðDGvÞ2
ð11:2:3Þ
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Because the magnitude of DGv increases as the temperature is lowered, both r*

and DG* decrease with decreasing temperature. This variation can be made

explicit by noting that, at the melting point,

DGv ¼ DHv � T0
mDSv ¼ 0 ð11:2:4Þ

where H and S are respectively the enthalpy and entropy per unit volume.

Consequently, we have the following:

DSv ¼
DHv

T0
m

ð11:2:5Þ

Now, DSv and DHv depend only weakly on temperature, so that

DGv ¼ DHv 1� T

T0
m

� �
ð11:2:6Þ

which, when introduced into Eqs. (11.2.2) and (11.2.3), gives

r* ¼ � 2gT 0
m

DHvDT
ð11:2:7Þ

DG* ¼ 16pg3ðT0
mÞ2

3DH2
vDT2

ð11:2:8Þ

where DT equals the amount of subcooling (T0
m � T ) and DHv is physically the

latent heat of crystallization per unit volume and is a negative quantity. Clearly,

lower temperatures favor the process of nucleation, as DG* decreases rapidly with
decreasing temperature.

Example 11.1: For a polyolefin it is found that DHv ¼ �3� 109 ergs=cm3 and

g ¼ 90 ergs=cm2. If the equilibrium melting point is 145�C, how do the radius r*

of a critical-sized nucleus and the associated energy change DG* depend on the

extent of subcooling, DT?

Solution: Using Eq. (11.2.7), we find that

r*DT ¼ 2508

where r* is measured in angstroms. Also, with the help of Eq. (11.2.8), we have

DG*ðDT Þ2 ¼ 2:37� 10�7 ergs K2

11.2.2 Heterogeneous Nucleation

Although the treatment of the previous section can be extended to nonspherical

nuclei, we find that this is not needed in practice because the contribution of
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homogeneous nucleation to overall crystal growth is small compared to that of

heterogeneous or predetermined nucleation, unless the temperature is signifi-

cantly below the melting point. In the case of heterogeneous nucleation, crystal

growth takes place on a pre-existing surface, which might be a dust particle, an

impurity, part of the surface of the container, or an incompletely melted crystal. If

we consider heterogeneous nucleation to take place on the surface of a pre-

existing lamella, as shown in Figure 11.8 [7], we discover that if the crystal

volume increases by an amount nabl, where abl is the volume of a single strand,

the surface area increases by only 2bðl þ naÞ. Had we considered primary

nucleation, the surface area would have gone up by 2bðl þ naÞ þ 2nal. Note

that due to chain folding, ge, the surface energy associated with the chain ends

can be expected to be large compared to g, the surface energy of the lateral

surface.

In view of the foregoing, the free-energy change due to the deposition of n

polymer strands is

DG ¼ 2blgþ 2bnage þ nablDGv ð11:2:9Þ
and the free-energy change involved in laying down the (nþ 1)st strand is

obtained from Eq. (11.2.9) as

DGðnþ 1Þ � DGðnÞ ¼ 2abge þ ablDGv ð11:2:10Þ
Clearly, for this process to be energetically favorable, the right-hand side of

Eq. (11.2.10) has to be negative. This condition requires that [8]

l > � 2ge
DGv

ð11:2:11Þ

FIGURE 11.8 Crystal growth on a pre-existing surface.
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which, in view of Eq. (11.2.6), implies that

l > � 2geT
0
m

ðDHvDT Þ
ð11:2:12Þ

Because the argument leading up to Eq. (11.2.12) is valid for any value of n, it

must also hold for the beginning of the process when n equals unity. Thus, for

heterogeneous nucleation, the critical-sized nucleus occurs at n ¼ 1, with the

result that

DG* ¼ 2bl*gþ abl*DGv þ 2abge ð11:2:13Þ
with

l* ¼ � 2geT
0
m

DHvDT
ð11:2:14Þ

and we find that, just as with r*, l* depends inversely on DT . This is found to be

true experimentally. Also, to a good approximation,

DG* / 1

DT
ð11:2:15Þ

Example 11.2: Use the data given in Example 11.1 to confirm the validity of

Eq. (11.2.15). Determine DG* for DT ¼ 10K and compare this value with that in

Example 11.1. Assume that ge � g.

Solution: As ge � g, l* ¼ r* ¼ 250:8 Å. Because a cannot be more than a few

angstroms, a� l* and we can neglect the last term on the right-hand side of Eq.

(11.2.13) in comparison with the first term. The second term in Eq. (11.2.13) can

also be neglected, provided that the following holds:

aDGv � 2g

or

aDHvDT
2gT0

m

� 1

Introducing numbers, aDHvDT=2gT
0
m ¼ að3� 109 � 10Þ=ð2� 90� 418Þ ¼

3:98� 105a, which is much less than unity because a < 10�7 cm. Consequently,

DG* ¼ 2bl*g ¼ 4bggeT
0
m=DHvDT / 1=DT . For homogeneous nucleation, DG*

is equal to 2:37� 10�9 ergs. For heterogeneous nucleation, DG* ¼
4:51b� 10�4 ergs. Because b < 10�7 cm, the energy barrier for heterogeneous

nucleation is much smaller than that for homogeneous nucleation when the

temperature is close to the equilibrium melting point.

446 Chapter 11

Copyright © 2003 Marcel Dekker, Inc.



11.3 OVERALL CRYSTALLIZATION RATE

Even when a phase transformation is thermodynamically possible, the rate at

which it happens is controlled by the existence of any barriers retarding an

approach to equilibrium; the activation energy DG* calculated in the previous

section represents just such a barrier for crystallization. The probability that a

group of molecules has an energy DG* greater than the average energy at a

specified temperature T is given by the Boltzmann relation

Probability / exp �DG*
kT

� �
ð11:3:1Þ

which, when applied to the process of nucleation, means that if the total number

of solid particles at any instant is N0, the number N* that actually possess the

excess energy DG* is given by

N* ¼ N0 exp �
DG*
kT

� �
ð11:3:2Þ

Nuclei form by the addition of molecules; this is a process of diffusion for which

the following relation holds:

Rate / exp �ED

kT

� �
ð11:3:3Þ

where ED is the activation energy for diffusion. A combination of Eqs. (11.3.2)

and (11.3.3) then implies that the rate of nucleation _NN in units of nuclei per unit

time is given by [9]

_NN ¼ _NN0 exp �
ED

kT

� �
exp �DG*

kT

� �
ð11:3:4Þ

Because the growth of nuclei proceeds by the process of heterogeneous nuclea-

tion, the growth rate n can also be represented by an equation of the form

n ¼ n0 exp �
ED

kT

� �
exp �DG*

kT

� �
ð11:3:5Þ

and the overall linear growth rate G (see Fig. 11.8) having units of velocity will

be proportional to some product of _NN and n. Thus,

G ¼ G0 exp �
ED

kT

� �
exp �DG*

kT

� �
ð11:3:6Þ

Around the glass transition temperature, the following holds [10]:

ED

kT
¼ c1

Rðc2 þ T � TgÞ
ð11:3:7Þ
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where c1 is a constant with units of energy per mole, and c2 is a constant with

units of temperature. Also, if Eq. (11.2.15) is used for DG*, we have

DG*
kT
¼ A

TDT
ð11:3:8Þ

in which A is a constant. Finally, the overall growth rate is given by

G ¼ G0 exp �
c1

RðT � T1Þ
� �

exp � A

TDT

� �
ð11:3:9Þ

where T1 equals Tg � c2 and A equals �4bggeT 0
m=kDHv.

An examination of Eq. (11.3.9) shows that the overall growth rate is

independent of time under isothermal conditions. Also, the plot of G as a function

of temperature is bell shaped (see Fig. 11.9). The rate is zero in the vicinity of the

glass transition temperature because the rate of diffusion is small and the first

exponential in Eq. (11.3.9) tends to zero, and it is also zero close to the melting

point because the second exponential is driven to zero due to DT tending to zero.

The rate is a maximum approximately midway between these two limits.

Example 11.3: Kennedy and co-workers used photomicroscopy to measure the

radial growth rate of spherulites of isotactic polystyrene at a variety of constant

temperatures [11]. These data are shown in Figure 11.10. Show that the results

are consistent with Eq. (11.3.9).

FIGURE 11.9 Qualitative temperature dependence of the linear growth rate G.
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Solution: Taking the natural logarithm of both sides of Eq. (11.3.9) and

rearranging gives

lnG þ c1

RðT � T1Þ
¼ lnG0 �

A

TDT

and a plot of the left-hand side of this equation versus 1=TDT should be a straight

line. This is, indeed, found to be the case when known values of 365K and

503.8K are used for Tg and T 0
m, respectively, and c1 and c2 are considered to be

adjustable parameters. The final result is

lnG ¼ 15:11� 2073

T � 290
� 9:25� 104

T ð503:8� T Þ
This equation is plotted (on linear coordinates) in Figure 11.10 and gives

excellent agreement with experimental growth rates.

In closing this section, we note that the size of spherulites is large when

crystallization takes place near the melting point. This is because few nuclei are

formed due to the large value of DG*. However, once formed, nuclei grow easily.

By contrast, when crystallization occurs near the glass transition temperature, a

large number of small spherulites are observed; here, nuclei are formed readily,

but they do not grow because the rate of diffusion is low. A common technique of

FIGURE 11.10 Comparison of experimentally determined growth rates of spherulites

of i-polystyrene with (d) experimental (—) theoretical values. (From J. Polym. Sci. Polym.

Phys. Ed., 21, Kennedy, M. A., G. Turturro, G. R. Brown, and L. E. St.-Pierre: Retardation

of spherulitic growth rate in the crystallization of isotatic polystyrene due to the presence

of a nucleant, Copyright #1983 by John Wiley & Sons, Inc. Reprinted by permission of

John Wiley & Sons, Inc.)
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increasing the rate of crystallization is to intentionally add a fine powder such as

silica or titanium dioxide to act as a nucleating agent.

11.4 EMPIRICAL RATE EXPRESSIONS: THE
AVRAMI EQUATION

Equation (11.3.9) and its derivation are very useful in understanding how crystals

nucleate and grow in a stagnant melt. However, the knowledge gained does not

permit us to predict, a priori, the time dependence of the extent of crystallinity

and the size distribution of spherulites in a polymer sample kept at a specified

temperature between Tg and T0
m. This information about the microstructure is

crucial if we want to know in advance the mechanical properties likely to be

observed in plastic parts produced by methods such as injection molding (see

Chapter 15 for a description of the process). Because some of the very large-

volume polymers such as polyethylene, polypropylene, and various nylons are

injection molded, the question of the microstructure of semicrystalline polymers

has received a considerable amount of attention [12]. This has led to the

formulation of empirical expressions based on the theory originally developed

by Avrami [13–15], Johnson and Mehl [16] and Evans [17] to explain the

solidification behavior of crystallizable metals.

11.4.1 Isothermal Quiescent Crystallization

If we consider the isothermal crystallization of a quiescent polymer melt—

whether by homogeneous or heterogeneous nucleation—then at time t, the

volume of a spherulite that was nucleated at time t ðt < tÞ will be V ðt; tÞ. As a
consequence, the weight fraction, X 0, of material transformed will be as follows

[18]:

X 0ðtÞ ¼
ðt
0

rsV ðt; tÞ dn ð11:4:1Þ

where rs is the density of the crystalline phase and dn is the number of nuclei

generated per unit mass in the time interval t and tþ dt.
If the nucleation frequency per unit volume is _NN ðtÞ and the liquid phase

density is rL, then

dn ¼
_NN ðtÞ dt
rL

ð11:4:2Þ

Equation (11.4.1) therefore takes the following form:

X 0ðtÞ ¼ rs
rL

ðt
0

V ðt; tÞ _NN ðtÞ dt ð11:4:3Þ
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In order to make further progress, it is necessary to specify the time dependence

of V and _NN . This is done by appealing to observed crystallization behavior. It is

now well established that, under isothermal conditions, the radius of a spherulite

increases linearly with time [see also Eq. (11.3.9)], with the following result:

V ðt; tÞ ¼ 4

3
pG3ðt � tÞ3 ð11:4:4Þ

where G is the constant time rate of change of the spherulite radius.

For sporadic or homogeneous nucleation, _NN ðtÞ is usually a constant, and a

combination of Eqs. (11.4.3) and (11.4.4) yields

X 0ðtÞ ¼ p
3

rs
rL

G3 _NNt4 ð11:4:5Þ

For heterogeneous nucleation, on the other hand, the total number of nuclei per

unit volume N0 is independent of time, and an integration over time is not

necessary.

The corresponding result for the mass fraction crystallinity is given by

X 0ðtÞ ¼ rs
rL

4

3
pG3N0t

3 ð11:4:6Þ

These equations cannot be valid at long times, because they predict a physically

meaningless unbounded increase in X 0. In real interactions, the spherulites

impinge on each other; growth slows and ultimately stops. The situation is

easily remedied by assuming the following [19]:

dX

dX 0
¼ 1� X ð11:4:7Þ

where dX is the actual amount of material transformed in time dt and dX 0 is the
amount of material that would be transformed in the same time interval in the

absence of impingement. This equation simply expresses the fact that the effect of

impingement is small when the amount of crystallization is small, and the rate of

crystallization must decrease to zero as X tends to unity.

Equation (11.4.7) is easily integrated because X 0 is given either by

Eq. (11.4.5) or Eq. (11.4.6). For homogeneous nucleation the result is

X ¼ 1� exp � p
3

rs
rL

G3 _NNt4
� �

ð11:4:8Þ

For heterogeneous nucleation, the corresponding result is

X ¼ 1� exp � rs
rL

4

3
pG3N0t

3

� �
ð11:4:9Þ

or, more generally,

X ¼ 1� expð�ktnÞ ð11:4:10Þ
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which is known as the Avrami equation. All of the temperature dependence is

embodied in the rate constant k, whereas the Avrami exponent, n, is usually

considered to be the sum pþ q, with p being 0 or 1 depending on predetermined

or sporadic nucleation and q being 1, 2, or 3 depending on the dimensionality of

crystal growth. Thus, n would equal 3 for the growth of disklike crystals by

homogeneous nucleation but would only be 2 if the nucleation were hetero-

geneous.

For most polymers, crystallinity is never complete and Eq. (11.4.10) is

modified by defining an effective fraction of transformed material X=X1, where
X1 is the mass fraction crystallized at the end of the transformation. The result of

this modification is given as follows [20]:

1� X

X1
¼ exp � k

X1
tn

� �
ð11:4:11Þ

or

ln 1� X

X1

� �
¼ �ktn ð11:4:12Þ

where X1 on the right-hand side of Eq. (11.4.12) has been absorbed into the

constant k.

Figure 11.11 shows crystallization data for the degree of crystallinity X as a

function of time, at several constant temperatures, for poly(ether-ether-ketone)

(PEEK). This polymer has a glass transition temperature of 145�C and a melting

point of 340�C, properties that make it a candidate for high-performance

thermoplastic composite matrix applications. In Figure 11.11, the degree of

crystallinity is determined as the ratio between the heat evolved during isothermal

crystallization in a differential scanning calorimeter and the latent heat of

crystallization of a perfect crystal. An examination of Figure 11.11 reveals that

a certain induction time is needed before crystallization commences and that X1
the ultimate crystallinity at very long times depends on the temperature of

crystallization.

When the data of Figure 11.11 are plotted on logarithmic coordinates, as

suggested by Eq. (11.4.12), a set of parallel lines is obtained, shown in Figure

11.12. The slope of each of the lines is approximately 3, suggesting hetero-

geneous nucleation and three-dimensional spherulitic growth. Note, though, that

in the latter stages of crystallization, growth slows and the Avrami expression is

not obeyed. This phase of crystallization is called secondary crystallization, and

it is characterized by the thickening of crystal lamellae and an increase in crystal

perfection rather than an increase in spherulite radius.

Example 11.4: It is often found (see Fig. 11.13) that primary isothermal

crystallization data at various temperatures superpose when X=X1 is plotted as
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a function of t=t1=2, where t1=2 is the time for the percent crystallinity to reach

50% of the final value [22]. If the Avrami theory is valid, how is kðT Þ related to

t1=2?

Solution: Allowing X=X1 to equal 0.5 in Eq. (11.4.12) gives

ln 0:5 ¼ �ktn1=2
or

kðT Þ ¼ ln 2

tn1=2

Although the Avrami equation is obeyed exactly by a large number of

polymers, noninteger values of the exponent n are often observed [23]. Also note

that, for heterogeneous crystallization, the constant k in Eq. (11.4.12) is related to

the linear growth rate G of Eq. (11.3.6) as

G 
 k1=n ð11:4:13Þ
in which n is the Avrami exponent and where it is obvious that k depends on

temperature. An extensive treatment of the temperature dependence of G

FIGURE 11.11 Crystallization data for PEEK. Development of absolute crystallinity

with time for isothermal crystallization at 315�C (u), 312�C (s), 308�C (n), 164�C (m),

and 160�C (d). (From Ref. 21.)

Reprinted from Polymer, vol. 27, Cebe, P., and S. D. Hong: ‘‘Crystallization Behaviour of

Poly(ether-ether-ketone),’’ pp. 1183–1192, Copyright 1986, with kind permission from

Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.
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according to the original theory of Hoffman and Lauritzen [7], along with

supporting experimental data, may be found in the book by Gedde [4], who

also discusses some of the more recent theoretical developments.

11.4.2 Nonisothermal Quiescent Crystallization

During the processing of any crystallizable polymer, crystallization never occurs

at a fixed, constant temperature. Instead, the polymer cools from the molten state

to the solid state at some rate that is determined by the processing conditions, and

FIGURE 11.12 Avrami plot of the data shown in Figure 11.11. Plot of

logf� ln½1� XcðtÞ=Xcð1Þ�g versus time for isothermal crystallization at 315�C (u),

312�C (s), 308�C (n), 164�C (j), and 160�C (d). (From Ref. 21.)

Reprinted from Polymer, vol. 27, Cebe, P., and S. D. Hong: ‘‘Crystallization Behaviour of

Poly(ether-ether-ketone),’’ pp. 1183–1192, Copyright 1986, with kind permission from

Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.
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the structure that results is due to crystallization that takes place over the entire

temperature range between the melting point and the glass transition temperature.

In principle, the final crystallinity at the end of the cooling process can again be

calculated by combining Eqs. (11.4.3) and (11.4.7), with the result that

X ¼ 1� exp � rs
rL

ðt
0

V ðt; tÞ _NN ðtÞ dt
� �

ð11:4:14Þ

FIGURE 11.13 Isothermal crystallization data for high-density polyethylene. (a) Crys-

tallinity–time curves in isothermal crystallization at various temperatures. (b) Plots of

crystallinity versus relative time t=t*, where t* is time when the crystallization proceeds to

50%. (From Ref. 22.) From J. Appl. Polym. Sci., vol. 17, Nakamura, K., K. Katayama, and

T. Amano: Some aspects of nonisothermal crystallization of polymers: II. Consideration of

the isokinetic condition, Copyright # 1973 by John Wiley & Sons, Inc. Reprinted by

permission of John Wiley & Sons, Inc.
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Now, G and _NN are no longer constants. They may, however, be evaluated from a

knowledge of the temperature dependence of the isothermal rate constants [24].

_NN ðtÞ ¼
ðt
0

d _NN

dT

� �
dT

ds

� �
ds ð11:4:15Þ

V ðt; tÞ ¼ 4

3
p½rðt; tÞ�3 ð11:4:16Þ

with

rðt; tÞ ¼
ðt
t

dr

ds

� �
ds ð11:4:17Þ

dr

ds
¼ GðsÞ ¼ Gð0Þ þ

ðS
0

dG

dT

� �
dT

dt

� �
dt ð11:4:18Þ

Insertion of these expressions into Eq. (11.4.14) then makes it possible to

compute X ðtÞ. However, it is obvious that an analytical result cannot be obtained

unless gross assumptions are made. One such assumption involves allowing the

ratio _NN=G to be constant, independent of temperature, resulting in an isokinetic

process [25]. This is justified based on the fact that the shapes of both functions

are similar when they are plotted in terms of temperature [see Eqs. (11.3.4) and

(11.3.6)]. A consequence of this assumption, as demonstrated by Nakamura and

co-workers [22, 26] is that Eq. (11.4.12), the Avrami equation, is modified to

ln 1� X

X1


 �
¼ �

ðt
0

K½T ðtÞ� dt
� �n

ð11:4:19Þ

where

KðT Þ ¼ kðT Þ1=n ð11:4:20Þ
and n is the Avrami exponent determined from data on isothermal crystallization.

It has been shown that the modified Avrami equation represents the nonisother-

mal crystallization behavior of high-density polyethylene very well [22].

11.5 POLYMER CRYSTALLIZATION IN BLENDS
AND COMPOSITES

As discussed in Section 9.6 of Chapter 9, polymers are blended together with the

expectation of obtaining a material having enhanced thermal, mechanical, or

solvent-resistance properties relative to the blend constituents. If one of the

components is crystallizable, the presence of the other component can influence

the nature, rate, extent, and temperature range of crystallization. If the two

polymers are immiscible, crystallization may occur in the domain of one polymer

unaffected by the presence of the other polymer, or the other polymer may act as a
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nucleating agent, depending on which component solidifies first. However, the

more interesting situation, from a theoretical viewpoint, is one in which the

polymers are thermodynamically compatible and only one component is crystal-

lizable. An example is the blending of PEEK with poly(etherimide) (PEI), an

amorphous polymer with a high thermal resistance (Tg � 215�C). The amor-

phous polymer acts as a diluent for the crystallizable polymer, and the result is a

lowering of the equilibrium melting point; this effect is similar to the depression

in freezing point (see Sect. 8.3 of Chap. 8) of a liquid upon addition of a

nonvolatile solute. If we use the Flory–Huggins theory developed in Section 9.3

of Chapter 9, it is possible to show the following [27]:

1

Tm
� 1

T0
m

¼ � Rv2
DH2v1

w12ð1� f2Þ2 ð11:5:1Þ

where Tm and T0
m are the melting points of the crystals in the blend and pure

states, DH2 is the (positive) heat of fusion per mole of repeating unit, v1 and v2
are the molar volumes of the repeating units, w12 is the polymer–polymer

interaction parameter, and f2 is the volume fraction. (In a volume fraction, the

amorphous polymer is denoted by subscript 1 and the crystalline polymer by

subscript 2.) Note that for Tm to be smaller than T 0
m, w12 has to be negative. This is

consistent with the remark following Eq. (9.6.3) of Chapter 9 that polymer–

polymer miscibility depends entirely on energetic effects.

A further effect of polymer blending is that the blend’s glass transition

temperature is bounded by the glass transition temperatures of the blend

constituents; this intermediate value is given by Eq. (9.6.1) of Chapter 9. Thus,

because crystallization takes place only in a temperature range between Tm and

Tg, the addition of high-Tg amorphous diluent can serve to significantly contract

the range of available crystallization temperatures.

Example 11.5: Estimate the lowering in melting point and the elevation in the

glass transition temperature of PVF2 (T0
m ¼ 170:6�C, Tg ¼ �50�C) when it is

mixed with PMMA (Tg ¼ 90�C) such that the blend contains 60% by weight of

PVF2. According to Nishi and Wang [27], v1 ¼ 84:9 cm3=mol,

v2 ¼ 36:4 cm3=mol, DH2 ¼ 1:6 kcal=mol, and w12 ¼ �0:295.

Solution: Using Eq. (11.5.1) gives

1

Tm
¼ 1

443:6
þ 1:987� 36:4

1600� 84:9
� 0:295ð1� 0:6Þ2
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or

Tm ¼ 438:7 K

ðT 0
m � TmÞ ¼ 4:89 K

Using Eq. (9.6.1) again gives

1

Tg
¼ 0:4

363
þ 0:6

223

or Tg ¼ 263:7K, and Tg increases by 40.7K.

When a polymer crystallizes in the presence of a noncrystallizable

component, the crystal growth rates can be significantly affected due to the

inevitable rejection of the noncrystallizable material from the growing crystal.

This effect becomes increasingly important at large undercoolings, where growth

rates are dominated by diffusion. Thus, the maximum isothermal radial growth

rate of isotactic polystyrene falls by almost a third on adding a 15% atactic

polymer [28]. In this situation, the spherulite radius still increases linearly with

time because the mixture composition at the crystal growth front remains

unchanged as crystallization proceeds. However, if the rejected polymer diffuses

more rapidly than the rate at which spherulites grow, the concentration of diluent

at the growth front can increase sufficiently, to further reduce the rate of

crystallization and make the spherulite radius change nonlinearly with time. An

additional significant reduction in the growth rate can occur if the change in melt

composition is accompanied by an increase in melt viscosity. This is especially

important when the two components have widely separated glass transition

temperatures. Furthermore, these kinetic effects can be accompanied by changes

in crystal morphology, depending on where the amorphous polymer segregates

itself [29]. Additionally, when crystallization takes place in the presence of

cooling, the solidified blend may have very low levels of crystallinity due to all of

the effects mentioned. Nadkarni and Jog [30] have summarized the crystallization

behavior of commonly encountered crystalline=amorphous as well as crystal-

line=crystalline polymer blend systems.

An important effect that is observed during the melt processing of blends of

condensation polymers, such as two polyamides or two polyesters, is the

occurrence of interchange reactions [31]. The result of these transamidation or

transesterification reactions is the formation of a block copolymer. Initially, a

diblock copolymer is produced, but, with increasing processing time, this gives

way to blocks of progressively smaller size; ultimately, a random copolymer

results. This ‘‘processing’’ route to the synthesis of copolymers is often simpler

and more economical than making the copolymers in a chemical reactor, and

‘‘reactive extrusion’’ is a major industry today [32]. If one homopolymer is
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semicrystalline and the other amorphous, noncrystallizable sequences will be

built in between the crystallizable sequences of the semicrystalline polymer. This

has a profound effect on the crystallization behavior of the semicrystalline

polymer [33]. In particular, there is a reduction in the melting point of the

crystals and a change in the glass transition temperature; the Tg of the resulting

random copolymer can be estimated using Eq. (9.6.1) of Chapter 9 that was

earlier shown to be valid for miscible polymer blends. There is also a decrease

both in the crystallization rate and the total crystallinity of the blend, as compared

with the crystallizable homopolymer.

In order to modify polymer properties, we commonly add fillers and

reinforcements to plastics. The dimensions of these additives are usually no

smaller than a few microns, and the fillers influence the behavior of crystallizable

polymers only to the extent that they provide sites for nucleation; polymer

morphology is generally not affected. In the recent past, though, it has become

possible to add solids whose smallest dimension is of the order of 1 nm (10 Å).

These materials are called nanomers, and the mixture is known as a nanocompo-

site [34]. The most extensively researched filler is montmorillonite (MMT), a clay

that is a layered silicate made up of platelets or sheets that are each about 1 nm

thick and which have an aspect ratio ranging from 100 to 300. MMT has a large

surface area of about 750m2=g, and the addition of just 1 wt% of well-dispersed

clay to a polymer such as nylon 6 results in very significant property improve-

ments: The Young’s modulus, dimensional stability, heat-distortion temperature,

solvent resistance, and flame resistance all increase. The extent of increase is

what might normally be expected on adding more than 10wt% glass fibers, say.

Also, there is a reduction in gas and moisture permeability, and all this happens

without loss of any other property of interest. Not surprisingly, nanocomposites

are being researched for a wide variety of applications, including the original

automotive applications. In terms of the crystallization behavior of polymers

containing nanofillers, it has been found that the presence of silicate layers

enhances the rate of isothermal crystallization [35]; this is not surprising because

the clay platelets act as nucleating agents. What is surprising, though, is that for

polymers such as polypropylene and nylon 6, the polymer morphology changes

from spherulitic, in the absence of MMT, to fibrillar, in the presence of MMT—

the fibrous structures grow in both length and diameter as crystallization

proceeds. Also, crystallization can occur at high temperatures where the neat

polymers do not crystallize [35].

11.6 MELTING OF CRYSTALS

When the temperature of a polymeric crystal is raised above the glass transition

temperature, it can begin to melt. This process is the reverse of crystallization,
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but, surprisingly (and in contrast to the behavior of low-molecular-weight

substances), melting takes place over a range of temperatures even for crystals

of a monodisperse polymer. Furthermore, the melting point changes if the rate of

heating is changed. These phenomena, although ostensibly unusual, can be

explained in a straightforward manner using the theory developed in this chapter.

A polymer single crystal of the type shown in Figure 11.5 will actually melt

at a temperature Tm, where Tm is less than T0
m, when the net change in the Gibbs

free energy is zero. Thus,

DG ¼ AlDGv � 2Age ¼ 0 ð11:6:1Þ
where l is the thickness of the crystal, A is the surface area of the fold surface as

shown in Figure 11.5, and ge is the free energy of the fold surface. Here, DGv and

ge are both positive quantities, and the total surface area of the crystal has been

approximated by 2A.

Using Eq. (11.2.6) for DGv gives

DGv ¼ DHv 1� Tm

T0
m

� �
ð11:6:2Þ

which, when introduced into Eq. (11.6.1), allows us to solve for the melting point

as follows:

Tm ¼ T0
m 1� 2ge

DHvl

� �
 �
ð11:6:3Þ

It is clear why the actual melting point must be less than the equilibrium melting

point. The two melting points become equal only for infinitely thick crystals for

which l tends to infinity. This is a situation that can prevail only for high-

molecular-weight polymers and only for extended-chain crystals. Conversely,

low-molecular-weight polymers must necessarily have a melting point that is less

than T0
m. Even when the molecular weight is kept fixed, Eq. (11.6.3) teaches us

that the melting point varies as l varies. Because l depends on the temperature at

which crystallization originally took place and increases with increasing tempera-

ture [see Eq. (11.2.14)], the melting point of a crystal formed at a given

temperature is higher than the melting point of a similar crystal formed at a

lower temperature. Thus, nonisothermal crystallization gives rise to crystals that

do not have a single, sharply defined melting point. Indeed, it is even possible to

heat a semicrystalline polymer to a temperature above Tg and to melt some

crystals while allowing other crystals to form! Furthermore, because crystals tend

to thicken on annealing (being held at a temperature above the glass transition

temperature), slow heating of a crystal gives rise to a higher melting point than

does fast heating. Finally, a conceptually easy way to measure the equilibrium

melting point is to plot Tm against 1=l and extrapolate to a zero value of the

abscissa. A more practical way is to plot Tm as a function of Tc, the temperature of
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crystallization, and extend the plot until it intersects the graph of Tm ¼ Tc. The

point of intersection yields T0
m. This procedure is known as a Hoffman–Weeks

plot, and it is illustrated in Figure 11.14 for a 90=10 blend of nylon 66 with an

amorphous nylon [33]. Also shown in this figure are data on block copolymers of

these two plastics. Copolymerization takes place simply on holding the blend in

the melt state for an extended period of time, and as time in the melt increases, it

results in the formation of progressively smaller blocks. The progressively smaller

blocks lead to progressively less perfect crystals that have a progressively lower

melting point.

Information generated about the melting point and the heat of fusion of a

semicrystalline polymer by melting tiny samples in a differential scanning

calorimeter can generally be applied to predict the melting behavior of large

amounts of the same polymer in processing equipment. Such a heat transfer

model for polymer melting in a single screw extruder is presented in Chapter 15;

the rate of melting is determined by the sum of the heat generated in unit time by

viscous dissipation and that which is provided by band heaters attached to the

extruder barrel. When one goes to progressively larger extruders, though, the ratio

of the surface area available for heat transfer to the volume of polymer in the

FIGURE 11.14 Hoffman–Weeks plots for a 90=10 nylon 66=amorphous nylon blend

annealed in the melt state for different periods of time. (From Ref. 33.)
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extruder decreases to such an extent that heat transfer from the outside becomes

of secondary importance. In this case, the sequence of events that leads to the

melting of a crystalline polymer has been elucidated by Shih and co-workers [36]

by carrying out melting experiments on polyethylene in a heated internal (batch)

mixer. The polymer was charged to the mixer, and a low but constant heating rate

was imposed; the torque and temperature were measured, and the pellets were

observed through a glass window. Initially, the polymer existed in the form of

free-flowing pellets whose temperature increased as expected. As the temperature

approached Tg, the pellets softened and were compacted. The nonelastic defor-

mation of these compacted pellets resulted in large energy dissipation, especially

in the presence of a small amount of clay that increased the coefficient of friction.

The result was a sharp increase in both the mixing torque and the mixture

temperature. This led to the formation of molten polymer that tended to lubricate

the pellets, and there was a reduction in the torque. Ultimately, there was enough

melt generated to subsume all of the solid particles in the form of a slurry. In large

extruders, melting of pellets arises not due to heat transfer from the barrel but due

to heat generated by the periodic deformation of the softened pellets. This can

lead to rather rapid melting in a narrow region instead of gradual melting over a

large region [37]. Indeed, it is this very rapid generation of energy coupled with

the low thermal conductivity of typical polymers that is responsible for the poor

‘‘melt quality’’ that is often observed: The polymer that leaves the extruder can

consist of islands of relatively cold, unmelted polymer floating in very hot molten

liquid.

11.7 INFLUENCE OF POLYMER CHAIN
EXTENSION AND ORIENTATION

Early work on polymer crystallization dealt exclusively with isothermal crystal-

lization in stress-free, unoriented polymers and was useful for elucidating

mechanisms and building theories. However, in practical polymer processing

operations (such as fiber spinning and film blowing), crystallization takes place

from oriented polymers under stress, and events arise that cannot be explained in

a quantitative manner. Southern and Porter have found that when high-density

polyethylene is extruded using a capillary viscometer, at a temperature close to

the polymer melting point, crystallization can be induced in the polymer in the

entry region of the capillary [38]. In this study, crystallization was so massive that

the capillary was essentially blocked, resulting in a cessation of extrudate flow

and a rapid increase in the extrusion pressure. Furthermore, the crystals that were

formed had an extended chain structure and a higher melting point than normal.

That polymer chain extension and orientation are responsible for the enhance-

ment in the crystallization rate has been demonstrated most strikingly by straining
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polyethylene terephthalate in the glassy state and then measuring the rate of

crystallization by annealing the samples above the glass transition temperature

[39, 40]. Indeed, while under isothermal, quiescent conditions, the half-time of

polyethylene terephthalate crystallization is about 1min at the temperature of

maximum crystallization rate [23]. During commercial fiber spinning, the same

polymer crystallizes in less than one 1 s due to the influence of mechanical

stretching [41]. These studies, however, have been largely qualitative in character,

serving to prove that grossly enhanced crystallization rates are obtained when

orientation occurs prior to crystallization.

More quantitative results have been reported by Katayama et al. [42], Dees

and Spruiell [43], and many others; these authors have presented details of

orientation and structure development along a monofilament spinline for fibers

made from polymers such as polyethylene, polypropylene, and polybutene-1.

These results, however, are given in terms of process variables such as spinning

speed, and because the process is nonisothermal, it is impossible to reanalyze

them in terms of fundamental variables such as residence time, orientation, and

temperature. In general, though, we can say that, during polymer processing,

polymer chain alignment and extension occur due to flow. We also find that

elongational flow (see Chapter 14)—such as occurs on the spinline or in the

converging, entry region of a capillary—is much more effective than shear flow in

causing chain extension and orientation. A major consequence of chain extension

for flexible macromolecules is a decrease in conformational entropy with a

consequent increase in the free energy, a result similar to what happens in rubber

elasticity [44]. In Figure 11.1, for example, this means that the free-energy curve

for the melt is shifted vertically upward, resulting in an elevation of the

equilibrium melting point and an increase in the driving force for crystallization

at a fixed processing temperature. Further, because polymer molecules are

uncoiled and stretched by the flow field, it is natural that extended-chain crystals

be formed.

Although this reasoning provides a qualitative framework for all the

observations, it does not allow us to obtain an explicit expression for the rate

of crystallization from a deforming melt; such an expression is needed if we want

to quantitatively simulate the processing of a semicrystalline polymer. The

process of chain extension and orientation in a crystallizing melt has been

examined theoretically by Ziabicki [45], who defined a scalar-valued orientation

factor f in terms of the invariants of a suitable deformation tensor, and then

allowed the nucleation and growth rates to depend explicitly on f under

isothermal conditions. Later, Gupta and Auyeung actually measured isothermal

crystallization rates for polyethylene terephthalate using a spinline and showed

that these did, indeed, correlate with the instantaneous value of the polymer chain

orientation in the surrounding (amorphous) melt [46]. However, simple expres-
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sions, analogous to the Avrami equation, are yet to be developed for oriented

crystallization.

Despite the absence of theoretical expressions, the practical applications of

oriented crystallization have been developed and commercialized. The most

important application is in the synthesis of high-modulus fibers from conven-

tional, flexible-chain, random-coil polymers such as polyethylene. In the process

of solid-state extrusion (similar to the experiments of Southern and Porter),

almost perfectly oriented, extended-chain structures are obtained by forcing a

polymer billet through a tapered die. A major use of such fibers is in the

reinforcement of composites.

11.8 POLYMERS WITH LIQUID-CRYSTALLINE
ORDER

Although it is possible to spin high-strength, high-modulus fibers from flexible-

chain polymers such as polyethylene, the procedure requires that polymer chains

be extended and packed into a crystal lattice as tightly as possible. To achieve

this, not only do polymer chains have to be extended by some means, they also

have to be prevented from relaxing both before and during crystallization. An

alternate approach is to employ crystallizable, rigid-chain polymers that appear to

be rodlike or disklike in solution. It is found that many such polymers exist, and

both kinds of rigid polymer organize themselves into an ordered liquid phase,

called a mesophase, either in appropriate solvents or in the melt itself. Such

liquid-crystalline solutions or melts can be processed into fibers so that the

preordered domains are not only preserved but also enhanced by actual crystal-

lization. Molecular alignment results in high strength, and the materials so

formed are also chemically inert and dimensionally stable because crystalline

melting points are typically in the 275–420�C range.

Rigidity in the chemical structure of most polymers that show liquid-

crystalline order generally comes from para-linked, aromatic rings such as those

found in aromatic polyamides, polyesters, and polyazomethines [47]. Often, the

melting point is so high and so close to the degradation temperature that these

materials are difficult to process in the molten state. In such a case, it is common

to introduce flexible, aliphatic spacer units into the backbone to lower the melting

point [48]. Among soluble polymers, synthetic polypeptides (e.g., poly-benzyl-L-

glutamate) that form a helix in appropriate solvents have been extensively

studied. The history of the development of polymeric liquid crystals may be

found in the review by White [49].

Polymers that form a liquid-crystalline phase in solution are known as

lyotropic. Three different physical structures are found to occur with rodlike

molecules; these are shown in Figure 11.15. In the nematic phase, there is no
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long-range order of positions, but there is a preferred direction called the director,

although a distribution of angles with respect to the director is observed. Liquid

crystals in the cholesteric phase show an increase in order over the nematic phase,

with the direction of the director varying helically along an axis perpendicular to

the plane of the director. Finally, the smectic phase shows the most order, albeit in

only one dimension. The formation of lyotropic liquid crystals was theoretically

predicted by Flory [50], who showed that a single ordered phase comes about

when the concentration of a rodlike polymer in solution exceeds 12:5=x, where x
is the aspect ratio of the rod. The ordering itself can be promoted by electrical,

magnetic, or mechanical forces and is accompanied by a sharp decrease in the

solution viscosity, implying ease of processing. The viscosity of a 50=50
copolymer of n-hexyl and n-propylisocyanate in toluene is shown in Figure

11.16, which illustrates that it is easier for rods to slide past each other when they

are oriented parallel to each other [51]. The best known example of a lyotropic

liquid crystal is the polyaramid fiber Kevlar, manufactured by DuPont [52]. This

is an extended-chain, para-oriented polyamide made by reacting p-phenylenedia-

mine and terephthaloyol chloride. Products made from Kevlar fiber include

composites for marine, aircraft, and aerospace applications, tire cord, ropes,

belts, and bullet-proof vests. Note, though, that 100% sulfuric acid is the usual

solvent for Kevlar, and the use of this solvent necessitates a certain amount of

safety precautions.

Because lyotropic liquid-crystalline polymers cannot be extruded, injection

molded, or blown into films, other polymers that can be melt processed have been

developed. These thermotropic liquid-crystalline polymers convert to a meso-

phase when the solid polymer is heated to a temperature above the crystalline

melting point. Thus, these polymers show three thermal transitions. In increasing

order of temperature, these are glass transition temperature, crystalline melting

FIGURE 11.15 Schematic representation of mesophase types. (From Ref. 47.)

Reprinted with permission from Wissbrun, K. F., ‘‘Rheology of Rod-Like Polymers in the

Liquid Crystalline State,’’ J. Rheol., 25, 619–662, 1981.
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point, and nematic-to-isotropic transition temperature. The most widely studied

class of thermotropic polymers are aromatic polyesters, such as the copolyester of

p-hydroxybenzoic acid (HBA) and polyethylene terephthalate (PET). More

recently, the Hoechst–Celanese Company has commercialized a 73=27 copolymer

of HBA and 6-hydroxy-2-napthoic acid (HNA) called Vectra A900, which has a

nematic-to-isotropic transition temperature of about 370�C. Shown in Figure

11.17 is the melt viscosity as a function of HBA content of an HBA–PET

copolymer at different shear rates [53]. It is seen that the viscosity behavior is

similar to that shown in Figure 11.16 insofar as the viscosity goes through a

maximum at a particular HBA content, which is around 30% in the present case.

As might be guessed, this is due to the formation of a mesophase.

Crystallization in a thermotropic liquid-crystalline polymer is again a

process of nucleation and growth [54]. It has been shown that the process can

be followed easily using dynamic mechanical analysis (see Chap. 12) [55], in

which we measure the stress response of the material to an imposed small-

amplitude sinusoidal shear strain. Differential scanning calorimeter (DSC) data

on the kinetics of crystallization show that the process is describable by an

Avrami equation [56].

FIGURE 11.16 Viscosity as a function of polymer concentration for the system

poly(50% n-hexyl þ 50% n-propyl) isocyanate of Mw ¼ 41;000 in toluene at 25�C.
(From Ref. 51.)

Reprinted from Polymer, vol. 21, Aharoni, S. M.: ‘‘Rigid Backbone Polymers: XVII.

Solution Viscosity of Polydisperse Systems,’’ pp. 1413–1422, Copyright 1980, with kind

permission from Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington OX5

1GB, UK.
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11.9 STRUCTURE DETERMINATION

As we have seen in the previous sections, a crystallizable polymer melt that has

been solidified under quiescent conditions possesses a two-phase structure

consisting of chain-folded crystals organized as spherulites in an amorphous

matrix. Because the mechanical, optical, electrical, thermal, and transport proper-

ties of the two phases are generally quite different from each other, the observed

behavior will be a weighted average of the properties of the two phases. We can

expect the weighting function to be the fraction of the crystalline or amorphous

phase, with the size and size distribution of the domains often playing a relatively

minor role.

Even though polymer molecules are inherently anisotropic, with properties

along the chain axis being vastly different from properties perpendicular to the

chain axis, this difference does not show up in materials formed under quiescent

conditions. This is because the polymer chains are typically randomly oriented.

However, during processing operations such as fiber spinning and film blowing

and, to a lesser extent, injection molding, the polymer chain axis naturally tends

to align itself along the stretching direction, which makes properties of the solid

FIGURE 11.17 Melt viscosity of PET modified with p-hydroxybenzoic acid. (From

Ref. 53.) From J. Polym. Sci. Polym. Chem. Ed., 14, Jackson, W. J., Jr., and H. Kuhfuss:

Liquid crystal polymers: I. Preparation and properties of p-Hydroxybenzoic acid

copolyesters, Copyright # 1976 by John Wiley & Sons, Inc. Reprinted by permission

of John Wiley & Sons, Inc.
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polymer directional in nature. In other situations, we can intentionally create

orientation by (1) simultaneously drawing and heat-treating a solid semicrystal-

line polymer or (2) forming oriented crystals either by employing an oriented melt

or by stretching the glassy polymer before annealing. In such cases, we also need

to know the average orientation of polymer molecules relative to some axis in

each phase. This information is necessary for computing a particular average

property of the polymer.

The orientation, relative to a specified direction, of the polymer chain axis

in the amorphous region or of any of the three crystallographic axes (labeled a, b,

and c in Fig. 11.5) in the crystalline region can be defined in a number of ways

[57–59], and this is generally done in terms of the anisotropy of the polarizability

tensor. Even though we expect that a solid part will contain a distribution of

orientations, the inability to measure the complete distribution function forces us

to use one or more moments of the distribution function. This, however, is not a

severe limitation because most properties depend only on certain moments of the

distribution [59]. Thus, for specifying polymer orientation in a fiber that has

angular symmetry about the fiber axis, we generally use the second moment,

which is commonly known as Herman’s orientation factor, f , defined as follows

(see Fig. 11.18):

f ¼ 1
2
ð3hcos2 fi � 1Þ ð11:9:1Þ

where f is the angle between the fiber axis and either the polymer chain axis or

the c axis, depending on whether one is considering the noncrystalline region or

the crystalline region, respectively. The angular brackets denote a spatial average.

FIGURE 11.18 Schematic representation of the significance of the Hermans’ orienta-

tion function. (From Ref. 58.) From Samuels, R. J.: Structured Polymer Properties.

Copyright # 1974 by John Wiley & Sons, Inc. This material is used by permission of

John Wiley & Sons, Inc.
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For perfect alignment, f is zero and f equals unity. For perpendicular orientation,

f is a right angle and f equals � 1
2
. Further, a zero value of the orientation factor

implies random orientation, which occurs at f ¼ 54:7�.
In summary, then, it is necessary to measure the fraction of crystals, the

crystalline orientation factor fc, the amorphous orientation factor fa, and possibly

the size and size distribution of crystals in order to relate polymer structure to

polymer properties. Although the extent of crystallinity is generally measured

using density or heat-of-fusion methods, orientation is determined with the help

of optical birefringence, dichroism, sonic modulus, or x-ray diffraction [60]. The

size of crystals is observed with an optical or electron microscope.

11.9.1 Mass Fraction Crystallinity

The simplest method of determining the mass fraction crystallinity X of an

unfilled, semicrystalline homopolymer is to measure the density r of a repre-

sentative sample. If the material is free of voids and impurities, the total volume

V of unit mass of polymer is given by

V ¼ X

rc
þ 1� X

ra
ð11:9:2Þ

where rc and ra are the known densities of the crystalline and amorphous phases,

respectively. Because the sample density r must equal 1=V , we have

1

r
¼ X

rc
þ 1� X

ra
ð11:9:3Þ

which can easily be solved for the desired mass fraction of crystals to give

X ¼ 1� ra=r
1� ra=rc

ð11:9:4Þ

The actual measurement of the density is carried out with the help of a density

gradient column. This is a graduated glass cylinder filled with a mixture of two

miscible liquids with appropriate densities such that a gradient of density exists

along the colunm. Glass floats of different but known density are suspended at

various locations along the length of the column, and the liquid density at any

other position is obtained by interpolating between these values. The sample of

unknown density is gently dropped into the column and allowed to settle slowly

over a period of hours until it comes to rest at some vertical position where the

sample density equals the local liquid density. In the case of polyethylene

terephthalate, for example, where the density can vary between 1.335 and

1.455 g=cm3, mixtures of carbon tetrachloride (1.594 g=cm3) and toluene

(0.864 g=cm3) are used.

The column itself can be prepared using the scheme illustrated in Figure

11.19 [61]: The denser liquid is put in flask A and the other liquid, in flask B. The
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valve between the two flasks is opened, and the outlet valve is adjusted to

generate a slow flow of liquid into the column; a 1-L column may take 2–3 hr to

fill. If the column is kept covered and undisturbed, it can be stable for at least 1

month. To use the column, we hold the sample with a pair of tweezers, wet it with

the lighter liquid, and drop it slowly into the column. After experimentation, old

samples are removed using a wire-mesh basket that is normally kept sitting at the

bottom of the column. This technique allows us to measure the density with an

accuracy of at least 0.05%.

Example 11.6: When a fiber made from PET is dropped in a density gradient

column made from toluene and carbon tetrachloride, it comes to rest 70% of the

way down the column. What is the percent crystallinity? For PET, ra is equal to
1.335 g=cm3 and rc is equal to 1.455 g=cm3.

FIGURE 11.19 Setting up a density gradient column. (From Ref. 61.)
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Solution: By interpolating between the densities of the liquids making up the

column, the sample density is

r ¼ 0:864þ 0:7ð1:594� 0:864Þ ¼ 1:375 g=cm3

and using Eq. (11.9.4) gives

X ¼ 1� ð1:335=1:375Þ
1� ð1:335=1:455Þ ¼ 0:353

Thus, the mass percent crystallinity is 35.3%.

Other techniques that can be used to measure the degree of crystallinity

include the measurement of properties such as specific heat, electrical resistivity,

and the heat of fusion. If we can say that a property p of the polymer can be

written as

p ¼ Xpc þ ð1� X Þpa ð11:9:5Þ
then the measurement of any such property, together with a knowledge of pc and

pa (the properties of the individual phases), allows us to determine X . Even

though we want to predict the properties from the structure, here we reverse the

process to determine the structure from the knowledge of one such property. This,

then, allows us to predict other properties of interest. Note that in some cases,

such as heat of fusion, the amorphous contribution in Eq. (11.9.5) is zero,

whereas in other cases, pc may differ from the corresponding property of a perfect

crystal.

Other techniques of determining crystallinity are wide-angle x-ray diffrac-

tion and small-angle x-ray scattering. These are described in standard texts [8].

11.9.2 Spherulite Size

The size and size distribution of spherulites in a semicrystalline polymer sample

can be determined easily with a polarized light microscope. Every light micro-

scope has a light source and a set of lenses that focus the light onto the sample

and then produce a magnified image. If the sample is transparent and thin, we can

use transmitted light microscopy, in which case the light beam passes directly

through the sample and reveals details of the internal structure of the sample.

Alternately, for opaque or thick samples, we use reflected light microscopy,

wherein light is reflected back from the specimen revealing the surface topo-

graphy. The major limitation of optical microscopy is the shallow depth of field,

which limits its use to flat specimens. However, with the magnifications achiev-

able (these depend on the focal lengths of the objective and the eyepiece), we can

typically observe features that are about 1 mm in size and separated by distances

of about 0.5 mm. All of this, though, requires that there be adequate contrast

Polymer Crystallization 471

Copyright © 2003 Marcel Dekker, Inc.



between different features. Contrast can be enhanced with the use of polarized

light; a typical polarized light microscope is shown in Figure 11.20 [62]. The

regular elements of the microscope are mirror M and convex lenses C and N for

focusing light upon the specimen, plus the objective lenses O and eyepiece E. The

elements that make the microscope a polarizing microscope are the polarizers P

and A, kept in what is known as the crossed position. Polarizers are explained as

follows.

As mentioned in Section 8.4 of Chapter 8, a light beam is a transverse wave

made up of sinusoidally varying electric and magnetic field vectors, which are

perpendicular to each other and also to the direction of propagation of the wave.

When such a beam passes through a polarizer (which is a sheet of material having

a characteristic direction), only those electric vectors that vibrate parallel to this

direction are transmitted, and the emerging light is plane-polarized and has an

amplitude Am (see Fig. 11.21). Now, if a second polarizer, called an analyzer, is

placed in the path of plane-polarized light, the light that emerges is still plane-

polarized, but the electric vectors now vibrate parallel to the characteristic

FIGURE 11.20 Arrangement of components in a typical polarizing microscope

(diagrammatic).
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direction of the analyzer. The amplitude of vibration, however, is now reduced to

Am cos a, where a is the angle between the characteristic directions of the

polarizer and the analyzer. If a is a right angle, the polarizer and analyzer are

said to be in the crossed position, and no light is transmitted through them,

provided the intervening medium is isotropic. Spherulites, however, are birefrin-

gent entities; in other words, they are not isotropic. In particular, the refractive

index nr along the radial direction differs from nt along the tangential direction.

When nr > nt, the spherulite is positively birefringent. Conversely, when nt > nr,

the spherulite is negatively birefringent. Because the largest refractive index is

usually along the chain axis, most chain-folded polymer spherulites are nega-

tively birefringent. Note that the velocity of light becomes less and less as the

refractive index of a medium increases.

As explained by Marentette and Brown [63], if a spherulite is examined

under a polarizing microscope, the anisotropic nature of the polymer causes the

plane-polarized light of amplitude A to split up (double refraction) into two

components having amplitudes A cos y and A sin y and vibrating in mutually

perpendicular directions aligned with the principal refractive indices nt and nr.

These directions are labeled n1 and n2 in Figure 11.22. On exiting the sample, the

two components pass through the analyzer, which is kept in the crossed position.

The result is a single component that vibrates along the characteristic direction of

the analyzer and has an amplitude equal to A sin y cos yþ A cos y sin y. Because
of differences in the magnitude of the two refractive indices, though, the two

components travel at different speeds through the sample, resulting in both

constructive and destructive interference of specific wavelengths of white light.

The result is a magnified image of the spherulite, but one that contains a Maltese

cross pattern as shown in Figure 11.23. If the microscope employed is fitted with

a hot stage, we can actually observe the process of nucleation and growth of

spherulites in real time. Spherulite sizes can be obtained from photomicrographs

in a trivial manner.

The foregoing is only a brief summary of optical microscopy as applied to

polymers. For further details of issues such as sample preparation, the reader

FIGURE 11.21 Cross-polarization of light.
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should consult relevant review papers [64] or texts [62, 65]. Although optical

microscopy makes it possible to observe spherulites, the resolution is not such

that we can examine individual crystal lamellae. To accomplish this, we must use

electron microscopes, whether of the scanning or transmission variety. With

electron microscopes, it is possible to distinguish feature sizes that are of the

order of nanometers [65].

11.9.3 Polymer Chain Orientation

Polymer chain orientation factors are most conveniently obtained by a combina-

tion of wide-angle x-ray diffraction and optical birefringence measurements on

FIGURE 11.22 (a) Resolution of plane-polarized light of amplitude A into two

components along the principal refractive indices of a sample, n1 and n2; (b), resolution

of the light transmitted by the sample by an analyzer that is positioned at right angles to the

polarizer in (a). (From Ref. 63.)

Reprinted with permission from J. Chem. Education, vol. 70, pp. 435–439; Copyright

1993, Division of Chemical Education, Inc.
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semicrystalline polymer samples. Although theory and experimental methods for

the general case are available in the literature [58, 66], here we illustrate the

process for uniaxially oriented materials such as fibers.

Morphologists use x-ray techniques extensively for the determination of

crystal structure. The basic principle is based on the interaction of electromag-

netic radiation with the dimensional periodicity inherent in the crystal structure,

which serves as a diffraction grating. The choice of the appropriate wavelength is

critical for the proper resolution of the structure. Bragg’s law relates the incidence

angle y, wavelength l, and interatomic spacing d as follows (see Fig. 11.24):

nl ¼ 2d sin y ð11:9:6Þ
Here, ‘‘wide angle’’ means that 2y is allowed to take values all the way to 180�.

X-rays can be generated by means of electron emission in a hot filament

enclosed within an evacuated glass tube. The electrons are then accelerated by

means of an applied voltage to a metal target—typically copper, iron, or

molybdenum. A small fraction of the energy is converted to x-rays upon collision.

For determining the structure of semicrystalline polymers, we use the

Debye–Scherrer method, in which a narrow beam of x-rays enters a cylindrical

film cassette through a collimator and hits the sample situated at the center of the

cassette. The resulting diffraction pattern is recorded on the photographic film,

which is analyzed with the help of a microdensitometer. Typically, for unoriented,

crystalline samples, the diffraction pattern is a series of concentric circles. If,

however, the crystal axes have a preferred orientation, the rings change to arcs or

FIGURE 11.23 Sketch of Maltese cross pattern exhibited by spherulites under polar-

ized light.
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dots. These patterns allow us to determine the crystal planes responsible for the

diffraction. Note that for quantitative work, the photographic film is replaced by

an ionization counter or detector, which is mounted on a platform. The motion of

this assembly, called a diffractometer, may be coupled with that of the sample

when rotation of the sample is desired.

For determining the crystalline orientation factor of a fiber, we wrap several

layers of the fiber around a glass slide and mount the slide on a device that

permits rotation of the sample, as shown in Figure 11.25. The value of 2y is set

equal to that which corresponds to a crystal plane known to give rise to

diffraction. The intensity I ðfÞ of the diffracted beam is measured at values of

f (the angle between the fiber axis and the axis of rotation of the sample holder)

ranging from 0� to 90�. The average value of the angle between the fiber axis and

the c axis of the crystals is then given by

hcos2 fi ¼
Ð p=2
0

I ðfÞ sinf cos2 f dfÐ p=2
0

I ðfÞ sinf df
ð11:9:7Þ

which, when combined with Eq. (11.9.1) yields fc. Practical details regarding

x-ray techniques can be found elsewhere [58, 67–69].

Unlike the crystalline orientation factor, the amorphous orientation factor

cannot be measured directly. It is obtained by measuring the total birefringence

DT of the fiber and subtracting from it the crystalline contribution. Here, DT is

FIGURE 11.24 Top view of the sample holder showing the path taken by x-rays. (From

Ref. 61.)
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defined as the difference between the principal refractive indices perpendicular

(n?) and parallel nk to the fiber axis. Thus,

DT ¼ nk � n? ð11:9:8Þ

Recall that the refractive index is a measure of the velocity of light in the medium

and is related to the polarizability of the molecular chains in the sample. One way

to determine the refractive indices parallel and perpendicular to the fiber axis is to

immerse the fiber in oil of known refractive index and to observe the combination

using a polarizing microscope with the plane of the polarized light first parallel

and then perpendicular to the fiber, as sketched in Figure 11.26. When both the

sample and the immersion oil have the same refractive index, the fiber is no

longer visible.

Once the total birefringence has been determined, it is expressed as a sum

of contributions from the amorphous and crystalline regions,

DT ¼ DcX þ Dað1� X Þ ð11:9:9Þ

FIGURE 11.25 Front view of the sample holder used for x-ray diffraction experiments.

(From Ref. 61.)
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in which the degree of crystallinity X is obtained from density measurements, and

Dc and Da are respectively the birefringences of the crystalline and amorphous

phases. These can be separately written as

Dc ¼ fcD
0
c ð11:9:10Þ

Da ¼ faD
0
a ð11:9:11Þ

where D0
c and D0

a are the intrinsic birefringences of the fully oriented crystalline

and fully oriented amorphous phases, respectively, and are known quantities. A

knowledge of X and Dc allows us to calculate Da from Eq. (11.9.9), and this,

using Eq. (11.9.11), gives fa.

Example 11.7: For a PET fiber, the total birefringence has been measured to be

0.034. If the crystalline orientation factor is 0.12 and the crystallinity value is

FIGURE 11.26 Search for the refractive index (a) parallel to the fiber axis and (b)

perpendicular to the fiber axis. (From Ref. 61.)
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0.206, what is the amorphous orientation factor? For PET, D0
c is equal to 0.22 and

D0
a is equal to 0.19.

Solution: Using Eq. (11.9.10) gives

Dc ¼ 0:12� 0:22 ¼ 0:0264

which allows us to solve for Da from Eq. (11.9.9):

Da ¼
DT � DcX

1� X
¼ 0:034� 0:0264� 0:206

1� 0:206
¼ 0:036

Now, with the help of Eq. (11.9.11), we can calculate the amorphous orientation

factor:

fa ¼
0:036

0:19
¼ 0:19

Like the velocity of light, the velocity of sound differs in magnitude when

measured along the polymer chain axis as compared to a direction transverse to

the chain axis. A measurement of the velocity of sound can, therefore, also be

used in place of the birefringence. We again assume that the crystalline and

amorphous phases contribute in proportion to their relative amounts. Experi-

mental details of this method, which involves a measurement of the ‘‘sonic

modulus,’’ can be found in the literature, which also describes other methods

(such as infrared dichroism) that can be used to determine the amorphous

orientation factor [58, 66].

11.10 WORKING WITH SEMICRYSTALLINE
POLYMERS

As we have seen in this chapter, polymer mechanical properties are directional,

depend strongly on temperature and molecular weight, vary with time of loading,

and change as the processing history is changed. The net result is that chemically

similar materials are found to have drastically different properties. This fact,

which cannot be wished away, gives nightmares to the traditional design engineer.

Indeed, as underscored by Samuels [58], it is possible for fibers produced from

the same semicrystalline polymer to exhibit any of the four extremes of

mechanical behavior available to a solid material. The fibers could be (1) brittle,

(2) simultaneously tough and brittle, (3) ductile, or (4) elastic over fairly large

strain values. The problem of how to work with such apparently unpredictable

materials can be handled in one of two ways [70, 71]. The first option is take a

macromechanical approach, wherein the microstructure of the polymer is ignored

and the material is treated as a homogeneous material, but with different

properties in different directions. The three-dimensional stress can then be related
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to the three-dimensional strain by means of a generalized Hooke’s law that can,

however, involve as many as 21 independent constants [71]. As a consequence, if

we are interested in designing a polymeric load-bearing structure, we must first

resort to exhaustive characterization so that the 21 constants can be determined.

This is obviously an expensive and time-consuming process, and it must be

repeated each time the processing history of the polymer is altered.

The alternative to the preceding unsatisfactory approach is to recognize the

nonhomogeneous nature of the polymer and, instead, consider each component as

a homogeneous but possibly anisotropic continuum. With this micromechanical

approach, we can use the known properties of each phase and the mechanism of

phase coupling to predict the 21 constants needed in the macromechanical

approach, much in the same way as is done with composite materials [70].

Success in this endeavor often requires the use of models based on mechanical

analogs such as springs and dashpots. The input to these models are structural

parameters such as the percentage of crystals, the shape, size, and relative

orientation of the two phases, the packing geometry, and the degree of adhesion

between the phases. The practicality of the procedure has been demonstrated by

McCullough, who used it to successfully predict the anisotropic elastic behavior

of polyethylene [71]. The description of this micromechanical approach, which is

the preferred approach, is beyond the scope of this book. However, this approach

offers the potential for tailoring polymeric materials to specific applications, as

attested to in the literature [72].

11.11 CONCLUSION

In this chapter we have examined how the morphology of semicrystalline

polymers depends on the processing conditions. We have attempted to explain

how the amount, shape, size, and size distribution of crystals and the orientation

of polymer chains in both the crystal and amorphous regions is a consequence of

the thermal and deformational histories witnessed by the material during

conversion from the melt to the solid state. We have also discussed techniques

of measuring these microscopic variables and pointed to methods whereby these

material descriptors can be used to predict properties convenient from the

viewpoint of an engineer who wants to design load-bearing structures. At first

glance, this is a very formidable task, but it has been handled in a logical manner

by polymer materials scientists, who have made very considerable headway as the

literature cited in this chapter indicates. Although the subject matter of this

chapter may be difficult to assimilate on first reading, a thorough familiarity with

this material is essential if we want to relate polymer processing to polymer

structure, and the structure, in turn, to polymer properties. Parallel developments

have taken place in solution processing of polymers. Although space limitations
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prevent this discussion here, the theory and logic are the same, and good reviews

are available [73].
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PROBLEMS

11.1. If, instead of a sphere, the nucleus in Section 11.2.1 is a cylinder of radius

r and length l, derive expressions for DG*, r*, and l*. Let the surface

energy be ge for the flat surfaces and gs for the curved surface of the

cylinder.

11.2. If DT in Example 11.2 were 100K, would crystallization still proceed via

heterogeneous nucleation? Justify your answer by doing some simple

calculations.
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11.3. The data of Barnes et al. for the radial growth rate of poly(ethylene oxide)

spherulites are given as follows [74]:

T (�C) G (mm=min)

47.6 0.1070

48.2 0.0910

50.5 0.0212

51.0 0.0253

53.8 0.00565

56.4 0.000096

Estimate a value of geg if ED=kT in Eq. (11.3.6) can be taken to be a

constant over this narrow temperature range. For poly(ethylene oxide)

(PEO), it is known that T 0
m ¼ 330K and DHv ¼ 45 cal=cm3. Let b equal

10 Å.

11.4. Everything else being equal, how would the growth rate of a spherulite

change on increasing the polymer molecular weight? Justify your answer.

11.5. Use the data given in Figure 11.11 to obtain the rate constant k in

Eq. (11.4.12). Plot your results as a function of temperature.

11.6. Will sample thickness have any influence on the nature of crystallization

and the kinetics of crystallization as the thickness is reduced to a few tens

of microns?

11.7. Derive Eq. (11.4.9) beginning with Eq. (11.4.1).

11.8. When Garg and Misra plotted � logð1� X Þ versus time using isothermal

crystallization data on a polyester–polyamide copolymer, they obtained

two straight-line segments [75]. At short times, the slope was close to

unity, whereas at later times the slope changed to a value close to 3. What

can you speculate about the morphology of the copolymer crystals?

11.9. Use Eq. (11.4.19) and the data of Figure 11.13 to predict how the

crystallinity of an initially amorphous high-density polyethylene sample

changes with time when the temperature is lowered at a constant rate from

125�C to 121.8�C over a 30-min period. Compare the final crystallinity

with the corresponding value for isothermal crystallization at (a) 125�C
and (b) 121.8�C.

11.10. Show that Eq. (11.4.19) can be solved to give KðT Þ explicitly as

K½T ðtÞ� ¼ 1

n
½� lnð1� yÞ�ð1�nÞ=n 1

ð1� yÞ
y
dt

where y ¼ x

x1
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11.11. Wu et al. have measured the crystallization and corresponding melting

temperatures of poly(phenylene sulfide) [76]. Their data are given as

follows:

Tc (
�C) Tm (�C)

260 283

265 287

270 290

275 294

280 298

What is the equilibrium melting temperature T0
m?

11.12. If 5mg of the PET sample of Example 11.6 is melted in a differential

scanning calorimeter, how much energy will be needed for the phase

change? The latent heat of fusion for PET crystals is 140 J=g.
11.13. Wide-angle x-ray scattering data for a semicrystalline PET fiber sample

are as follows [61]:

f (deg) I ðfÞ
0 19.6

10 20.6

20 18.1

30 15.0

40 13.5

50 13.0

60 10.45

70 8.9

80 8.7

90 8.2

What is the crystalline orientation factor?
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12

Mechanical Properties

12.1 INTRODUCTION

It is usually material properties, in addition to cost and availability, that determine

which class of materials–polymers, metals, or ceramics—and which particular

member within that class are used for a given application. Many commodity

thermoplastics, for example, begin to soften around 100�C, and this essentially

limits their use to temperatures that are a few tens of degrees Celsius below this

value. A major factor in favor of polymers, though, is their low density (by a

factor of 4 or 5) relative to metals; the possibility of a large weight savings,

coupled with high strength, makes plastics very attractive for automotive, marine,

and aerospace applications. In terms of choosing a specific polymer, however, it is

necessary to consider whether the application of interest is structural or

nonstructural. In the former case, mechanical properties such as tensile strength,

stiffness, impact strength, and chemical resistance might be relevant, whereas

important considerations in the latter case might include surface finish, ease of

painting, and the influence of humidity and ultraviolet radiation on the tendency

of the material to crack. In this chapter, we will consider mechanical properties of

polymers at small strains as well as large strains. In general, the mode of

deformation could be tension, compression, shear, flexure, torsion, or a combina-

tion of these. To keep the discussion manageable, we will restrict ourselves to

tension and shear. Note, however, that we can use viscoelasticity theory [1],
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especially at small strains, to predict the behavior in one mode of deformation

from measurements made in another mode of deformation. As with metals, we

expect that the measured properties depend on the chemical nature of the polymer

and the temperature of measurement. However, what makes data analysis and

interpretation both fascinating and challenging are the facts that results also

depend on time of loading or the rate of deformation, polymer molecular weight,

molecular-weight distribution, chain branching, degree of cross-linking, chain

orientation, extent of crystallization, crystal structure, size and shape of crystals,

and whether the polymer was solution cast or melt processed. These variables are

not all independent; molecular weight, for example, can determine chain

orientation and crystallinity in a particular processing situation. To explain the

separate influence of some of these variables, we present data on polystyrene, a

polymer that can be synthesized in narrow molecular-weight fractions using

anionic polymerization. Methods of improving polymer mechanical properties

are again illustrated using polystyrene. This chapter therefore focuses on the

(glassy) behavior of polymers below their glass transition temperature.

12.2 STRESS^STRAIN BEHAVIOR

When discussing the theory of rubber elasticity in Chapter 10, we were concerned

with fairly large extensions or strains. These arose because polymer molecules

could uncoil at temperatures above Tg. For materials used as structural elements

(such as glassy polymers), we usually cannot tolerate strains of more than a

fraction of 1%. Therefore, it is customary to employ measures of infinitesimal

strain. In a tensile test, we usually take a specimen with tabs at the ends and

stretch it, as shown in Figure 12.1. One end of the sample is typically fixed,

whereas the other is moved outward at a constant velocity. The force F necessary

to carry out the stretching deformation is monitored as a function of time along

with the instantaneous sample length, L. From the measured load versus

extension behavior, we can calculate the stress and strain as follows:

Stress ðsÞ ¼ Force ðFÞ
Cross-sectional area

ð12:2:1Þ

If the cross-sectional area is the undeformed, original cross-sectional area, the

stress is called engineering stress, and if the actual, instantaneous area is used, the

true stress is measured.

Strain ðEÞ ¼ L� L0

L0
ð12:2:2Þ
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where L0 is the initial sample length, and the strain, so defined, is known as the

engineering strain. Note that this strain is related to the Hencky strain, also called

the true strain, as follows:

Etrue ¼ lnð1þ EengÞ ð12:2:3Þ
and the two strain measures are identical for small strains.

As the sample is stretched in the z direction, its cross-sectional area

decreases, and this implies that the material suffers a negative strain in the x

direction, which is perpendicular to the stretching direction. This is quantified

using the Poisson ratio n, defined as

Ex ¼ �nEz ð12:2:4Þ
For incompressible materials such as rubber, it is easy to show that Poisson’s ratio

equals 0.5. For glassy polymers the sample volume increases somewhat on

stretching, and Poisson’s ratio ranges from 0.3 to 0.4.

Typical stress–strain data for glassy polystyrene are shown in Figure 12.2 in

both tension and compression [2]. The slope of the stress–strain curve evaluated

at the origin is termed the elastic modulus, E, and is taken to be a measure of the

stiffness of the material. It is seen in this particular case that the modulus in

tension differs from that in compression. The two curves end when the sample

fractures. The stress at fracture is called the strength of the material. Because

materials fracture due to the propagation of cracks, the strength in tension is

usually less than that in compression because a compressive deformation tends to

heal any cracks that form (provided the sample does not buckle). The strain at

FIGURE 12.1 Typical specimen for a tensile test.
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fracture is known as the elongation-to-break; the larger the value of this quantity,

the more ductile is the material being tested. Glassy polystyrene is not ductile in

tension; indeed, it is quite brittle. Finally, the area under the stress–strain curve is

called the toughness and has units of energy per unit volume. For design

purposes, the materials generally sought are stiff, strong, ductile, and tough.

For materials that are liquidlike, such as polymers above their softening

point, it is easier to conduct shear testing than tensile testing. This conceptually

involves deforming a block of material, as shown in Figure 12.3. The force F is

FIGURE 12.2 Stress–strain behavior of a normally brittle polymer such as polystyrene

under tension and compression.

(Reprinted from Nielsen, L. E., and R. F. Landel: Mechanical Properties of Polymers and

Composites, 2nd ed., Marcel Dekker, Inc., New York, 1994, p. 250, by courtesy of Marcel

Dekker, Inc.)

FIGURE 12.3 Shear deformation.
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again monitored, but now as a function of the displacement Dux. Stress and strain

are now defined as follows:

Shear stress ðtÞ ¼ Force ðFÞ
Surface area

ð12:2:5Þ

Shear strain ðgÞ ¼ Dux
Dy

ð12:2:6Þ

At temperatures above the polymer glass transition temperature, shear testing is

done using a variety of viscometers (see Chap. 14). We might, for example, keep

the sample in the annular region between two concentric cylinders and measure

the torque while rotating one cylinder relative to the other. Stress–strain data in

shear look qualitatively similar to the tensile data shown earlier in Figure 12.2.

The initial slope is called the shear modulus, G. For elastic materials the moduli

in shear and tension are related by the following expression:

E ¼ 2Gð1þ nÞ ð12:2:7Þ

so that E equals 3G for incompressible, elastic polymers. Note that when material

properties are time dependent (i.e., viscoelastic), the modulus and strength

increase with increasing rate of deformation [3], whereas the elongation-to-

break generally reduces. Viscoelastic data are often represented with the help of

mechanical analogs.

Example 12.1: A polymer sample is subjected to a constant tensile stress s0.
How does the strain change with time? Assume that the mechanical behavior of

the polymer can be represented by a spring and dashpot in series, as shown in

Figure 12.4.

Solution: The stress-versus-strain behavior of a Hookean spring is given by

s ¼ EE

FIGURE 12.4 A Maxwell element.
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For a Newtonian dashpot, the relation is

s ¼ Z
dE
dt

The terms E and Z are the spring modulus and dashpot viscosity, respectively.

For the spring and dashpot combination, often called a Maxwell element,

the total elongation or strain is the sum of the individual strains. The stress for the

spring and for the dashpot is the same,

Total strain ¼ s0
E
þ s0

Z
t

and it is seen that the strain increases linearly with time. This behavior is known as

creep. Although a simple mechanical analog such as a Maxwell element cannot be

expected to portray true polymer behavior, it does illustrate the usually undesir-

able phenomenon of creep. A better model for the quantitative representation of

creep is a four-element model which is a linear combination of a Maxwell element

and a Voigt element; the latter is composed of a spring and a dashpot in parallel.

A polymer sample creeps because polymer molecules are held in place by

secondary bonds only, and they can rearrange themselves under the influence of

an applied load. This is especially easy above the polymer glass transition

temperature, but it also happens below Tg and strain gauges have to be employed

for accurate measurements. To illustrate the latter point, we show long-term creep

data, in the form of circles in Figure 12.5, on samples of polyvinyl chloride

(PVC) at constant values of tensile stress, temperature, and relative humidity [4].

Note that data for the first 1000 h are shown separately, followed by all of the data

using a compressed time scale. It is seen that the total creep can be several

percent, and a steady state is not reached even after 26 years! These and similar

data can be represented by the following simple equation shown by solid lines in

Figure 12.5:

EðtÞ ¼ E0 þ Eþtn ð12:2:8Þ
in which E0, Eþ, and n are constants. Although n is often independent of

temperature and imposed stress, the other two constants are stress and tempera-

ture dependent. If creep is not arrested, it can lead to failure, which may occur

either by the process of crazing or by the formation of shear bands; these failure

mechanisms are discussed later in the chapter. Equation (12.2.8) is an empirical

equation that is known as the Findley model. It may sometimes contain a second

time-dependent term if failure can occur by two different mechanisms. Creep can

generally be reduced by lowering the test temperature, raising the polymer Tg,

cross-linking the sample, or adding either particulates or short fibers. Conversely,

anything that lowers the Tg, such as exposure to atmospheric moisture, promotes

creep. Physical aging (described later) also affects the extent of creep.
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FIGURE 12.5 Creep curves for polyvinyl chloride at 75�F, 50% relative humidity. (From Ref. 4.)
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12.2.1 In£uence of Variables such as Molecular
Weight and Temperature

The strength and stiffness of one glassy polymer can be expected to differ from

that of another glassy polymer due to differences in intermolecular forces as a

result of differences in chemical structure and the presence or absence of

secondary bonds (e.g., hydrogen-bonding). Given these differences, the two

variables that influence the mechanical properties of amorphous polymers the

most are molecular weight and temperature. However, the elastic moduli and

other small-strain properties of strain-free glassy polymers such as polystyrene

(PS) are found not to depend on the molecular weight or molecular-weight

distribution, except at very low molecular weights [5–7]. The tensile strength, sf ,
of polymers having a narrow molecular-weight distribution, however, is negli-

gible at low molecular weight, increases with increasing molecular weight, and,

ultimately reaches an asymptotic value [8]. This behavior can often be repre-

sented by the following equation [6, 9]:

sf ¼ A� B=Mn ð12:2:9Þ
where A and B are constants. Data for polystyrene, shown in Figure 12.6, support

these conclusions [10]. From an examination of this figure, it is obvious that the

addition of a low-molecular-weight fraction is bound to affect the tensile strength

of any polymer. However, for polydisperse samples, data do not follow Eq.

(12.2.9) exactly; results vary with the polydispersity index, even when the

number-average molecular weight is held fixed.

The data just discussed are related to amorphous polymer samples for

which the polymer chains were randomly oriented. One method of increasing

both strength and stiffness is to use samples wherein polymer chains are oriented

FIGURE 12.6 Tensile strength of monodisperse polystyrene as a function of molecular

weight. From Hahnfeld, J. L., and B. D. Dalke: General purpose polystyrene, in

Encyclopedia of Polymer Science and Engineering, 2nd ed., vol. 16, H. F. Mark, N. M.

Bikales, C. G. Overberger, and G. Menges (eds.) Copyright # 1989 by John Wiley &

Sons, Inc. This material is used by permission of John Wiley & Sons, Inc.
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along the stretching direction. By using this technique, we can very significantly

increase the modulus of polystyrene and hope to get strength that approaches the

strength of primary chemical bonds [11]. Indeed, as discussed in Chapter 11,

mechanical property enhancement using chain alignment is the reason for the

popularity of polymers that possess liquid-crystalline order. Properties in a

direction perpendicular to the chain axis, however, are likely to be inferior to

those along the chain axis.

When the Young’s modulus of any polymer is plotted as a function of

temperature, we find that this quantity is of the order of 105–106 psi at low

temperatures and decreases slowly with increasing temperature. This region is

known as the glassy region. At the glass transition temperature Tg (see also Chap.

2), which varies for different polymers, the modulus drops suddenly by at least

three orders of magnitude and can reach extremely low values for low-molecular-

weight polymers. Figure 12.7 shows the Young’s modulus of polystyrene in a

temperature range of �200�C to 25�C [12]. Figure 12.8 shows shear stress versus

shear strain data for an entangled polystyrene in a temperature range of 160�C–
210�C [13]. If we disregard the numerical difference between the Young’s

modulus and the shear modulus and note that 1MPa equals 145 psi, we find

that the modulus calculated from data in Figure 12.8 is several orders of

magnitude smaller than the number expected on the basis of extrapolating the

curve in Figure 12.7. This happens because the Tg of polystyrene is 100�C. The
behavior of the Young’s modulus, in qualitative terms, is sketched in Figure 12.9

over a temperature range that includes Tg. If the polymer molecular weight is

above that needed for entanglement formation (for polystyrene, this is approxi-

mately 35,000), the presence of these entanglements temporarily arrests the fall in

modulus on crossing Tg. This region of almost constant modulus is called the

rubbery plateau, and the result is a rubbery polymer. Because crystals act in a

manner similar to entanglements, the modulus of a semicrystalline polymer does

FIGURE 12.7 Effect of temperature on Young’s modulus of polystyrene. (From Ref.

12.) Reprinted with permission from J. Appl. Phys., vol. 28, Rudd, J. F., and E. F. Gurnee:

Photoelastic properties of polystyrene in the glassy state: II. Effect of temperature, 1096–

1100, 1957. Copyright 1957 American Institute of Physics
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FIGURE 12.8 Effect of temperature on the stress–strain curves of polystyrene melts.

(From Ref. 13.)

FIGURE 12.9 Qualitative effect of temperature on the elastic modulus of polymers.
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not fall as precipitously as that of amorphous polymers for temperatures between

the Tg and the melting point of the crystals. Of course, if chemical cross-links are

present, the polymer cannot flow and the temperature variation of the modulus

above Tg is given by the theory of rubber elasticity. Understanding and relating

mechanical properties of a semicrystalline polymer to the different variables that

characterize its structure has been discussed in Chapter 11 and is treated in detail

by Samuels [14].

12.3 THE GLASS TRANSITION TEMPERATURE

As discussed in Chapter 2, the glass transition temperature separates regions of

dramatically different polymer properties. In particular, a polymer behaves like a

hard, brittle, elastic solid below Tg. In this glassy region, the motion of polymer

chains is frozen and strain occurs by the stretching of bonds. The elastic modulus

decreases with increasing temperature. On heating above Tg, an entangled,

amorphous polymer displays a rubbery region in which it is soft and pliable

due to the ability of polymer chain segments and entire polymer chains to move

past each other in a reversible manner. In this region, the elastic modulus can

increase with an increase in temperature; this property has been explained

theoretically in Chapter 10. Structural applications clearly require a polymer Tg
above room temperature, whereas applications where material flexibility is

important, such as in films used for packaging, require that the Tg be below

room temperature.

Although we can use observations of the change in mechanical properties

as a means of measuring Tg, we also find that thermodynamic properties change

slope on going through the glass transition. Thus, if we plot the volume of a

sample or its enthalpy as a function of temperature, behavior depicted qualita-

tively in Figure 12.10 is observed: The slope in the liquid phase is larger than the

slope in the solid phase. By contrast, for a crystalline solid, there would be a

discontinuity or jump in the value of these thermodynamic variables at the

crystalline melting point. Note that all polymers exhibit a Tg, but only crystal-

lizable ones show a Tm (melting temperature); the latter phenomenon is called a

first-order transition, whereas the former is called a second-order transition.

Clearly, the specific heat of the rubbery phase exceeds that of the glassy phase.

The exact temperature where the change in slope occurs, though, depends on the

cooling rate, and we obtain a range, albeit a narrow one, for the transition

temperature. This happens because the rearrangement of polymer molecules into

a glassy structure is a kinetic process. The greater the time available for the

transition is, the more orderly the packing and the lower the observed Tg . This

effect, however, is reversed on rapid heating, and the slowly cooled material

overshoots the original Tg . This change in Tg can be related to the free volume
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mentioned in Chapter 2. To recapitulate, the polymer free volume is the difference

in the sample volume and the actual volume occupied by the atoms and

molecules. The free volume is zero at absolute zero temperature and it increases

as the temperature increases. Slow cooling allows for a closer approach to

equilibrium and a lower free volume relative to material subjected to rapid

cooling. Thus, the slowly cooled sample has to be heated to a higher temperature

in order that there be enough free volume for the molecules to move around, and

this implies a higher Tg. In addition to changes in Tg with cooling rate, we also

observe volume relaxation when a polymer sample that was rapidly cooled is

subsequently heated to a temperature close to Tg and held there for some time.

Material shrinkage also occurs, accompanied by changes in the mechanical

properties of the solid polymer. The phenomenon is known as physical aging

[15] and is the subject of considerable research because of its influence on

properties such as creep [16].

The glass transition temperature of a polymer depends on a number of

factors, including the polymer molecular weight. The molecular-weight depen-

dence can be seen in Figure 12.11, where the Tg of polystyrene is plotted as a

function of the number-average molecular weight [3,17]. These data can be

represented mathematically by the following equation [18]:

Tg ¼ Tg1 �
K

�MMn

ð12:3:1Þ

This variation of Tg with molecular weight can again be related to the free volume

[19]. As the molecular weight decreases, the number density of chain ends

increases. Because each chain end is assumed to contribute a fixed amount of free

FIGURE 12.10 Variation of volume or enthalpy of polymers with temperature.
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volume, the total free volume increases on lowering the molecular weight, which

explains the data of Figure 12.11. On increasing the chain length beyond a certain

value, the contribution of chain ends becomes negligible and Tg becomes

constant.

If it is assumed that the ratio of the volume of the polymer chain segment

that moves to the free volume associated with that segment is the same for all

polymers at the glass transition temperature, the variation of Tg with chemical

structure becomes easy to understand [19]. Any structural change that increases

the segmental volume requires a larger free volume per segment and results in a

larger Tg because, as previously explained, the free volume increases on

increasing temperature. Thus, Tg increases as a result of increasing chain

stiffness, adding stiff or bulky side groups, and introducing steric hindrances.

Similarly, hydrogen-bonding raises the Tg because such a polymer expands less

than a non-hydrogen-bonded polymer on increasing temperature. Consequently, a

higher temperature is necessary to get the same free-volume level. Finally, the

presence of plasticizers or low-molecular-weight additives increases the free

volume and lowers the Tg; plasticizers such as dioctyl phthalate are routinely

added to PVC to convert it from a rigid to a more flexible material. The glass

transition temperatures of common polymers are listed in the Polymer Handbook

[20], and selected values are given in Table 12.1.

One of the most convenient methods of measuring Tg is through the use of

a differential scanning calorimeter (DSC) [21]. The principle of operation of this

instrument is shown schematically in Figure 12.12. A DSC contains two sample

holders, each provided with its own heater. The actual sample is placed in one of

the sample holders in an aluminum pan and the other sample holder contains an

FIGURE 12.11 Glass transition temperature of polystyrene as a function of Mn as

determined by various methods: (s) and (d) dilatometry, (j) Differential thermal analysis

(DTA), (u) differential scanning calorimetry, (�) electron spin resonance. (From Ref. 3.)
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empty pan. The temperature of both the sample holders is increased at a constant

rate, such as 10�C=min, and we measure the difference in the energy H supplied

to the two pans to keep them at the same temperature at all times. From an energy

balance, it is obvious that the rate of differential heat flow must be as follows:

dH

dt
¼ mcp

dT

dt
ð12:3:2Þ

where m is the mass of the sample (typically a few milligrams), cp is the specific

heat, and dT=dt is the programmed rate of temperature increase.

If the specific heat increases on heating the polymer sample through the

glass transition temperature, dH=dt must go from one constant value to a higher

constant value at Tg. Thus, Tg can be identified by plotting dH=dt as a function of
the instantaneous sample temperature. This is usually done using a thermogram

of the kind shown in Figure 12.13 for a sample of amorphous nylon. If the

TABLE 12.1 Glass Transition Temperature of

Common Polymers

Polymer Tg ð�CÞ
Natural rubber (polyisoprene) �70
Nylon 6 (dry) 100

Nylon 66 50

Polycarbonate of bisphenol A 157

Polyethylene �38 to �33
Polyethylene oxide �70
Polyethylene terephthalate 67

Polymethyl methacrylate 105

Polypropylene �15 to �3
Polystyrene 80–100

Polyvinyl chloride 70–100

Styrene–butadiene rubber �64 to �59

FIGURE 12.12 Schematic diagram of a differential scanning calorimeter.
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polymer is semicrystalline, it must be quenched from the melt state rapidly to give

a wholly amorphous structure; otherwise, the presence of crystals can impede the

motion of polymer chains and result in a Tg value that is higher than the true

value. For some very crystallizable polymers such as nylon 66, amorphous

samples cannot be obtained and a DSC fails to even pick up a glass transition. In

such a case, we turn to dynamic mechanical analysis, wherein a polymer sample,

whether glassy or rubbery, is deformed in an oscillatory manner (in tension or

shear, as appropriate) such that the maximum strain amplitude is infinitesimal in

magnitude.

12.4 DYNAMIC MECHANICAL EXPERIMENTS

If a polymer is subjected to a sinusoidal strain g of infinitesimal amplitude g0 and
fixed frequency o,

g ¼ g0 sinot ð12:4:1Þ
then the stress response t will be linear (i.e., sinusoidal) but will, in general, be

out of phase by an angle d and have a different amplitude t0. Thus,

t ¼ t0 sinðot þ dÞ ð12:4:2Þ
or

t ¼ ðt0 cos dÞ sinot þ ðt0 sin dÞ cosot ð12:4:3Þ

FIGURE 12.13 DSC thermogram of an amorphous nylon (Tg ¼ 153�C).
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On dividing the stress by the strain amplitude, one obtains the modulus G as

G ¼ G0ðoÞ sinot þ G00ðoÞ cosot ð12:4:4Þ

where G0 ¼ t0 cos d=g0 and G00 ¼ t0 sin d=g0. The term G0, called the storage

modulus, is the in-phase component of the modulus and represents storage of

energy, whereas G00, the loss modulus, is the out-of-phase component and is a

measure of energy loss. The ratio of the loss to storage modulus, G00=G0, is tan d
and is an alternate measure of energy dissipation. One may conduct dynamic

experiments in an isochronal manner by varying the temperature at a fixed

frequency, or in an isothermal manner by varying the frequency at a fixed

temperature. The former kinds of experiment are discussed in this section,

whereas the latter are considered in the next section.

For a perfectly elastic material, stress and strain are always in phase and G0

equals the elastic modulus and G00 is zero. For viscoelastic polymers, on the other

hand, the work of deformation is partly stored as potential energy, and the

remainder is converted to heat and shows up as mechanical damping. This is

independent of the mode of deformation, which could be extension, shear,

bending, or torsion. If a polymer is glassy, it will act essentially as an elastic

solid and dynamic experiments will allow us to measure the modulus or stiffness.

This value is typically of the order of 109 Pa. Similarly, in the rubbery region, the

polymer is again elastic but with a much smaller modulus of the order of 106 Pa.

FIGURE 12.14 Polystyrene data: dynamic modulus versus temperature for fractions.

Numbers on curves are fraction numbers. (Reprinted with permission from Merz, E. H., L.

E. Nielsen, and R. Buchdahl: ‘‘Influence of Molecular Weight on the Properties of

Polystyrene,’’ Ind. Eng. Chem., vol. 43, pp. 1396–1401, 1951. Copyright 1951 American

Chemical Society.)
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Thus, a plot of storage modulus with temperature will mirror the plot of Young’s

modulus versus temperature and allow us to determine the glass transition

temperature. Figures 12.14 and 12.15 show typical data for the storage modulus

and tan d values of various polystyrene fractions as a function of temperature. The

frequency range here is 20–30Hz. As expected, the glass transition temperature is

approximately 100�C. Note that both G00 and tan d go through a maximum at the

Tg because the ability of a spring to store energy depends on its modulus [22]. On

passing through the Tg, the polymer goes from a stiff spring to a soft one that

cannot store as much energy. The difference in energy is dissipated in the

transition from the glassy to the rubbery states. Note that Tg measured using

dynamic mechanical analysis is usually slightly larger than that measured using a

DSC. This discrepancy increases with increasing frequency of oscillation.

Figures 12.14 and 12.15 show data obtained in tension using cast films

oscillated with the help of an electromagnetic reed vibrator operating at

resonance. Commercial instruments available today use forced vibrations without

resonance. These are desirable because they allow the user to vary temperature

and frequency over wide intervals. For example, in the dynamic mechanical

thermal analyzer (DMTA), an instrument made by the Rheometrics Company, a

bar sample is clamped rigidly at both ends and its central point is vibrated

sinusoidally by the drive clamp. The stress experienced by the sample is

proportional to the current supplied to the vibrator. The strain in the sample is

proportional to the sample displacement and is monitored by a nonloading eddy

current transducer and a metal target on the drive shaft. In this instrument, the

FIGURE 12.15 Polystyrene data: mechanical dissipation factor versus temperature for

fractions. Fractions 1, 4, 9, 29, and 34 were tested. (Reprinted with permission from Merz,

E. H., L. E. Nielsen, and R. Buchdahl: ‘‘Influence of Molecular Weight on the Properties of

Polystyrene,’’ Ind. Eng. Chem., vol. 43, pp. 1396–1401, 1951. Copyright 1951 American

Chemical Society.)
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frequency can be varied from 0.033 to 90Hz and the temperature changed from

�150�C to 300�C. Descriptions of other instruments can be found in the book by

Nielsen and Landel [2]. Note that liquidlike materials are often supported on glass

braids [23].

Example 12.2: Determine the storage and loss moduli of a polymer whose

mechanical behavior can be represented by the Maxwell element shown earlier in

Figure 12.4.

Solution: Because the total strain g is the sum of the individual strains, we have

_gg ¼ _ss
E
þ s

Z

Substituting for the strain using Eq. (12.4.1) and rearranging gives

_ssþ E

Z
s ¼ Eg0o cosot

whose solution for t!1 is

s ¼ Zg0o
2y

1þ y2o2

� �
sinot þ Zg0o

1þ y2o2

� �
cosot

where y ¼ Z=E. Thus, the storage and loss moduli are given by the following:

G0ðoÞ ¼ Eo2y2

1þ o2y2
; G00ðoÞ ¼ Eoy

1þ o2y2

Dynamic mechanical analysis is an extremely powerful and widely used analy-

tical tool, especially in research laboratories. In addition to measuring the

temperature of the glass transition, it can be used to study the curing behavior

of thermosetting polymers and to measure secondary transitions and damping

peaks. These peaks can be related to phenomena such as the motion of side

groups, effects related to crystal size, and different facets of multiphase systems

such as miscibility of polymer blends and adhesion between components of a

composite material [24]. Details of data interpretation are available in standard

texts [1,2,25]. In the next section, we consider time–temperature superposition,

which is another very useful application of dynamic mechanical data.

12.5 TIME^TEMPERATURE SUPERPOSITION

If we plot isothermal shear data for the storage modulus as a function of the

circular frequency at a series of temperatures, we obtain results of the type shown

in Figure 12.16 [26]. The polymer is a polystyrene melt of narrow molecular-
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weight distribution at temperatures from 130�C to 220�C. The remarkable feature

of these data and similar data on other polymer molecular-weight fractions or

other polymer melts is that all of the different curves can be made to collapse into

a single curve by means of a horizontal shift. Thus, if we move the curve for

180�C to the left until it bumps into the 160�C curve, we find that it overlaps with

it nicely and the composite curve extends to lower frequencies. The range of data

at 160�C, taken to be the reference temperature, can be extended further toward

lower frequencies by shifting the 200�C and 220�C curves to the left as well. To

make the 130�C, 140�C, and 150�C curves line up with the 160�C data, though,

these curves have to be moved to the right. The final result is a single master

curve, as shown in Figure 12.17. Note that sometimes the different curves have to

be moved slightly in the vertical direction as well to obtain perfect alignment.

Figure 12.17 shows master curves for data on other molecular-weight fractions

also; the molecular weights range from 8900 (curve L9) to 581,000 (curve L18).

The reference temperature in each case is 160�C. Because changes in temperature

appear to be equivalent to changes in frequency or time, the process of generating

a master curve is called time–temperature superposition.

FIGURE 12.16 Frequency dependence of G0 for narrow-distribution polystyrene L27

(molecular weight 167,000) at various temperatures. (Reprinted with permission from

Onogi, S., T. Masuda, and K. Kitagawa: ‘‘Rheological Properties of Anionic Polystyrenes:

I. Dynamic Viscoelasticity of Narrow-Distribution Polystyrenes,’’ Macromolecules, vol. 3,

pp. 109–116, 1970. Copyright 1970 American Chemical Society.)
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The fact that data at different temperatures superpose allows us to obtain

low-frequency data, which would ordinarily require a significant amount of

experimentation time at a given temperature, by simply making measurements

at a higher temperature. Furthermore, because data at a given frequency at

temperatures lower than the reference temperature correspond to high-frequency

data at the reference temperature, we can think of the high-frequency end of the

storage modulus master curve as modulus data characteristic of the glassy region.

Similarly, data at low frequencies are representative of the viscous flow region,

and the flat central plateau corresponds to the rubbery region. Figure 12.17

reveals, as expected, that the rubbery region becomes progressively larger on

increasing polymer molecular weight, and it disappears entirely for samples

having very low molecular weights, which are below the value needed for

entanglement formation.

On a logarithmic plot, the storage modulus at reference temperature TR and

frequency oR equals the storage modulus at temperature T and frequency o:

G0ðlogoR; TRÞ ¼ G0ðlogo; T Þ ð12:5:1Þ

FIGURE 12.17 Master curves of G0 for narrow-distribution polystyrenes having

different molecular weights. The reference temperature is 160�C. (Reprinted with permis-

sion from Onogi, S., T. Masuda, and K. Kitagawa: ‘‘Rheological Properties of Anionic

Polystyrenes: I. Dynamic Viscoelasticity of Narrow-Distribution Polystyrenes,’’ Macro-

molecules, vol. 3, pp. 109–116, 1970. Copyright 1970 American Chemical Society.)
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However, because the difference between logoR and logo is a constant equal to

log aT , where aT is called the temperature shift factor, we have

G0ðoaT ; TRÞ ¼ G0ðo; T Þ ð12:5:2Þ
and we must plot G0ðoÞ versus oaT in order to get the superposition. Obviously,

aT equals unity at TR and is less than unity if T exceeds TR.

When the logarithm of the shift factor for each of the datasets shown in

Figure 12.17 is plotted versus temperature, a single curve independent of

molecular weight is obtained, provided that the molecular weight exceeds the

value needed for entanglement formation. This result, shown in Figure 12.18, can

be represented mathematically by the following equation:

log aT ¼
�7:14ðT � 160Þ
112:1þ ðT � 160Þ ð12:5:3Þ

If instead of using 160�C as the reference temperature, we use Tg, the equivalent

form of Eq. (12.5.3) is given by

log aT ¼
�17:44ðT � TgÞ
51:6þ ðT � TgÞ

ð12:5:4Þ

FIGURE 12.18 The logarithm of the shift factor aT plotted against temperature for

narrow-distribution polystyrenes. Large open circles indicate the results for M � Mc,

closed circles for M ¼ 14; 800 (L12), and small open circles for M ¼ 8900 (L9).

(Reprinted with permission from Onogi, S., T. Masuda, and K. Kitagawa: ‘‘Rheological

Properties of Anionic Polystyrenes: I. Dynamic Viscoelasticity of Narrow-Distribution

Polystyrenes,’’ Macromolecules, vol. 3, pp. 109–116, 1970. Copyright 1970 American

Chemical Society.)
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which is known as the WLF equation, after Williams, Landel, and Ferry, who first

proposed it [27]. Very surprisingly, the WLF equation has been found to describe

not only the temperature dependence of the storage modulus of other polymers

but also the temperature dependence of the shift factors for other viscoelastic

functions, provided that the temperature lies between Tg and Tg þ 100�C [28].

Thus, identical temperature-shift factors are calculated irrespective of whether

one uses storage modulus, loss modulus, or stress relaxation data. The WLF

equation can also be derived theoretically by appealing to observed shear

viscosity behavior and employing the free-volume theory [26]. Above Tg and

outside the range of validity of the WLF equation, we can represent the shift

factors in an Arrhenius form:

aT ¼ exp
E

T

1

T
� 1

TR

� �
 �
ð12:5:5Þ

where E is an activation energy and R is the universal gas constant.

Because we can use linear viscoelastic theory (see Chapter 14 and Ref. 1)

to relate one viscoelastic function to another, the use of a limited amount of data

along with the time–temperature superposition principle makes it possible to

obtain any small-strain property of a polymer.

Example 12.3: Use Figures 12.17 and 12.18 to determine the storage modulus at

200�C and 1 rad=sec of the polystyrene fraction labeled L27. Compare the result

with that obtained with the use of Figure 12.16.

Solution: From Figure 12.18, the value of aT at 200�C is 0.013. Thus, oaT is

0.013 rad=sec and logðoaT Þ equals �1:89. The use of Figure 12.17 then reveals

that the corresponding value of the storage modulus is approximately

2:5� 104 dyn=cm2. As expected, the same result is obtained when Figure

12.16 is used.

12.6 POLYMER FRACTURE

If a glassy polymer is stressed very rapidly or is stressed at a temperature that is

significantly below its glass transition temperature, it tends to break or fracture in

a brittle manner (i.e., without any plastic or irrecoverable deformation). Conver-

sely, at temperatures above Tg, an amorphous polymer tends to draw down in a

homogeneous manner and displays large strains before fracturing. At intermedi-

ate temperatures and low rates of deformation, the polymer can yield somewhat

before fracturing or fracture in a ductile manner by neck formation. For anyone

interested in structural applications, it is essential to know how and why polymers

fracture in the glassy region. After all, stiffness and strength are two of the main
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criteria used in evaluating the potential utility of a material for load-bearing

applications.

The theoretical strength of a polymer can be estimated based on known

values of interatomic forces and surface energies, and the result for most

materials is a number between 106 and 107 psi [29]. An examination of Figure

12.6, however, reveals that this theoretical strength is a couple of orders of

magnitude larger than the experimentally observed tensile strength of polystyr-

ene. A clue to the reason for this discrepancy between theory and practice is

provided by the behavior of glass fibers, which can be manufactured to near-

theoretical strengths provided that care is taken to ensure that the fiber surface is

smooth and free of imperfections. Indeed, as explained by the classical Griffith

theory [30], it is the presence of small surface cracks that is responsible for the

reduction in tensile strength of glasses.

To understand why tensile strength is not a material property like the

modulus but depends, rather, on sample preparation, consider the situation shown

in Figure 12.19. A flat sheet of glassy polymer of width w and containing an

elliptical crack is in plane strain under the influence of stress s11. The major axis

of the ellipse has a length 2c, whereas the minor axis has a length 2h. Even

though the stress distribution is not influenced by the presence of the crack at

positions far from the crack, near the crack itself, and in particular at the crack tip,

the stress can be significantly greater than the average imposed stress s11. Using
elasticity theory [31], it is possible to show that the maximum stress occurs at the

FIGURE 12.19 Crack propagation in a glassy polymer.
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edge of the ellipse at points A and B and tends to cause the crack to open up. The

value of this maximum stress is given by the following expression:

sm ¼ s11 1þ 2c

h

� �
ð12:6:1Þ

Because c is typically much greater than h, sm=s11 equals 2c=h. Thus, the

localized stress depends on the crack length and can be greater than the average

stress by orders of magnitude; the larger the crack length is, the greater the stress

concentration.

Because microscopic surface cracks are the inevitable result of any polymer

processing operation, it is important to know whether or not a particular crack

will grow and lead to specimen fracture under the influence of an applied stress.

Returning to the situation depicted in Figure 12.19, we find that crack propaga-

tion results in elastic energy being released from regions of the sample above and

below the broad surface of the crack, because these experience a decrease in

strain [30]. However, new surfaces are simultaneously created, and there is an

energy cost associated with this. Consequently, the crack grows only if there is a

net release of energy. By equating the release of elastic energy to the loss of

surface energy, we find that the critical stress for crack propagation is as follows:

[30]:

ðs11Þc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gE
pð1� n2Þc

s
ð12:6:2Þ

where g is the specific surface energy, E is the Young’s modulus, and n is

Poisson’s ratio.

Equation (12.6.2) clearly shows that the critical stress for crack growth

depends on the largest crack and varies inversely as the square root of the crack

length. Thus, fracture occurs at progressively smaller stress values as the crack

length increases. Also, once crack propagation begins, the process results in

catastrophic failure. Although Eq. (12.6.2) has been verified by Feltner by

subjecting polymethyl methacrylate to cyclic deformation [32], critical stress

values, in general, are underpredicted to a significant amount by this equation.

The reason this happens is that energy is also taken up in plastic deformation of

the region ahead of the crack tip, which is equivalent to having a larger value of

the specific surface energy. This phenomenon is called crazing and occurs only

under tensile loading. Quantitatively, we can account for crazing by using a larger

value of g in Eq. (12.6.2). Because plastic deformation requires a considerable

absorption of energy, we find that the energy required to propagate a crack is

almost totally used in promoting viscous flow.

Example 12.4: Estimate the critical crack length using Eq. (12.6.2) and physical

property values characteristic of glassy polymers.
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Solution: If we let ðs11Þc be 4� 108 dyn=cm2, g ¼ 100 dyn=cm, E ¼
3� 1010 dyn=cm2, and n ¼ 0:3, we find that

c ¼ 2gE

pð1� n2Þðs11Þ2c
¼ 2� 100� 3� 1010

3:142� 0:91� 16� 1016

¼ 1:31� 10�5 cm ¼ 0:131 mm

From everyday experience with plastic materials, we know that this calculated

value is unrealistically low. Indeed, g needs to be taken to be of the order of 105–

106 ergs=cm2 to obtain agreement with experimental data [2].

12.7 CRAZING AND SHEAR YIELDING

Nonlinearities in the stress–strain curve of a glassy polymer usually indicate the

presence of irrecoverable deformation. Although the extent of yielding depends

on the test temperature and the rate of strain, it is generally true that most glassy

polymers do show some amount of plastic flow before fracture. This plastic flow

contributes to the toughness of the polymer and, for this reason, is a desirable

feature that needs to be examined and understood. The first point to note is that

even in a sample that is loaded in tension, the yielding could be in shear. If the

test piece shown in Figure 12.20 is sectioned along the dotted line, then, from

equilibrium, the stress s acting on the plane that makes an angle y with the

horizontal is given by

s ¼ szz cos y ð12:7:1Þ
and it can be resolved into a component sn normal to the surface and ss parallel
to the surface,

sn ¼ szz cos
2 y ð12:7:2Þ

ss ¼ szz cos y sin y ð12:7:3Þ
and, depending on the shear strength, deformation may take place in directions

other than along the tensile axis. Although thin films of polystyrene show normal

stress yielding or crazing when strained in tension in air, those made from

polycarbonate rarely exhibit crazing under the same testing conditions [33].

Instead, they show shear yielding. Still other polymers such as polystyrene–

acrylonitrile show both modes of deformation.

A craze, though not a crack, looks like a crack and is, in fact, a precursor to

a crack. It runs perpendicular to the loading direction in a uniaxial tensile test, as

seen in Figure 12.21 [34]. Unlike a crack, a craze can support a load because its

two surfaces are bridged by a multitude of fine fibers ranging in diameter from 5
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to 30 nm; at the tip, a craze can be as thin as 100 Å. Although crazes form mainly

at the surface, they can nucleate in the interior of the polymer as well. There is

typically a sharp boundary between crazed and uncrazed material due partly to

the fact that crazes propagate by the formation of voids with a consequent

reduction in the density of the crazed material. Details of the process of crazing

have been reviewed by Kambour [35], among others. As opposed to crazing,

shear yielding appears as kink bands at an angle to the tensile axis [36]. From Eq.

(12.7.3), we can figure out that the shear stress is a maximum when y equals 45�,
suggesting that shear bands should form at a 45� angle. This, to a large extent, is

what is observed. A further difference between crazing and shear band formation

is that shear yielding takes place without a change in density.

Criteria that predict whether crazing or shear yielding will occur have been

studied by Sternstein and co-workers [37]. For the loading situation shown in

Figure 12.22, it is found that shear yielding takes place according to a modified

von Mises criterion,

1
3
½ðs1 � s2Þ2 þ ðs2 � s3Þ2 þ ðs3 � s1Þ�1=2 � A� 1

3
Bðs1 þ s2 þ s3Þ

ð12:7:4Þ

FIGURE 12.20 Presence of a shear component under the influence of a tensile stress.
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FIGURE 12.21 Craze formation in polystyrene. (From Ward, I. M., and D. W. Hadley:

An Introduction to the Mechanical Properties of Solid Polymers, Wiley, Chichester, UK,

1993. Copyright John Wiley & Sons Limited. Reproduced with permission.)

FIGURE 12.22 General tensile stress distribution.
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where the left-hand side is called the octahedral shear stress, toct. Furthermore,

crazing (also called normal stress yielding) obeys a criterion of the following

form:

js1 � s3j � C þ D

s1 þ s2 þ s3
ð12:7:5Þ

which is similar to the Tresca yield condition for metals. Here, A;B;C, and D are

constants that may depend on temperature, and the stress components are such

that s1 > s2 > s3.
Although the von Mises criterion states that yielding arises whenever the

stored energy exceeds a critical value, Eqs. (12.7.4) and (12.7.5) are essentially

empirical equations. A general conclusion that can be drawn on examining them

is that tension promotes yielding and compression hinders it. Although these

equations have been quantitatively tested by Sternstein and Myers by conducting

experiments on polymethyl methacrylate (PMMA) samples [38], some experi-

mental evidence suggests that they may not work under all conditions [34].

Example 12.5: For the case of biaxial stress loading (s1 � 0, s2 � 0, s3 ¼ 0), it

is found that PMMA exhibits shear yielding at 70�C when toct equals 2875 psi

and the mean normal stress, (s1 þ s2 þ s3Þ=3, equals 2000 psi [38]. When the

mean normal stress is increased to 3500 psi, toct decreases to 2675 psi. At what

stress value s1 will PMMA show the onset of shear bands if the sample is loaded

in uniaxial tension?

Solution: Using the data provided, we find that A and B in Eq. (12.7.4) must

have the values 3152 psi and 2=15, respectively. For uniaxial tension,

s2 ¼ s3 ¼ 0 and Eq. (12.7.4) becomesffiffiffi
2
p

3
s1 � A� B

3
s1

Using the equality sign and solving for s1 gives the following:

s1 ¼
3A

Bþ ffiffiffi
2
p ¼ 3� 3152

0:133þ 1:414
¼ 6112 psi

Once the criterion for craze initiation is satisfied, localized plastic flow

produces microcavities whose rate of formation at a given temperature depends

on the value of the applied stress and increases with increasing stress. This is a

slow, time-dependent process that results in an interconnected void network. The

subsequent growth of the craze is thought to occur by the repeated breakup of the

concave air–polymer interface at the craze tip [39], as shown schematically in

Figure 12.23 [40]. The process is similar to what happens when two flat plates
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containing a layer of liquid between them are separated; an instability known as

the Taylor meniscus instability arises and fibrils are left behind as flow fingers

through in the outward direction. In the present case, as explained by Kramer

[40], deformed polymer constitutes the fluid layer into which the craze tip

meniscus propagates, whereas the undeformed polymer outside the craze acts

as the rigid plates that constrain the fluid. As craze expansion continues, the craze

also thickens in a direction perpendicular to the craze surface. This typically

happens by surface drawing, wherein new polymer is drawn into the fibrils from

the craze interfaces in such a way that the extension ratio of the fibrils remains

constant with time, provided that the stress level is not changed [40].

Cracks propagate by the mechanism of craze fibril breakdown. Knowing

how to prevent craze formation is therefore useful, because this might also

prevent cracking. Studies have shown that crazing might be reduced by orienting

polymer chains parallel to the stress direction [41] or by increasing the

FIGURE 12.23 Schematic drawing of craze tip advance by the meniscus instability

mechanism. (a) Drawing showing wedge of deformed polymer ahead of the void fingers

and trailing fibrils; (b)–(d) xz sections through the craze showing the sequence of events as

the craze tip advances by one fibril spacing. The void finger and fibril spacing in this

drawing shows a much more regular structure than observed experimentally. (From Ref.

40.) Reprinted with permission from Kramer, E. J.: Microscopic and Molecular Funda-

mentals of Crazing, Adv. Polm. Sci., vol. 52=53, pp. 1–56, 1983. Copyright 1983 Springer-
Verlag GmbH & Co. KG.
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entanglement density (see Chap. 14) of the polymer chains [42]. Increases in

entanglement density can entirely suppress crazing and change the mode of

yielding to shear band formation.

The discussion of crazing has thus far been restricted to situations where

the polymer is strained in air. It turns out that if the test is conducted in a liquid

environment or in the presence of organic vapors, the stress needed to initiate

crazing is considerably reduced. This common phenomenon is known as

environmental stress cracking and it is important in situations where plastics

necessarily come into contact with fluids, as in beverage containers or in tubes

and hoses. It is found that variables that most influence crazing under these

circumstances are the spreading coefficient, the diffusivity, and the solubility

parameter of the crazing agent. Theories that have been advanced to explain the

ease of cracking include (1) polymer plasticization, resulting in a lowered value of

both the Tg and the viscosity of the glassy material, and (2) a lowering in the

surface energy, which allows new cavities to form with ease [35].

12.8 FATIGUE FAILURE

We have seen that solid polymers in a tensile test fracture at stress values

considerably lower than those that might be calculated theoretically. This

diminution in strength is the result of local stress concentrations arising from

the presence of small cracks and other flaws. The point of onset of failure can be

predicted based on a modified Griffith criterion or, in the case of crazing, a

modified Tresca criterion. It is on these observed values that design calculations

have to be based. Even worse, we find that if the load is cycled (instead of being

kept constant), failure takes place at stress amplitudes significantly lower than the

breaking stress in a tensile test. This behavior is called fatigue, and typical fatigue

data for glassy polystyrene having a tensile strength of about 6 ksi are shown in

Figure 12.24 [43]. These data were collected under essentially isothermal

conditions in uniaxial tension–compression at a constant frequency of 0.1Hz.

The fatigue life, measured in the number of stress cycles before failure, is very

low in region I, where the strain amplitude is close to the tensile strength. Under

these conditions, fracture occurs due to extensive crazing in a manner analogous

to tensile failure. Reducing the stress amplitude yields region II, where a linear

relationship develops between the stress applied and the logarithm of the life to

failure. Here, again, fracture takes place by craze formation, craze growth, crack

nucleation, and crack propagation. Finally, in region III, no failure is observed if

the stress amplitude is kept below a critical value called the endurance limit. An

observation of the fracture surfaces suggests that in region II, both craze growth

and crack growth occur incrementally on each tension half-cycle, resulting in

slow cracking. Once a critical crack size is reached, however, the crack moves
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rapidly through previously uncrazed material, resulting in brittle fracture. We also

find that, beyond a certain frequency level, an increase in frequency decreases

fatigue life, whereas an increase in polymer molecular weight increases fatigue

life up to a limiting molecular weight [3].

Typically, two kinds of fatigue failure are observed in glassy polymers:

brittle failure of the sort just described and thermal softening. For polymers

whose tensile strength is reduced on increasing temperature, a temperature rise in

the sample resulting from high damping (a large value of tan d) can lead to fatigue
failure. To understand this, let us calculate Ec, the amount of energy dissipated

per unit volume during each cycle. Using Eqs. (12.4.1) and (12.4.3) gives the

following:

Ec ¼
ð
t dg ¼ 2t0g0

ðp
0

ðcos d sinot þ sin d cosotÞ cosot dðotÞ

¼ pt0g0 sin d
ð12:8:1Þ

Because the strain amplitude is assumed to be small, we can estimate g0 using

elasticity theory [44]. Thus,

Ec ¼
pt20 sin d

E
ð12:8:2Þ

where E is Young’s modulus. The energy dissipated per unit time is given by

Q ¼ ot20 sin d
2E

ð12:8:3Þ

and it increases with increasing stress amplitude, frequency, and phase angle.

FIGURE 12.24 Polystyrene stress–fatigue life relation. (From Ref. 43.)
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At steady state, all of this energy is lost to the atmosphere by convection

from the surface of the sample. Thus, using Newton’s law of cooling gives

Q ¼ hAðT � T0Þ ð12:8:4Þ
where h is the heat transfer coefficient, A is the surface area per unit volume, T is

the average steady-state temperature, and T0 is the temperature of the surround-

ings.

On equating the two preceding expressions for Q, we can obtain rather large

values of (T � T0) if the ambient temperature is high [44]. Indeed, values of the

average temperature rise as high as 60�C have been measured [44]. Because the

stress at the crack tip is much larger than the average stress, the temperature rise

there can be expected to be proportionately higher. As a consequence, failure can

occur simply by melting of the polymer.

Regarding brittle fatigue fracture, one theory that has been extensively

examined, especially in the Russian literature, is the linear damage theory. This is

a phenomenological theory that assumes that cyclic stresses slowly damage the

polymer (say, by chain scission) and this damage continues to accumulate. Once a

critical damage level is reached, the material fails. According to this theory, the

time for failure t is given by the following [45]:

t ¼ t0 exp
U � sV

RT

� �
ð12:8:5Þ

where t0 is a constant, U is an activation energy, s is the applied stress, and V is

an activation volume. The use of Eq. (12.8.5) often leads to good agreement with

experimental data. Note, though, that this equation can only be an approximation

because it predicts a finite time to break when s is zero [45].

12.9 IMPROVING MECHANICAL PROPERTIES

Over the last several decades, plastics have gone from being inexpensive

substitutes for metals, concrete, and timber to becoming materials of choice.

This has come about due to a combination of factors. As the scientific community

has come to better understand the behavior of polymeric materials, their structure

and properties have been improved to such an extent that they now compete with

other materials for traditional applications on both quality and price. In addition,

some of the unique properties of polymers have resulted in the creation of new

markets in such diverse areas as transportation, housing, food packaging, health

care, and information and communication [46]. Indeed, workers in both academic

and industrial research laboratories are constantly striving to improve polymer

properties and to create new polymers with enhanced properties in order to bring

improved products to market and also find new applications for existing

polymers.
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Several strategies have been followed to achieve these objectives. For

homopolymers, improving mechanical properties has largely been a process of

relating the internal structure of the polymer to its properties. For amorphous

polymers, we seek to align all of the polymer chains in the same direction; this

anisotropy results in a higher glass transition temperature and an increase in both

stiffness and strength in the direction of molecular chain orientation. Semicrystal-

line polymers can be annealed to induce crystallization. This, again, makes the

polymer stiffer. Different structures can be formed by drawing the polymer and by

varying the temperature and conditions of crystallization. These structures differ

from each other in the size, shape, and amount of crystals and in the orientation of

polymer chains in the amorphous and crystalline regions, resulting in different

mechanical properties. Textile engineers have long studied the effect of these

different variables using polymers such as nylons, polyethylene terephthalate, and

polypropylene; a considerable body of knowledge now exists [47,48]. This has

allowed for the production of not only high-quality textile yarns but also of high-

strength, high-modulus fibers from conventional polymers such as high-density

polyethylene of high molecular weight (> 106). By careful control of molecular

orientation and packing density, it is now possible to manufacture high-density

polyethylene fibers having a modulus of 100GPa and a strength of 1.4GPa. Of

course, these results have been achieved only through the development of special

polymer processing techniques such as solid-state extrusion and gel spinning [46].

If we incorporate aromatic structures into the polymer backbone, not only

can we make the molecule rigid and rodlike, we can also raise its Tg, make it

thermally stable at high temperatures, and impart high strength and stiffness.

Thus, linear aromatic thermoplastics such as semicrystalline polyetherether

ketone have a Tg of 143�C and a maximum continuous-use temperature of

250�C [49]. Ultrastiff, rodlike molecules can also be made to form liquid crystals

from both the melt and solution [50]; molecules such as poly-p-phenyleneter-

ephthalamide and thermotropic copolyesters can be spun into fibers in a highly

oriented, extended-chain form to yield strength and stiffness values up to 3GPa

and 140GPa, respectively.

In addition to manipulating the physical and chemical structures of

homopolymers, we can chemically react two monomers whose homopolymers

have two different desirable properties. We do so with a view toward obtaining

both properties in the copolymer. Thus, a random copolymer of styrene with

butadiene provides strength with flexibility, whereas reacting styrene with

acrylonitrile gives toughness and solvent resistance to polystyrene. On the

other hand, block copolymers such as polystyrene–polybutadiene–polystyrene

form two-phase systems with the butadiene block constituting a continuous three-

dimensional elastomeric network and the polystyrene phase serving as junction

points [51]. This material behaves like vulcanized rubber at room temperature but

flows like a thermoplastic above the Tg of polystyrene. Finally, grafting pendant
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groups such as sodium methacrylate to the polystyrene backbone can help raise

the glass transition temperature of the polymer.

Most current-day research, though, is not concentrated in developing new

polymers. Instead, it is focused on blending existing polymers to formulate new

and improved materials. The classical example [52] of this approach is the

blending of polystyrene with polyphenylene ether (PPE) to give a single-phase

miscible blend. Not only does adding polystyrene to PPE allow the latter polymer

to be melt processed at a lower temperature and over a wider temperature range,

but mechanical properties, such as the modulus, show a significant synergistic

behavior. Most commercial polymer blends, however, are thermodynamically

incompatible, two-phase mixtures. They are still useful because they typically

have improved impact strength and toughness, properties especially important in

automotive applications. A characteristic example of this is high-impact poly-

styrene (HIPS), which is made by mixing or grafting polybutadiene onto

polystyrene [53]. Another example of great commercial interest is acrylonitrile-

butadiene-styrene (ABS), in which styrene–acrylonitrile is grafted onto poly(-

butadiene) and then these graft polymers are mixed with styrene–acrylonitrile

copolymers [54]. The dispersed rubber particles initiate crazes without crack

formation, leading to a tough, self-reinforcing composite material.

The quintessential method of improving the strength and stiffness of

polymers is to form reinforced composites by adding filler particles, whiskers,

short fibers, or long fibers to polymer matrices such as epoxies, unsaturated

polyesters, and vinyl esters [49,55]. Composite materials containing 50–70% by

weight of fibers of glass, carbon, or polyaramid in thermoplastic or thermosetting

polymer matrices can be lighter than aluminum and stronger than steel. Although

most of the development in this area has been motivated by aircraft, aerospace,

and automotive applications, future growth is likely to be in civil engineering

construction [46].
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PROBLEMS

12.1. Show that Eq. (12.2.3) reduces to Eq. (12.2.2) for small strains.

12.2. By considering the stretching of a cylindrical sample, show that the Poisson

ratio for an incompressible material is 0.5.

12.3. How does the stress change with time if at t ¼ 0 the Maxwell element of

Figure 12.4 is stretched to a total strain of g0 which is kept unchanged

thereafter?

12.4. In an adhesion application, an epoxy is subjected to 1% shear strain. What

is the corresponding shear stress? The tensile modulus of the epoxy is

4� 109 Pa and the Poisson ratio is 0.3.

12.5. A cube of the epoxy of Problem 12.4 and having unit volume is put under a

tensile stress of 10MPa. What is the percent change in volume?

12.6. The Tg1 for a polymer made by step growth polymerization is 200�C. If,
during synthesis by bulk polymerization, the reactor temperature is 170�C,
would you expect to obtain a high-molecular-weight polymer? Justify your

answer and suggest a remedy if your answer is no.

12.7. How does the storage modulus of the Maxwell element vary with

frequency as (a) o! 0 and (b) o!1? By comparing your answers

with the data given in Figure 12.17, determine if the model gives results

that are at least qualitatively correct.

12.8. Shown in Figure P12.8 is a Voigt element: -a spring and a dashpot in

parallel. Determine the creep response of this combination and compare the

results with those obtained in Example 12.1.

12.9. Given below are data for the tensile strain as a function of time at three

different temperatures obtained by hanging a constant weight on polystyr-

ene samples [56]. Show that it is possible to obtain a master curve by

means of time–temperature superposition. Calculate the shift factors and

compare them with those obtained using shear data and represented by

log aT ¼ 800:4
1

T � 47:9
� 1

TR � 47:9

� �
in which the reference temperature TR is 160�C.

Mechanical Properties 523

Copyright © 2003 Marcel Dekker, Inc.



Time (sec)

Strain 180�C 190�C 200�C

0 0 0 0

0.2 14.0 5.4 1.8

0.4 29.6 12.1 4.6

0.6 43.9 16.4 6.4

0.8 58.6 20.4 8.6

1.0 72.5 23.9 10.0

1.2 83.6 25.7 10.7

12.10. Show that ss in Eq. (12.7.3) takes on its maximum value when y ¼ 45�.
Thus, determine ðssÞmax=szz.

12.11. For biaxial stress loading, Eq. (12.7.5) becomes

js1 � s2j � C þ D

s1 þ s2

Under these conditions, the PMMA sample of Example 12.5 exhibits

crazing at 70�C when jðs1 � s2Þj equals 1000 psi and 1=ðs1 þ s2Þ equals
2:15� 104 ðpsiÞ�1 [38]. On increasing the value of the former variable to

3000 psi, the needed value of the latter variable is 3:11� 10�4 ðpsiÞ�1.
Compute the values of the constants C and D and plot the normal stress

yielding criterion (the preceding equation) as s1 versus s2 for s1 � 0 and

s2 � 0.

FIGURE P12.8 AVoigt element.

524 Chapter 12

Copyright © 2003 Marcel Dekker, Inc.



12.12. The PMMA sample of Example 12.5 and Problem 12.11 is stretched in

uniaxial tension. Will shear yielding or crazing occur first? At what value

of s1?
12.13. A polystyrene sample of unit volume is subjected to a fatigue test at a

temperature of 50�C and frequency of 10Hz. Use the data of Figures 12.7

and 12.15 to estimate the initial rate of temperature rise in the sample.

Assume adiabatic conditions and let g0 be 0.01 and the polymer density

be 1 g=cm3. The specific heat of polystyrene is 0.3 cal=g. How would the

answer change if the test temperature was much closer to Tg?

12.14. Consider the continuous-fiber reinforced rod shown in Figure P12.14. If

the fiber volume fraction is f, determine Young’s modulus, E, of the rod.

Let the moduli of the fibers and matrix be E1 and E2, respectively. What

can you say about the magnitude of E1 relative to E2 if the purpose of the

reinforcement is to develop a material having a modulus that is signifi-

cantly greater than that of the matrix polymer?

FIGURE P12.14 Unidirectional continuous-fiber reinforcement of plastics
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13

Polymer Di¡usion

13.1 INTRODUCTION

In engineering practice, we routinely encounter the diffusion of small molecules

through solid polymers, the diffusion of polymer molecules in dilute or concen-

trated solution, and the transport of macromolecules through polymer melts. We

came across diffusion in dilute solution when we developed the theory of the

ultracentrifuge in Chapter 8 as a method of determining polymer molecular

weight. Similarly, solution polymerization involves diffusion in a concentrated

solution. The reverse situation of mass transfer of small molecules through

polymers has great technological importance. Thus, anisotropic cellulose acetate

membranes can be used for desalination of water by reverse osmosis [1], and

ethyl cellulose membranes can be used to separate gas mixtures such as air to

yield oxygen [2]. Other common situations include the drying of polymeric

coatings [3] and the removal of the monomer and other unwanted volatiles from

finished polymer by the process of devolatilization [4]. In the field of medicine,

polymeric drug delivery systems have become a reality [5]. For example, there is

now a commercially available implant for glaucoma therapy consisting of a

membrane-controlled reservoir system made from an ethylene–vinyl acetate

copolymer [6]. This implant is placed in the lower eyelid’s conjunctival cul-de-

sac, and it delivers the drug pilocarpine continuously over a 1-week period;

normally, patients would receive eyedrops of this drug four times each day. A few

other examples involving diffusion through polymers are biomedical devices such
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as blood oxygenators and artificial kidneys. Finally, polymer diffusion in polymer

melts is relevant to the self-adhesion of polymer layers. Polyimide layers, for

instance, are used as insulators in electronic packaging, and the peel strength of

such a bilayer is found to correlate with the interdiffusion distance [7].

A fundamental study of diffusion of and through polymers is clearly

necessitated by all the applications just cited. For a rational design of devices

employing polymer diffusion, it is necessary to know the mechanism of diffusion

and how the rate of diffusion is affected by variables such as temperature,

concentration, and molecular weight. Another extremely important variable is

polymer physical structure. Because the transport of small molecules through a

nonporous polymer is a solution-diffusion process [8], the flux depends on both

the solubility and the diffusivity. Because of the small amount of free volume in a

glassy polymer, diffusion coefficients are low and decrease rapidly with increas-

ing molecular size of the diffusing species. This fact can be used to advantage in

separating small molecules of air, for example, from larger organic vapors.

Conversely, because solubility increases with increasing condensability, rubbery

polymers permit easier transport of larger molecules because these are more

condensable [9]. Polymer structure can affect properties in more subtle ways as

well. Small changes in crystallinity and polymer chain orientation can alter the

diffusion path and adversely affect the dyeability of knitted and woven fabrics and

lead to color nonuniformities known as barre [10]. Such mechanistic information

is also useful for testing molecular theories of polymer behavior, especially

because transport properties such as diffusivity and viscosity are closely inter-

related. In this chapter, therefore, we define the various diffusion coefficients,

show their relevance, discuss methods of measuring the mutual diffusion

coefficient, present typical data, and see how these might be explained by

available theories.

13.2 FUNDAMENTALS OF MASS TRANSFER

When concentration gradients exist in a multicomponent system, there is a natural

tendency for the concentration differences to be reduced and, ultimately, elimi-

nated by mass transfer. This is the process of diffusion, and mass transfer occurs

by molecular means. Thus, water evaporates from an open dish and increases the

humidity of the air. However, the rate of mass transfer can be increased by

blowing air past the dish. This is called convective mass transfer or mass transfer

due to flow.

The basic equation governing the rate of mass transfer of component A in a

binary mixture of A and B is (in one dimension) given by

JA;z ¼ �DABc
dxA

dz
ð13:2:1Þ
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which is often known as Fick’s first law. Here, JA;z is the flux of A in the z

direction in units of moles per unit time per unit area, DAB (assumed constant) is

the mutual or interdiffusion coefficient, c is the molar concentration of the

mixture, and xA is the mole fraction of A. Clearly, dxA=dz is the mole fraction

gradient, and diffusion occurs due to the presence of this quantity.

Although Eq. (13.2.1) is similar in form to Fourier’s law of heat conduction

and Newton’s law of viscosity, the similarity is somewhat superficial. This is

because the flux given by Eq. (13.2.1) is not relative to a set of axes that are fixed

in space, but are relative to the molar average velocity; that is,

JA;z ¼ cxAðvA;z � VzÞ ð13:2:2Þ
where the molar average velocity is defined as

Vz ¼ xAvA;z þ xBvB;z ð13:2:3Þ
in which vA;z and vB;z are the velocities in the z direction of the two components

relative to a fixed coordinate system.

Because NA;z, the molar flux of A relative to the fixed axes, is cxAvA;z, this

quantity must also equal the flux of A due to the mixture (molar) average velocity

plus the flux of A relative to this average velocity; that is,

NA;z ¼ cxAVz � DABc
dxA

dz
ð13:2:4Þ

and we can write similar equations for fluxes in the x and y directions as well.

If we choose to work in terms of mass units, the corresponding form of Eq.

(13.2.1) is as follows [11]:

jA;z ¼ �DABr
dwA

dz
ð13:2:5Þ

where r is the mixture density and wA is the mass fraction of A. Now the mass

flux jA;z is given relative to the mass average velocity,

vz ¼ wAvA;z þ wBvB;z ð13:2:6Þ
which then leads to the following expression for the mass flux nA;z relative to

fixed axes:

nA;z ¼ �DABr
dwA

dz
þ rAvz ð13:2:7Þ

where rA is the mass concentration of A and equals rwA. Note that the diffusion

coefficient DAB appearing in Eqs. (13.2.4) and (13.2.7) is the same quantity and

that Eq. (13.2.4) can be obtained by dividing both sides of Eq. (13.2.7) by MA, the

molecular weight of A.

The binary diffusion coefficient is not the only kind of diffusion coefficient

that we can define. If we label some molecules of a pure material and follow their
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motion through the unlabeled molecules, the foregoing equations would still

apply, but the diffusion coefficient would be called a self-diffusion coefficient. A

similar experiment can be conducted by labeling some molecules of one

component in a uniform mixture of two components. The motion of the labeled

molecules would give the intradiffusion coefficient of this species in the mixture

[12]. Still other diffusion coefficients can be defined for mass transfer in

multicomponent systems [13].

Example 13.1: Show that cxAVz in Eq. (13.2.4) can also be written as

xAðNA;z þ NB;zÞ, where NB;z is the flux of B relative to fixed axes.

Solution: Using the definition of the molar average velocity and the mole

fraction gives the following:

cxAVz ¼ cxAðxAvA;z þ xBvB;zÞ ¼ cxA
cA

c
vA;z þ

cB

c
vB;z

� �
¼ xAðcAvA;z þ cBvB;zÞ
¼ xAðNA;z þ NB;zÞ

An examination of the foregoing equations shows that we need the

diffusion coefficient and the concentration profile before we can determine the

flux of any species in a mixture. If, for the moment, we assume that we know the

interdiffusion coefficient, we obtain the concentration profile by solving the

differential mass balance for the component whose flux is desired. The general

mass balance equation itself can be derived in a straightforward way, as follows.

If we consider the mass transport of species A through the rectangular

parallelepiped shown in Figure 13.1, then it is obvious that the mass of

component A inside the parallelepiped at time t þ Dt equals the mass of A that

was present at time t plus the mass of A that entered during time interval Dt
minus the mass that left during time interval Dt. In mathematical terms, therefore,

rADxDyDzjtþDt ¼ rADxDyDzjt þ nA;xDyDzDtjx
� nA;xDyDzDtjxþDx þ nA;yDxDzDtjy
� nA;yDxDzDtjyþDy þ nA;zDxDyDtjz
� nA;zDxDyDtjzþDz

ð13:2:8Þ

Dividing the above equation by DxDyDzDt, rearranging, and taking limits yields

@rA
@t
þ @

@x
nA;x þ

@

@y
nA;y þ

@

@z
nA;z ¼ 0 ð13:2:9Þ
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Replacing the flux components with expressions of the type given by Eq. (13.2.7)

and noting that the overall mass balance is HH � v ¼ 0 for incompressible materials

[11] we have

@rA
@t
þ vx

@rA
@x
þ vy

@rA
@y
þ vz

@rA
@z
¼ DAB

@2rA
@x2
þ @2rA

@y2
þ @2rA

@z2

� �
ð13:2:10Þ

where it has been assumed that both r and DAB are constant. Also, rwA is equal to

rA.
If there is no bulk fluid motion, the mass average velocity components are

zero and

@rA
@t
¼ DABH

2rA ð13:2:11Þ

which is often called Fick’s second law. The term H2 is Laplace’s operator

ð@2=@x2 þ @2=@y2 þ @2=@z2Þ in rectangular coordinates. At steady state,

H2rA ¼ 0 ð13:2:12Þ
and the equivalent forms of Eqs. (13.2.9)–(13.2.12) in mole units are obtained by

dividing these equations by the molecular weight of A. Similar expressions in

curvilinear coordinates are available in standard textbooks [11,13].

In any given situation of practical interest, the concentration profile is

obtained by solving the appropriate form of Eq. (13.2.9). For diffusion through

solids and liquids (this is the situation of interest to us here), the flow terms are

always small in comparison to the other terms. Consequently, we solve Eq.

FIGURE 13.1 Coordinate system used for deriving the mass balance equation.
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(13.2.11) to determine the concentration profile if the diffusion coefficient is

known. Alternately, the solution of Eq. (13.2.11) can be used in conjunction with

experimental data to obtain the mutual diffusion coefficient. Because a new

solution is generated each time a boundary condition is changed, a very large

number of methods exist for the experimental determination of the diffusivity.

Some of these methods are discussed in the next section. Note that if the

diffusivity is not constant but depends on the mixture composition, the mass

transfer situation is termed non-Fickian; this is examined later in the chapter in

the discussion of theoretical predictions of the measured diffusion coefficients.

13.3 DIFFUSION COEFFICIENT MEASUREMENT

In this section, we examine some common experimental techniques for measur-

ing the diffusion coefficient in liquids and solids under isothermal conditions.

Both steady-state and transient conditions are encountered in these methods.

Either Eq. (13.2.1) or (13.2.5) is employed for the former situation, whereas Eq.

(13.2.11) is used in the latter case, because the flow terms are either identically

zero or negligible.

13.3.1 Di¡usion in the Liquid Phase

The simplest means of obtaining binary mutual diffusion coefficients, especially

for liquid mixtures of low-molecular-weight materials, is through the use of a

diaphragm cell, shown schematically in Figure 13.2. This method was introduced

originally by Northrop and Anson and consists of two compartments separated by

a porous diaphragm made of glass or stainless steel [14]. A concentrated solution

is placed in the lower compartment of volume V2 and a dilute solution is kept in

the upper compartment of volume V1. Both solutions are mechanically stirred to

eliminate concentration gradients within the respective compartments, and diffu-

sion is allowed to occur through the channels in the diaphragm. If the initial

solute concentration in the upper chamber is c1ð0Þ and that in the lower chamber

is c2ð0Þ, these concentrations will change with time at a rate (assuming quasi-

steady-state conditions) given by the following:

V1

dc1

dt
¼ J ðtÞA ð13:3:1Þ

V2

dc2

dt
¼ �J ðtÞA ð13:3:2Þ

in which A is the total area of the channels in the diaphragm and J ðtÞ is the solute
flux across the diaphragm given by Eq. (13.2.1), and this flux varies with time
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because the concentration gradient varies with time. This time dependence is

given by

J ðtÞ ¼ �D12ðc1 � c2Þ
L

ð13:3:3Þ

where D12 is the mutual diffusion coefficient and L is the diaphragm thickness.

Combining the three preceding equations gives

� d

dt
lnðc2 � c1Þ ¼ D12A

1

V1

þ 1

V2

� �
L�1 ð13:3:4Þ

Integrating from t ¼ 0 to t gives

ln
c2ð0Þ � c1ð0Þ

c2 � c1

� �
¼ D12At

1

V1

þ 1

V2

� �
L�1 ð13:3:5Þ

which allows for the determination of D12 from experimentally measurable

quantities. If the diffusion coefficient varies with concentration, the procedure

just illustrated will yield an average value. Details of specific cell designs and

operating procedures are available in standard books on the topic [12].

Example 13.2: Northrop and Anson examined the diffusion of HCl in water by

means of a diaphragm cell fitted with a porous aluminum membrane; this

membrane separated pure water from 0.1 N HCl. Over a period of 30min, the

amount of acid that diffused through the membrane was equivalent to 0:26 cm3 of

0.1N HCl. What is the value of the membrane constant L=A? It is known that D12

equals 2:14� 10�5 cm2=sec. Assume that c1 and c2 remain unchanged over the

course of the experiment.

FIGURE 13.2 Schematic diagram of the diaphragm cell.
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Solution: Using Eq. (13.3.3) and noting that c1 ¼ 0, we find the following:

Amount diffused ¼ D12c2tA

L

or

L

A
¼ D12c2t

Amount diffused
¼ 2:14� 10�5 � c2 � 30� 60

c2 � 0:26
¼ 0:148 cm�1

Although the diaphragm cell has been used by some researchers to measure

diffusion coefficients in polymer solutions, the results are likely to be influenced

by the mechanical stirring of the solutions, which can cause extension and

orientation of the polymer molecules. Polymer molecules can also adsorb on the

membrane. As a consequence, it is preferable to use methods that do not require

the fluid to be subjected to any shear stress. This can be achieved in free-diffusion

experiments [15].

If, in the situation shown in Figure 13.2, the two compartments were

infinitely long and the barrier separating them infinitely thin, then initially c

would equal c1ð0Þ for z > 0 and c would equal c2ð0Þ for z < 0; here, z is

measured from the plane separating the two solutions and taken to be positive in

the upward direction. If the barrier were instantly removed at t ¼ 0, there would

be interdiffusion and the time dependence of the concentration would be given by

the solution of Eq. (13.2.11). This situation is termed free diffusion because the

solute concentration remains unchanged at the two ends of the cell. Thus, c equals

c1ð0Þ at z ¼ 1 and c equals c2ð0Þ at z ¼ �1 for all times. To obtain cðz; tÞ, we
use a combination of variables as the new independent variable [16]:

x ¼ zffiffiffiffiffiffiffiffiffiffiffiffi
4DABt
p ð13:3:6Þ

so that Eq. (13.2.11) becomes the following, in molar units:

d2c

dx2
þ 2x

dc

dx
¼ 0 ð13:3:7Þ

subject to cð1Þ ¼ c1ð0Þ and cð�1Þ ¼ c2ð0Þ.
The solution to Eq. (13.3.7) is given as follows [17,18]:

c� �cc

c1ð0Þ � �cc
¼ erf

zffiffiffiffiffiffiffiffiffiffiffiffi
4DABt
p
� �

ð13:3:8Þ

in which �cc ¼ ½c1ð0Þ þ c2ð0Þ�=2 and erf is the error function,

erf x ¼ 2ffiffiffi
p
p

ðx
0

e�u
2

du ð13:3:9Þ
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and DAB is obtained by comparing the measured concentration profile with Eq.

(13.3.8).

Example 13.3: In a free-diffusion experiment, if c1ð0Þ ¼ 0, how does the flux of

the species diffusing across the plane that initially separated the two solutions

vary with time?

Solution: Because c1ð0Þ ¼ 0, Eq. (13.3.8) becomes

c

c2ð0Þ
¼ 1

2
1� erf

zffiffiffiffiffiffiffiffiffiffiffiffi
4DABt
p
� �
 �

The flux across the plane at z ¼ 0 is given by Eq. (13.2.1) as follows:

J ¼ �DAB

dc

dz
z¼0
		

Carrying out the differentiation gives

dc

dz
¼ � c2ð0Þffiffiffi

p
p 1ffiffiffiffiffiffiffiffiffiffiffiffi

4DABt
p exp � z2

4DABt

� �
Evaluating this expression at z ¼ 0 and introducing the result in the equation for

the flux gives the following:

J ¼ c2ð0Þ
2

ffiffiffiffiffiffiffiffi
DAB

pt

r
A large number of optical methods are available for measuring the time-

dependent concentration profiles for diffusion in solutions [19]; the accuracy of

interferometric techniques is very good; data can be obtained with a precision of

0.1% or better [19]. For the interdiffusion of polymer melts, however, the number

of techniques is very limited because diffusion coefficients can be as low as

10�15 cm2=sec; this means that the depth of penetration measured from the

interface is very small even if the experiment is allowed to run for several days.

Analysis methods that have the necessary resolution capability include infrared

microdensitometry, [20], forward recoil spectrometry, [21], and marker displace-

ment used in conjunction with Rutherford backscattering spectrometry [22]. If the

diffusion coefficient is large, we can also use radioactive labeling and nuclear

magnetic resonance [20]. Clearly, making measurements of diffusion coefficients

in polymer melts is a nontrivial exercise.

A third popular method of measuring diffusion coefficients in the liquid

state (especially self-diffusion coefficients of ions in dilute solution) is the open-

ended capillary of Anderson and Saddington [23]. Here, as shown in Figure 13.3,

a capillary of length L, closed at the bottom, is filled with solution of a known and
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uniform concentration, c0, and immersed in a large tank of pure solvent. Because

of the concentration difference, solute diffuses out of the capillary and into the

tank, but the tank concentration remains essentially unchanged at zero. After

diffusion has taken place for a few hours to a few days, the capillary is withdrawn

and the average solute concentration, �cc, determined. This measured quantity is

then related to the diffusion coefficient. An expression for �cc=c0 is derived by

solving Eq. (13.2.11) by the method of separation of variables [19,24,25] subject

to the initial and boundary conditions,

c ¼ c0 for 0 < z < L when t ¼ 0

@c

@z
¼ 0 for z ¼ 0

c ¼ 0 for z ¼ L

The solution is as follows [24,25]:

c ¼ 4c0
p

P1
n¼0

ð�1Þn
2nþ 1

exp � ð2nþ 1Þ2p2
4L2

DABt

 !
cos
ð2nþ 1Þpz

2L

� �
ð13:3:10Þ

which can be integrated over the length of the capillary to yield

�cc

c0
¼ 8

p2
P1
n¼0

1

ð2nþ 1Þ2 exp �p
2ð2nþ 1Þ2 DABt

4L2

� �
ð13:3:11Þ

FIGURE 13.3 The open-ended capillary.
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The solute is usually radioactively labeled and the concentration determined

using a scintillation counter. Other methods of measuring the diffusion coefficient

can be found in standard books [12,18,19,25].

13.3.2 Di¡usion in Solid Polymers

Diffusion of gases and vapors through solid, nonporous polymers is a three-step

process. In the first step, the gas has to dissolve in the polymer at the high-partial-

pressure side. Then, it has to diffuse as a solute to the low-partial-pressure side. In

the third step, the solute evaporates back to the gas phase. Thus, if we consider

steady-state diffusion through a membrane of thickness L exposed to a partial

pressure difference Dp, the mass flux through the membrane will be given by Eq.

(13.2.1) as follows:

J ¼ DS
�Dp
L

ð13:3:12Þ

where S is the solubility of the gas in the polymer at pressure p such that the

concentration of the gas in the polymer is given by

c ¼ Sp ð13:3:13Þ

For simple gases above their critical temperature and dissolved in rubbery

polymers, S is Henry’s law constant, which is independent of p.

It is evident from Eq. (13.3.12) that a measurement of the steady-state flux

alone does not yield D, but instead gives the product DS, called the permeability.

To obtain the diffusivity, we have to know the value of the solubility or make one

additional measurement; this is usually the time lag before a steady state is

reached in the permeation experiment [26]. The time lag can be related to D by

solving Eq. (13.2.11) for one-dimensional transient diffusion through the initially

solute-free membrane, subject to the boundary conditions (see Fig. 13.4):

cð0; tÞ ¼ c1

cðL; tÞ ¼ 0

cð0 < x < L; 0Þ ¼ 0

The time-dependent concentration profile can be shown to be [25,26]:

c ¼ c1 1� x

L

� �
� 2c1

p
P1
n¼1

1

n
sin

npx
L

� �
exp �Dn2p2t

L2

� �
ð13:3:14Þ

Note that as t!1, the exponential terms vanish and we have the expected

linear concentration profile. The flux of gas leaving the membrane is �Dð@c=@xÞ
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evaluated at x ¼ L. When this term is integrated over time, we get M ðtÞ, the
amount of material that has actually passed through the membrane in time t:

M ðtÞ
Lc1
¼ Dt

L2
� 1

6
� 2

p2
P1
1

ð�1Þn
n2

exp �Dn2p2t
L2

� �
ð13:3:15Þ

which reduces to the equation of a straight line as t!1; that is,

M ðtÞ ¼ Dc1

L
t � Lc1

6
ð13:3:16Þ

Clearly, this straight line intersects the t axis at the point t ¼ L2=6D, and this

allows us to obtain the diffusivity D from a plot of M ðtÞ versus time.

Example 13.4: Guo et al. have used a permeation cell containing a 0.75-mm

silicone rubber membrane to measure the cumulative mass of o-xylene vapor

passing through the initially solute-free membrane at 303K [27]. These data are

shown in Figure 13.5. Determine the diffusion coefficient.

Solution: On extrapolating the line marked vapor back toward the origin, we find

that this line intersects the time axis at a value of t equal to 40 minutes. Thus,

D ¼ L2

6t
¼ ð0:075Þ2

6� 40� 60
¼ 3:9� 10�7

cm2

sec

FIGURE 13.4 Gas diffusion through a membrane.
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The measurement of water vapor transmission rate is very important for

assessing the barrier properties of polymer films used in packaging applications.

A very simple method of accomplishing this is to use the film of interest to seal

the mouth of a dish containing a desiccant. The rate of moisture transport is

determined simply by periodically weighing the dish. A more sophisticated

technique used in commercial instruments is to generate the flow of air of

controlled relative humidity on one side of the membrane and the flow of

moisture-free nitrogen gas on the other side; the mass transfer rate is computed

with the use of a sensor that detects the increase in moisture level of the nitrogen

leaving the diffusion cell. Such instruments can operate over wide ranges of

temperature, flow rate, and relative humidity, and they come equipped with

multiple cells and data analysis software.

The permeation method works well for simple gases diffusing through

polymers above the glass transition temperature because in this situation, the

solubility and diffusivity are both constant, independent of concentration, at a

given temperature. With increasing temperature, the diffusion coefficient

FIGURE 13.5 Permeation curves of o-xylene in silicone rubber at 303K. (From Ref.

27.) From J. Appl. Polym. Sci., vol. 56, Guo, C. J., D. DeKee, and B. Harrison: Diffusion

of organic solvents in rubber membranes measured via a new permeation cell, Copyright

# 1995 by John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.
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increases, but the solubility decreases, with the result that the permeability can

exhibit increases or decreases with temperature. This behavior can, however, be

predicted from a limited amount of experimental data, because both the

diffusivity and permeability obey the Arrhenius relation [28]. The process of

predicting the permeability is also helped by the observation that, for any given

pair of gases, the ratio of the permeabilities is constant, independent of the type of

polymer used [29]. This is also found to be true for the ratio of the permeability

activation energies [30].

In contrast to simple gases, organic vapors (at temperatures below the

critical temperature) of the kind encountered in Example 13.4 tend to interact

with polymers and often cause them to swell. A result of this interaction is that,

even for the polymers above the glass transition temperature, the diffusion

coefficient becomes concentration dependent and Henry’s law is no longer

obeyed. Consequently, the use of Eq. (13.3.16) gives the diffusivity in the low-

concentration regime. Although analyses have been developed to account for this

variation of D in a permeation experiment [31–33], the preferred method for this

situation appears to be the sorption experiment. Here, a polymer film initially at

equilibrium with a given partial pressure of vapor is suddenly exposed to a

different constant partial pressure of the same vapor [34]. The diffusion

coefficient is obtained from analyzing data on the gain or loss in mass of the

polymer film with time.

If a membrane having an initially uniform solute concentration c0 and

thickness 2L is exposed to vapor at a different partial pressure such that the

surfaces located at x ¼ �L instantly reach a constant concentration c1, then the

solution of Eq. (13.2.11) is given as follows [25]:

c� c0

c1 � c0
¼ 1� 4

p
P1
n¼0

ð�1Þn
2nþ 1

exp �Dð2nþ 1Þ2p2t
4L2

 !
cos
ð2nþ 1Þpx

2L

� �
ð13:3:17Þ

Note that this situation is mathematically equivalent to the open capillary

considered earlier. Indeed, Eq. (13.3.10) is recovered by setting c1 equal to

zero in Eq. (13.3.17).

The expression in Eq. (13.3.17) can be used to calculate the ratio of mass of

vapor, M ðtÞ, that has diffused into the membrane at any time to the equilibrium

mass of vapor, M1. At short times, this quantity is given by

M ðtÞ
M1
¼ 2

Dt

L2

� �1=2

p�1=2 þ 2
P1
n¼1
ð�1Þn ierfc nLffiffiffiffiffi

Dt
p
� �
 �

ð13:3:18Þ
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FIGURE 13.6 Transmission electron micrograph of vinyl ester=clay nanocomposite

containing 0.5 wt% organically treated montmorillonite. The magnification is 100,000�.
(From Ref. 37.)
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which says that M ðtÞ=M1 is a unique function of Dt=L2. Here, ierfcðxÞ is given by
ð1= ffiffiffi

p
p Þe�x2 � xð1� erf xÞ. On plotting Eq. (13.3.18), we find that [18,34]

M ðtÞ
M1
¼ 2

Dt

pL2

� �1=2

ð13:3:19Þ

until the point that M ðtÞ=M1 equals 0.5. This linear relationship on logarithmic

coordinates facilitates the evaluation of D from experimental data. Details of how

we might conduct such experiments above the polymer glass transition tempera-

ture have been provided by Duda et al. [35]. Duda and Vrentas have also shown

how we might determine the concentration dependence of diffusion coefficients

from a minimum amount of data from sorption experiments [36].

Equations (13.3.18) and (13.3.19) have been employed by Shah et al. to

determine the diffusivity of water in vinyl ester nanocomposites [37]. As

discussed in Chapter 11, nanocomposites are made by dispersing platelets of

montmorrilonite (clay) in polymer, and Figure 13.6, taken from the work of Shah

et al., shows individual platelets in the form of dark lines. Rectangular samples of

the nanocomposite were immersed in 25�C water, and the increase in weight was

noted with increasing time of immersion. Representative sorption results for

nanocomposites containing 0.5 wt% clay are shown in Figure 13.7, and, as

expected, data on samples of different thicknesses superpose when plotted as

M ðtÞ=M1 versus t1=2=L. The value of the diffusion coefficient computed using

Eq. (13.3.19) can be inserted into Eq. (13.3.18) to give the complete theoretical

curve, and this is also shown in Figure 13.7; the fit between Fickian theory and

experiment is excellent. It is also remarkable that the addition of such a minute

amount of clay is found to reduce the moisture diffusion coefficient by 50%.

In the case of a desorption experiment (during the final stages), the

equivalent form of Eq. (13.3.18) is given by the following [18]:

d

dt
fln½M ðtÞ �M1�g ¼ �

p2D
4L2

ð13:3:20Þ

and a plot of ln½M ðtÞ �M1� versus time should approach a straight line, whose

slope is given by the right-hand side of Eq. (13.3.20). The use of this technique

for diffusivity measurement is illustrated in the next example. Extensive data on

the diffusion coefficient of gases and vapors in polymers can be found in the book

edited by Crank and Park [18,34].

Example 13.5: Figure 13.8 shows the gravimetric data of Saleem et al. for the

desorption of chloroform from a 0.15-mm-thick film of low-density polyethylene

at 25�C [38]. Determine the diffusivity.
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Solution: The slope of the straight line in Figure 13.8 is

ln 10�2 � ln 10�1

ð120� 70Þ60 ¼ �7:68� 10�4

and this must equal �p2D=ð0:015Þ2. As a result, D ¼ 1:75� 10�8 cm2=sec.

13.4 DIFFUSIVITY OF SPHERES AT INFINITE
DILUTION

Theoretical prediction of the diffusion coefficient of spheres moving through a

low-molecular-weight liquid is a problem that was examined by Einstein at the

turn of this century [39]. This situation is of interest to the polymer scientist

because isolated polymer molecules in solution act as random coils.

The analysis begins by showing that the osmotic pressure is the driving

force for diffusion. This is done by carrying out the experiment illustrated in

FIGURE 13.7 Water sorption curve at 25�C for the nanocomposite shown in Fig. 13.6.

(From Ref. 37.)
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FIGURE 13.8 Typical plot for the desorption of chloroform at 25�C. (From Ref. 38.)

From J. Appl. Polym. Sci., vol. 37, Saleem, M., A.-F. A. Asfour, D. DeKee, and B.

Harrison: Diffusion of organic penetrants through low density polyethylene (LDPE) films:

Effect of shape and size of the penetrant molecules, Copyright # 1989 by John Wiley &

Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.

FIGURE 13.9 Diffusion through a semipermeable membrane of area A.
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Figure 13.9. If a piston of area A and fabricated from a semipermeable membrane

separates dilute solutions of two different molar compositions, there is a tendency

for the piston to move toward one of the two sides. This happens because there is

the transport of solvent from the dilute to the concentrated side as an attempt to

eliminate the difference in concentration. Thus, if cA > cB, the piston tends to

move to the right as the solvent diffuses into the compartment on the left. If we

wanted to prevent the piston from moving, we would have to apply an external

force equal to ðpA � pBÞA to the piston in the negative x direction; here pA � pB is

the difference in osmotic pressure across the membrane. This clearly shows that

osmotic pressure differences cause diffusion. Indeed, diffusion stops when the

osmotic pressure difference is balanced by the application of an external force.

Now, consider the situation shown in Figure 13.10. The slice of material of

thickness dx is taken from a dilute solution in which there is a concentration

gradient in the x direction. Because there is a concentration gradient, there must

necessarily be an osmotic pressure gradient as well. Because the osmotic pressure

is RTc, where c is the molar concentration of spheres [see Eq. (8.3.18)], the

difference in force across the slice is given by

�ART dc

dx
dx

and it points in the negative x direction if c increases with increasing x. As the

total number of spheres in the slice equals A dx cNA, where NA is Avogadro’s

number, the force acting on each sphere is

Force

Sphere
¼ �ART dc

dx
dx

� �
ðA dx cNAÞ�1 ¼ �

kT

c

dc

dx
ð13:4:1Þ

in which k is Boltzmann’s constant.

The right-hand side of Eq. (13.4.1) must be the drag force exerted by the

fluid on the sphere. This is given by Stokes’ law and equals 6pZvR, because the

FIGURE 13.10 Force balance across a slice of fluid having a concentration gradient.
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spheres move at a velocity v and do not accelerate [13]. Equating the two

expressions for the drag force gives

vc ¼ � kT

6pZR
dc

dx
ð13:4:2Þ

where Z is the suspending liquid viscosity and R is the sphere radius. The left-

hand side of Eq. (13.4.2.), however, is the molar flux of spheres, which is given in

terms of the diffusion coefficient D by Eq. (13.2.1). Clearly, then,

D ¼ kT

6pZR
ð13:4:3Þ

which is known as the Stokes–Einstein equation. It is valid only for very dilute

solutions, because only under these conditions is the osmotic pressure expression

that is used correct. A further consequence of dilute conditions is that D is both

the mutual diffusion coefficient and the self-diffusion coefficient of the spheres at

infinite dilution. Also, the use of Stokes’ law requires that the spheres be rigid and

the flow regime be one of creeping flow. In addition, the size of the spheres has to

be large in comparison to the size of the molecules of the suspending liquid.

Under these conditions, D is typically of the order of 10�5 cm2=sec. Equation
(13.4.3) does a fair job of predicting not only the absolute value of D but also the

temperature dependence of this quantity. More accurate predictions can be made,

however, with the help of empirical relationships [40,41].

Example 13.6: Northrop and Anson measured the diffusion coefficient of

hemoglobin in water to be 4:86� 10�7 cm2=sec at 5�C [14]. Estimate the

radius of the hemoglobin molecule. The viscosity of water at 5�C is 0.0152 P.

Solution: Using Eq. (13.4.3) gives us the radius,

R ¼ kT

6pZD
¼ 8:3� 107 � 278

6:02� 1023 � 6� p� 0:0152� 4:86� 10�7

¼ 2:75� 10�7cm

If the diffusing species is not a sphere, we merely need to use an

appropriately defined equivalent radius Re instead of R in Eq. (13.4.3) [41].

Thus, we have the following:

D ¼ kT

6pZRe

ð13:4:4Þ

Equation (13.4.4) gives the correct order of magnitude for D. However, the

diffusivity of nonspherical particles such as ellipsoids may be different in

different directions.
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For infinitely dilute, linear, flexible-chain polymer solutions under theta

conditions, we have the following [41,42]:

Re ¼ 0:676hs2i1=20 ð13:4:5Þ
in which hs2i0 is the mean square radius of gyration at theta conditions and can be

measured using light-scattering techniques. Note that Eq. (13.4.5) also reveals the

molecular-weight dependence of the diffusivity. In general, though, we can

rewrite Eq. (13.4.3) as follows:

D ¼ kT

f
ð13:4:6Þ

where f is the friction coefficient. This is the force needed to drag the diffusant

through the liquid at unit speed.

An example of the use of Eq. (13.4.6) is the prediction of the diffusion

coefficient of spheres moving through a constant-viscosity elastic liquid, [43],

(i.e., an extremely dilute polymer solution). Chhabra et al. have shown that sphere

drag decreases with increasing fluid elasticity so that [44]

f ¼ 6pZRXe ð13:4:7Þ
where Xe � 0:74 for highly elastic liquids. We would expect this to lead to a 35%

increase in the diffusivity compared to the situation for which Xe equals unity.

Indeed, Wickramasinghe et al. have found this to be the case [15]. For more

concentrated polymer solutions (where the solution viscosity differs significantly

from the solvent viscosity), the bulk or macroscopic viscosity of the surrounding

medium is not indicative of the actual flow resistance experienced by the solute.

This is because a solute sees a local environment of a sea of solvent with polymer

molecules serving merely to obstruct the motion of this particle in a minor way.

With reference to Eq. (13.4.7), therefore, it is the local or microscopic viscosity

that is relevant rather than the macroscopic viscosity [45].

In closing this section, we add that the Stokes–Einstein equation breaks

down when the ratio of the solute-to-solvent radius becomes less than 5. Errors

become quite large in high-viscosity solvents, and we find that the product DZ2=3

tends to become a constant [46].

13.5 DIFFUSION COEFFICIENT FOR NON-THETA
SOLUTIONS

In a good solvent, polymer coils expand, increasing the effective molecular

radius, which results in a lowering of the diffusion coefficient. Coil expansion is

usually expressed as follows [see Eq. (8.6.14)]:

hs2i ¼ a2hs2i0 ð13:5:1Þ
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where hs2i is the mean square radius of gyration under conditions of infinite

dilution. In view of Eqs. (13.4.4), (13.4.5), and (13.5.1),

D ¼ Dy

a
ð13:5:2Þ

where Dy is the infinite dilution diffusivity under theta conditions and a (the coil

expansion factor) may be either measured experimentally or estimated theoreti-

cally. To carry out the latter exercise, we can use the expression of Yamakawa and

Tanaka [47], in conjunction with intrinsic viscosity data represented in terms of

the Mark–Houwink–Sakurada expression. Further details are available in Ref. 42.

Because dilute polymer solutions are encountered more frequently than

infinitely dilute solutions, we need to be able to predict the diffusivity of dilute

solutions as well. The diffusion coefficient in a solution having a mass

concentration of polymer equal to r can be written in series form as follows [42]:

DðrÞ ¼ Dð1þ kDrþ � � �Þ ð13:5:3Þ
and the diffusion coefficient may increase or decrease relative to its value at

infinite dilution. In Eq. (13.5.3), kD is given as follows:

kD ¼ 2A2M � ks � b1 � 2v̂v20 ð13:5:4Þ
where A2 is the second viral coefficient,M is the polymer molecular weight, v̂v20 is

the partial specific volume of the polymer at zero polymer concentration, and ks is

a coefficient in a series expansion for the concentration dependence of the friction

coefficient:

f ¼ f0ð1þ ksrþ � � �Þ ð13:5:5Þ
Furthermore, b1 is defined by

v̂v1 ¼ v̂v01ð1þ b1rþ � � �Þ ð13:5:6Þ
in which v̂v1 is the partial specific volume of the solvent and v̂v01 is the specific

volume of the pure solvent.

In the preceding discussion, b1 and v̂v02 can be obtained from density

measurements, A2 is available in the literature for many polymer–solvent pairs,

and ks can be estimated by the procedures suggested by Vrentas and Duda [42].

13.6 FREE-VOLUME THEORY OF DIFFUSION IN
RUBBERY POLYMERS

As mentioned in Section 13.3.2, the diffusion coefficient of simple gases in

polymers above the glass transition temperature is independent of concentration
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and follows the Arrhenius relation. In addition, Henry’s law is obeyed, and

solubilities appear to be correlated by the following [48]:

ln S ¼ �4:5þ 10T 0

T
ð13:6:1Þ

where T 0 is the boiling point of the permeate and T is the temperature of interest.

Furthermore, the diffusivities of a number of gases in a variety of polymers can be

found in the literature as a function of temperature [49]. These factors make it

easy to estimate, using limited experimental data, the diffusional properties of a

gas in a given rubbery polymer [50]. For organic vapors, however, both the

solubility and diffusivity are strongly concentration dependent, and simple

correlations in terms of physical properties do not work [51]. Consequently, we

need a model to predict the concentration, pressure, and temperature dependence

of these quantities. The most successful model appears to be the free-volume

theory [42,52,53], which is valid in a temperature range from Tg to 100�C above

Tg, provided that the polymer weight fraction exceeds 0.2. Also, the polymer

relaxation time taken to be the ratio of the viscosity to the modulus must be small

in comparison to the characteristic time needed for diffusion. In this theory, the

mutual diffusion coefficient is related to the self-diffusion coefficient, which, in

turn, is expressed as a function of the free volume.

To understand free volume, consider Figure 13.11. At any temperature, the

volume V̂V occupied by unit mass of polymer equals the volume directly occupied

by the molecules plus V̂VF , the free volume. The latter quantity itself is made up of

the interstitial free volume V̂VF1 and the hole free volume V̂VFH . At 0K, there is no

free volume, so that

V̂V ð0Þ ¼ V̂V0 ð13:6:2Þ
where V̂V0 is the specific occupied volume.

On increasing the temperature above 0K, the volume increases by homo-

geneous expansion and by the formation of holes, which are distributed

discontinuously throughout the material at any instant. The former kind of

change is called the interstitial free volume, whereas the latter is called the

hole free volume. Thus, we have

V̂V ¼ V̂V0 þ V̂VFI þ V̂VFH ð13:6:3Þ
so that

V̂VFH ¼ V̂V � ðV̂V0 þ V̂VFIÞ ð13:6:4Þ
In this theory, it is assumed that the hole free volume can be redistributed with no

increase in energy and is, therefore, available for molecular transport. For a binary
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mixture of solute and solvent, the hole free volume per unit mass of the mixture is

taken to be

V̂VFH ¼ w1V̂VFH1 þ w2V̂VFH2 ð13:6:5Þ

where w1 and w2 are the solute and polymer mass fractions, respectively. By

postulating separate coefficients of thermal expansion for V̂V and V̂V0 þ V̂VF1 and

integrating the temperature rate of change of these quantities between Tg and T

[54], we can show that

V̂VFH1 ¼ K11ðK21 þ T � Tg1Þ ð13:6:6Þ
V̂VFH2 ¼ K12ðK22 þ T � Tg2Þ ð13:6:7Þ

in which the K terms are constants and the Tg terms are the respective glass

transition temperatures.

By appealing to the similarity in the behavior of the diffusion coefficient

and the reciprocal of the viscosity [see Eq. (13.4.3)] and by assuming that the

statistical redistribution of the free volume opens up voids large enough for

FIGURE 13.11 Illustration of the division of the specific volume of an amorphous

polymer. (From Vrentas, J. S., and J. L. Duda: ‘‘Molecular Diffusion in Polymer

Solutions,’’ AIChE J., vol. 25, 1–24. Reproduced with the permission of the American

Institute of Chemical Engineers Copyright # 1979 AIChE. All rights reserved.)
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diffusion to occur, Cohen and Turnbull obtained the following expression for the

self-diffusion coefficient of low-molecular-weight materials [55]:

D1 / exp � gv1*
VþFH

� �
ð13:6:8Þ

in which g is a constant, v1* is the critical hole free volume needed for a molecule

to jump into a new position, and VþFH is the hole free volume per molecule. In

order to obtain better agreement with experimental data, Macedo and Litovitz

[56] multiplied the right-hand side of Eq. (13.6.8) by expð�E*=kT Þ, where E* is

the energy needed by a molecule to overcome attractive forces holding it to its

neighbors. For a component in a binary mixture of polymer 2 and solvent 1, this

implies that the self-diffusion coefficient is as follows:

D1 ¼ D0 exp �
E

RT

� �
exp � g½w1V̂V

0
1 ð0Þ þ w2xV̂V

0
2 ð0Þ�

V̂VFH

 !
ð13:6:9Þ

where

E ¼ molar energy needed to overcome attractive forces

x ¼ ratio of critical volume of solvent to that of polymer segment

V̂V 0
1 ð0Þ ¼ occupied volume per gram of solvent

V̂V 0
2 ð0Þ ¼ occupied volume per gram of polymer

V̂VFH ¼ hole free volume per gram of mixture

g;D0 ¼ constant

Finally, following Bearman [57], Duda et al. [58] have shown that when the

self-diffusion coefficient of the solvent greatly exceeds that of the polymer (this is

generally the case) and provided that w1 < 1, the binary diffusion coefficient D

could be related to the self-diffusion coefficient as follows:

D ¼ r2V̂V2r1D1

RT

@m1
@r1

� �
T ;P

ð13:6:10Þ

where r1 and r2 are the mass densities of the two components, V̂V2 is the partial

specific volume of the polymer, and m1 is the chemical potential of the solvent

(see Chapt. 9). The term m1 is given by the Flory–Huggins theory as follows:

m1 ¼ m01 þ RT ½lnð1� f2Þ þ w1f
2
2 þ f2� ð9:3:30Þ
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where 1=m has been neglected in comparison with unity. Combining the previous

three equations gives the desired result [59]:

D ¼ D0 exp � E

RT

� �
 �
ð1� f1Þ2

� ð1� 2w1f1Þ exp
�g½w1V̂V

0
1 ð0Þ þ w2xV̂V

0
2 ð0Þ�

V̂VFH

 !
ð13:6:11Þ

where the solvent volume fraction is given by

f1 ¼
w1V̂V

0
1

w1V̂V
0
1 þ w2V̂V

0
2

ð13:6:12Þ

in which V̂V 0
1 and V̂V 0

2 are the specific volumes of the pure components at the

temperature of interest.

By examining Eqs. (13.6.5)–(13.6.7) and (13.6.11) and (13.6.12), we find

that the variation of D with temperature and composition is known once the

following 12 quantities are known: D0, E, w1, V̂V
0
1 ð0Þ, V̂V 0

2 ð0Þ, x, K11=g, K12=g,
K21 � Tg1, K22 � Tg2, V̂V

0
1 and V̂V 0

2 . Of these, V̂V
0
1 ð0Þ and V̂V 0

2 ð0Þ can be obtained

using a group contribution method [60], whereas V̂V 0
1 and V̂V 0

2 are obtained from

pure-component density data. Also, K12=g and K22 � Tg2 are estimated from

polymer viscosity data because the polymer viscosity Z2 can usually be repre-

sented in the form

ln Z2 ¼ lnA2 þ
gV̂V 0

2 ð0Þ=K12

K22 þ T � Tg2
ð13:6:13Þ

where A2 is a constant. K11=g and K21 � Tg1 are obtained from solvent viscosity

data using an identical procedure. The interaction parameter w1 is determined

using techniques discussed in Chapter 9. This leaves three unknowns �D0, E,

and x. These are evaluated with the help of at least three data points known at two

or more temperatures.

This process has been illustrated by Duda et al. for a variety of polymers

[59] and Figure 13.12 shows the predictive abilities of their theory for the

toluene–polystyrene system. Parameter values used are listed in Table 13.1. The

results obtained are excellent. These authors also note that the diffusion

coefficient given by Eq. (13.6.11) is insensitive to polymer molecular weight,

and there is, therefore, no influence of polydispersity. Furthermore, for semi-

crystalline polymers above the glass transition temperature, the polymer may be

considered to be made up of two phases—one of which has a zero diffusivity

[51]. Thus, if the volume fraction of the crystalline phase is f, the effective

diffusivity of the polymer is Df. Finally, Kulkarni and Mashelkar [63] have

proposed an altered free-volume-state model that seeks to provide a unified
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framework for diffusion in polymer solutions, polymeric gels, blends of polymer

melts, and structured solid polymers.

13.7 GAS DIFFUSION IN GLASSY POLYMERS

The diffusion behavior of simple gases (i.e., gases above the critical temperature)

in glassy polymers is often quite different from the behavior of the same gases in

the same polymers but above the polymer glass transition temperature [64]. In

particular, gas solubility shows negative deviations from Henry’s law, and the

dissolution process is much more exothermic in glassy polymers. These and other

FIGURE 13.12 Test of predictive capabilities of free-volume theory using data for the

toluene-polystyrene system. Only data points represented by solid symbols were used to

obtain free-volume parameters. (From Duda, J. L., J. S. Vrentas, S. T. Ju, and H. T. Liu:

‘‘Prediction of Diffusion Coefficients for Polymer-Solvent Systems,’’ AIChE J., vol. 28, pp.

279–285. Reproduced with the permission of the American Institute of Chemical

Engineers Copyright # 1982 AIChE. All rights reserved.)
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anomalies have been reviewed by several authors [64–66], and they can be

reconciled with the help of the dual-sorption theory [65].

The basic premise of the dual-sorption theory is that a glassy polymer

contains microvoids, or holes created during the process of cooling the polymer

below its glass transition temperature. Therefore, gas molecules can either

dissolve in the bulk polymer or go into these holes. Consequently, glassy

polymers have a high gas solubility due to the availability of dual-sorption

modes. It is found that gas dissolution in the matrix follows Henry’s law, whereas

that in the holes displays a Langmuir-type dependence. Thus, at equilibrium, the

total gas concentration in the polymer can be separated into a normal sorption

term cD and a hole contribution cH [65]:

c ¼ cD þ cH ð13:7:1Þ
where

cD ¼ kDp ð13:7:2Þ
which is similar to Eq. (13.3.13), with kD being Henry’s law constant. The term

cH in Eq. (13.7.1) is given as follows:

cH ¼
c0Hbp
1þ bp

ð13:7:3Þ

in which cH is called the hole-saturation constant and b is called the hole-affinity

constant.

TABLE 13.1 Parameters of Free-Volume

Theory for the Toluene (1)–Polystyrene (2)

System

Parameter Value

V̂V 0
1 ð0Þ 0:917 cm3g

V̂V 0
2 ð0Þ 0:850 cm3=g

K11=g 2:21� 10�3 cm3=gK
K12=g 5:82� 10�4 cm3=g K

K21 � Tg1 �103 K

K22 � Tg2 �327 K

w1 0.40

x 0.53

D0 6:15� 10�2 cm2=sec
E 5:26� 103 cal=g mol

V̂V 0
1 versus T Data in Ref. 61

V̂V 0
2 versus T Data in Ref. 62

Source: Ref. 59.

Polymer Di¡usion 553

Copyright © 2003 Marcel Dekker, Inc.



From Eq. (13.7.3), we note that when bp� 1, we have

c ¼ ðkD þ c0HbÞp ð13:7:4Þ
and when bp� 1, we have

c ¼ kDpþ c0H ð13:7:5Þ
so that a plot of c versus p at constant temperature consists of straight-line

sections, at both low and high pressures, connected by a nonlinear region. This is

shown in Figure 13.13 using the solubility data of methane in glassy polystyrene

[67].

In view of the foregoing, kD can be obtained from the slope of the sorption

isotherm at high pressures. A knowledge of kD then allows us to calculate cH
from c, and this leads to an evaluation of the other two model parameters by

recasting Eq. (13.7.3) as follows:

p

cH
¼ 1

c0Hb
þ p

c0H
ð13:7:6Þ

so that c0H and b can be determined from the slope and intercept of the straight-

line plot of p=cH versus p.

FIGURE 13.13 Solubility of methane in oriented polystyrene. (Reprinted from J.

Membrane Sci., vol. 1, Vieth, W. R., J. M. Howell, and J. H. Hsieh: ‘‘Dual Sorption

Theory,’’ pp. 177–220, 1976 with kind permission from Elsevier Science—NL. Sara

Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.)
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As far as the rate of penetrant transport through glassy polymers is

concerned, it is assumed that material contained in the microvoids or holes is

completely immobilized and does not contribute to the diffusive flux. It is further

assumed that diffusion of the mobile species follows Fick’s first law in terms of

the concentration gradient of cD and a constant diffusivity. Thus, the flux in the x

direction is

J ¼ �D @cD
@x

ð13:7:7Þ

which when coupled with a mass balance leads to an analogous form of Eq.

(13.2.11):

@

@t
ðcD þ cH Þ ¼ D

@2cD
@x2

ð13:7:8Þ

If we assume that there is local equilibrium between the dissolved (mobile)

species and the immobilized species, we can eliminate p between Eqs. (13.7.2)

and (13.7.3) to obtain a relation between cH and cD:

cH ¼
ðc0Hb=kDÞcD
1þ ðbcD=kDÞ

ð13:7:9Þ

which can be substituted into Eq. (13.7.8) to give a nonlinear partial differential

equation involving cD as the only dependent variable:

1þ c0H ðb=kDÞ
½1þ ðb=kDÞcD�2

� �
@cD
@t
¼ D

@2cD
@x2

ð13:7:10Þ

There is no analytical solution to this equation. However, the nonlinearities

disappear at both sufficiently low and sufficiently high pressures (see Example

13.7). Thus, we can obtain the diffusion coefficient D by conducting transient

experiments under these conditions or by carrying out steady-state experiments.

For the general case, though, Eq. (13.7.10) has to be solved numerically, and this

is likely to be the situation in most cases of practical interest.

Example 13.7: If we use Eq. (13.3.19) to determine the diffusion coefficient at

low gas pressures in the presence of a dual-sorption mechanism, will the

measured value equal the quantity D that appears in Eq. (13.7.10)?

Solution: At very low pressures, cH is equal to c0Hbp, which, in combination

with Eq. (13.7.2), means that

cH ¼
c0Hb
kD

cD
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When this result is introduced into Eq. (13.7.8), we find that

@cD
@t
¼ D

1þ ðc0Hb=kDÞ
@2cD
@x2

and it is clear that the measured diffusion coefficient will be less than D and will

equal D=ð1þ c0Hb=kDÞ.
Equation (13.7.10) was solved numerically by Subramanian et al. to predict

the increase in mass of a membrane of thickness 2L, initially free of solute, and

exposed to a gas pressure such that the concentration at x ¼ �L instantly reached

a constant value c1 [68]. Computations in terms of Mt=M1 [see also Eq.

(13.3.19)] versus
ffiffi
t
p

were compared with experimental data available in the

literature on the absorption of water vapor into a polyimide film. Excellent

agreement was found between the two sets of numbers when independently

measured values of b, c0H , and kD were used in Eq. (13.7.10). The results are

shown in Figure 13.14.

In closing this section, it should be noted that the dual-sorption theory has

relevance to gas separation by glassy polymers, dyeing of textile fibers, design of

pressurized plastic beverage containers, and other applications [65].

FIGURE 13.14 Fractional absorption of water vapor in Kapton1 polyimide at 30�C:
membrane thickness d ¼ 5� 10�3 cm (2.0 mils); pressure p ¼ 9:55 cmHg. (From Ref.

68). From J. Polym. Sci. Polym. Phys. Ed., vol. 27, Subramanian, S., J. C. Heydweiller, and

S. A. Stern: Dual-mode sorption kinetics of gases in glassy polymers, Copyright # 1989

by John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.
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13.8 ORGANIC VAPOR DIFFUSION IN GLASSY
POLYMERS: CASE II DIFFUSION

Organic vapors often interact with polymers and cause them to swell. When

sorption and diffusion take place below the polymer glass transition temperature,

the rigidity of the polymer chains implies that a significant amount of time is

needed before even the surface concentration of the penetrant reaches its

equilibrium value. In other words, there are time-dependent effects that result

from the polymer relaxation time being comparable to the time scale of diffusion.

When polymer relaxation effects dominate the process of vapor transport, the

diffusion process becomes quite non-Fickian. This is seen most clearly in a

sorption experiment. Based on Eq. (13.3.19), we would expect the initial weight

gain M ðtÞ of a glassy polymer sheet exposed to an organic vapor to follow the

expression

M ðtÞ ¼ btn ð13:8:1Þ

where n is equal to 0.5, t is time, and b is a constant. Instead, we find that n equals

unity. This extreme of anomalous behavior has been called case II diffusion [69],

as opposed to the expected situation with n equal to 0.5, which is termed case I

diffusion.

Another aspect of case II diffusion is that there is a sharp boundary

separating the inner glassy core of the polymer from the outer solvent-swollen

rubbery shell [64,69]. Furthermore, as diffusion proceeds inward, the boundary

between the swollen gel and the glassy core moves at constant velocity; this has

been determined with optical experiments [70]. Thomas and Windle, for

example, studied the weight gain of sheets of polymethyl methacrylate (see

Fig. 13.15) suspended in a bath of methanol at 24�C [70,71]. They also observed

the movement of the methanol front by coloring the methanol with iodine. Some

of their results are shown in Figure 13.16, and these reveal a linear weight gain

and a linear front velocity. Note that front penetration is represented two ways in

Figure 13.16: (1) by the distance l from the surface of the swollen polymer to the

advancing front and (2) by the distance d from the original position of the

specimen surface to the front (see Fig. 13.15). Additional optical densitometer

experiments demonstrated the existence of step concentration profiles with

negligible concentration gradients behind the advancing fronts [70]. Birefrin-

gence measurements also indicated that swollen material deformed mechanically

by stretching in a direction normal to the front.

Although a large number of theories have been advanced to explain case II

diffusion (see articles cited in the literature [64,72], the most successful one

appears to be the model of Thomas and Windle [72,73]. Here it is assumed that

the volume fraction f of penetrant in the polymer depends on time and only one

spatial direction x; that is, f ¼ fðx; tÞ. The driving force for diffusion is the
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difference in concentration ðfe � fÞ across the rubbery–glassy interface, where

fe is the equilibrium value of f. This concentration difference results in an

osmotic pressure difference p, which is resisted by the polymer chains on the

glassy side of the interface. With time, solute molecules penetrate into the glassy

portion, polymer chains relax, and the osmotic pressure difference reduces

consequent to a reduction in the concentration difference. Writing an equation

for this mechanical equilibrium gives a relation for the time rate of change of f at

a fixed position.

As shown in Section 8.3 of Chapter 8, the osmotic pressure of an ideal

polymer solution having solvent mole fraction x1 is �ðRT=v1Þ ln x1, where v1 is

the molar volume of the solvent. Consequently, the osmotic pressure difference

between two solutions having solvent volume fractions f and fe is given as

follows:

p ¼ RT

v1
ln

fe

f

� �
ð13:8:2Þ

FIGURE 13.15 Diagram defining the two front penetration parameters l and d. (A),

swollen region; (B), glassy region; (– – –), original position of surfaces; (C, D), penetrating

fronts. (Reprinted from Polymer, vol. 19, Thomas N., and A. H. Windle: ‘‘Transport of

Methanol in Poly(Methyl Methacrylate),’’ pp. 255–265, Copyright 1978, with kind

permission from Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington OX5

1GB, UK.)
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FIGURE 13.16 Data at 24�C for 1-mm (nominal) sheet (actual average thickness

1.18mm). (a) Weight gain=unit area versus time. (b) Penetration as represented by both l

(A) and d (B) versus time. (Reprinted from Polymer, vol. 19, Thomas N., and A. H.

Windle: ‘‘Transport of Methanol in Poly(Methyl Methacrylate),’’ pp. 255–265, Copyright

1978, with kind permission from Elsevier Science Ltd., The Boulevard, Langford Lane,

Kidlington OX5 1GB, UK.)
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We would expect that the time rate of change of f would be directly proportional

to p but inversely proportional to the viscous resistance of the polymer chains.

Thus, we have the following:

@f
@t
¼ p

Z
ð13:8:3Þ

Because polymer chains deform perpendicular to surfaces of constant f,
the relevant viscosity Z in Eq. (13.8.3) is the extensional viscosity (see Chap. 14),

which can be taken to be independent of the deformation rate at low rates of

deformation. The extensional viscosity will, however, depend strongly on f,
especially because the polymer goes from the glassy to rubbery state in a very

narrow region. If one assumes that

Z ¼ Z0 expð�mfÞ ð13:8:4Þ
where Z0 and m are constants, then a combination of the previous three equations

yields

@f
@t
¼ RT

v1Z0
expðmfÞ ln fe

f

� �
ð13:8:5Þ

which can be rearranged to yield

t ¼ v1Z0
RT

ðfe

f0

expð�mfÞ
lnðfe=fÞ

df ð13:8:6Þ

and integrated numerically. Computations done in this manner do a fair job of

explaining data for the change in surface concentration of polystyrene exposed to

n-iodohexane vapor [74].

To obtain the concentration profile fðx; tÞ throughout the polymer, we can

numerically solve Eq. (13.2.11) with Eq. (13.8.5) as a boundary condition and

with a diffusion coefficient that depends on f [75]. Results predict the correct

front velocity and concentration profiles. One of the major applications of this

work is to polymer debonding and dissolution in photolithography [76]. It should

be noted that a possible consequence of the conversion of a glassy polymer to the

rubbery state due to sorption of low-molecular-weight solutes is crystallization of

the swollen polymer. This complicated situation, which involves coupled diffu-

sion, swelling, and crystallization, has been analyzed in the literature. The reader

is referred to the comprehensive work of Kolospiros et al. for details [77].

13.9 POLYMER^POLYMER DIFFUSION

The diffusion coefficient relevant for diffusion in polymer melts is the self-

diffusion coefficient [78]. It influences the kinetics of mass-transfer-controlled
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bulk polymerization reactions, and in injection molding it determines the extent

of healing of weld lines, which result from the merging of two streams of the

same polymer (see Chap. 15). If polymer molecules in a polymer melt moved in

an unhindered manner, we would expect that the self-diffusion coefficient would

be given by

D ¼ kT

f
ð13:4:6Þ

with f replaced by Zz, where n is the number of monomers in the polymer and z is
the friction experienced by each monomer (see Chap. 14). Because n equals

M=M0, the ratio of polymer to monomer molecular weight, we expect the

following relation [78]:

D ¼ kTM

z

� �
M�1 ð13:9:1Þ

This inverse relationship between the diffusion coefficient and the mole-

cular weight is, however, not observed, because at large values of M , polymer

molecules are thoroughly entangled with each other [79,80]. Consequently, the

diffusion coefficient reduces much more rapidly with increasing molecular

weight. To predict this behavior, we need a model of how polymer molecules

move within an entangled polymer melt. The most successful model, to date,

appears to be the reptation model of de Gennes [81,82].

The reptation model (see the very readable review by Osaki and Doi [83]

assumes that a given polymer chain faces a number of fixed obstacles in its quest

to move within the network of chains. As shown in Figure 13.17, the polymer

molecule of interest (represented by a solid line) looks upon the other macro-

molecules (denoted here by circles) as uncrossable constraints. Consequently, it

can move easily along the chain axis but almost not at all in a direction

perpendicular to itself. It, therefore, acts as though it is confined within a tube

(the dashed region in Figure 13.17). All it can do is slither like a snake (i.e.,

‘‘reptate’’) along the tube axis, and this is how it diffuses from one position in the

melt to another. Within the confines of the tube, though, its behavior is like that of

a freely jointed chain.

To make further progress, we need to relate the distance moved by a

molecule in a specified amount of time under the influence of a concentration

gradient in a single direction. This can be done as shown in Figure 13.18 [39]. If

molecules move a distance d at one time and take time t to do so, then, during

this time interval, the plane at x can be reached by molecules lying anywhere

between x� d and xþ d. Because a molecule can move either in the positive x
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direction or in the negative x direction, the net flux in the positive x direction

across the plane at x is given by

Flux ¼ 1

2t
dcA x� d

2

� �
� dcA xþ d

2

� �
 �
¼ d2

2t
dcA

dx
ð13:9:2Þ

FIGURE 13.17 Reptation in a polymer melt.

FIGURE 13.18 Model of the diffusion process.
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Comparing Eqs. (13.9.2) and (13.2.1) gives us

D ¼ d2

2t
ð13:9:3Þ

Returning to the problem of polymer reptation, we find, using Eq. (13.9.3), that

the time needed for the chain to diffuse out of the constraining tube is given by

t ¼ L2

2D
ð13:9:4Þ

in which L is the tube length, which also equals the contour length of the polymer.

Viewed from afar, though, the polymer molecule as a whole translates a

distance R during the same time interval (see Fig. 13.19) [78]. Thus, the ordinary

self-diffusion coefficient of the polymer De [using Eq. (13.9.3)] is given by

De ¼
R2

2t
ð13:9:5Þ

which, in view of Eq. (13.9.4), becomes

De ¼ D
R2

L2
ð13:9:6Þ

Now, from Section 10.2 of Chapter 10, R2 ¼ nl2 and L2 ¼ n2l 2, giving

De ¼
D

n
ð13:9:7Þ

Because D / M�1 [see Eq. (13.9.1)] and n / M, we have the following:

De / M�2 ð13:9:8Þ
This simple relationship has been amply verified [84] and attests to the

accuracy of the basic physics of the reptation model [21,22,84]. Figure 13.20

shows the data of Klein on the variation of the self-diffusion coefficient of

polyethylene with molecular weight [84]; it is found that De / M 2�0:1. Techni-

FIGURE 13.19 The tube curvilinear length L is much larger than the end-to-end

distance R. (From Ref. 78.)
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ques of measurement, available data, and potential applications have been

reviewed by Tirrell [85]. Graessley has used the Doi–Edwards theory [86] of

polymer viscoelasticity to obtain, in terms of easily measurable quantities, an

expression for the constant of proportionality in Eq. (13.9.8) [87]. This expres-

sion predicts, to within a factor of 1.3, the correct magnitude of the data presented

in Figure 13.20. Finally, because we still expect the product of the diffusion

coefficient and the zero shear viscosity to be essentially constant, the temperature

dependence of the diffusion coefficient should be of the Arrhenius form.

13.10 CONCLUSION

In this chapter, we have examined the fundamental equations of mass transfer in

binary mixtures, and these involve the mutual diffusion coefficient. We have also

FIGURE 13.20 The variation of �DD with Mw for deuterated polyethylene diffusing in a

protonated polyethylene matrix, at a diffusion temperature of 176:0� 0:3�C. Each point

represents a separate experiment and is the mean of 10 separate profiles. The lengths of

experimental runs (tD) vary by a factor of 
 3 within each pair of experiments for a given

DPE fraction. The least-squares best fit to the data is the relation �DD ¼ 0:2 M�2:0�0:1w and is

shown. (Reprinted with permission from Nature, vol. 271, Klein, J.: ‘‘Evidence for

Reptation in an Entangled Polymer Melt,’’ Copyright 1978 Macmillan Magazines

Limited.)
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presented the basics of the standard techniques used to measure the diffusion

coefficient in polymeric systems. Finally, we have looked at the various theories

that explain the dependence of the diffusion coefficient on variables such as

concentration, temperature, and molecular weight. We have, however, quite

intentionally not covered the solution of the mass transport equations when

applied to situations of technological interest. Doing this would have made the

chapter unmanageably long without contributing significantly to our understand-

ing of polymer physics. In addition, excellent books already exist that do exactly

this [13,88]. We have also omitted a detailed discussion of composite materials

that typically employ thermosets as the matrix material. Fiber-reinforced plastics

are increasingly being used as structural materials in the construction industry; a

major barrier to their further widespread use is an incomplete understanding of

the influence of environmental effects [89], especially moisture diffusion, on the

mechanical properties and durability of such composites [90]. This chapter ought

to provide adequate background for someone interested in reading further on

diffusion in composites.
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PROBLEMS

13.1. Ten grams of polystyrene of 300,000 molecular weight is mixed with 90 g

of benzene. If the density of the polymer is 1.05 g=cm3 and that of the

solvent is 0.9 g=cm3, determine the polymer concentration in (a) g=cm3

( b) g mol=cm3. Also calculate the polymer mass fraction and the polymer

mole fraction.

13.2. Consider the steady-state, one-dimensional diffusion of a vapor through a

polymer membrane of thickness L. If the molar concentration of the solute
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at x ¼ 0 is c1 and that at x ¼ L is c2 (see Fig. 13.4), determine the molar

flux in terms of known quantities. It is known that the diffusion coefficient

varies with concentration as

D ¼ D0ð1þ acAÞ
where D0 and a are constants.

13.3. If the mutual diffusion coefficient depends on concentration, show that the

appropriate form of Fick’s second law for one-dimensional diffusion is as

follows:

@cA
@t
¼ @

@z
DABðcÞ

@cA
@x

� �
Also show that the use of a new independent variable Z ¼ zta, where a is a

constant, converts this equation into an ordinary differential equation.

What numerical value of a does one need to use?

13.4. If the experiment described in Example 13.2 is allowed to run for a total

of 4 hr, what will be the fractional change in the concentration driving

force (c2 � c1) over the course of the experiment? Assume that

V1 � V2 ¼ 20 cm3.

13.5. Fill in the missing steps in going from Eq. (13.3.7) to Eq. (13.3.8).

13.6. In Example 13.3, how many moles of the diffusing species are transferred

across unit area of the plane at z ¼ 0 in time t?

13.7. Apply the results of Problem 13.3 to a free-diffusion experiment in which

DAB ¼ DABðcÞ and c1ð0Þ ¼ 0 and show that, at any instant t,

DABðcÞ ¼ �
1

2t

@z

@c

� �ðc
0

z dc

[Hint: You will need to use the fact that at z ¼ 1 or Z ¼ 1, both c and

dc=dZ are zero.)

13.8. If we assume that the refractive index n of a solution is linearly

proportional to the concentration, show that Eq. (13.3.8) becomes

n� n2ð0Þ ¼
n1ð0Þ � n2ð0Þ

2
ð1� erf xÞ ðiÞ

where z is now measured positive downward.

Tsay and McHugh have shown that fringes of varying intensity can

be obtained if a collimated light beam of wavelength l was passed

through the free-diffusion cell of thickness o [91]. The refractive index nm
corresponding to the minimum light intensity is

nm � n2ð0Þ ¼
ml
o

ðiiÞ
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where m is an integer. Thus, if we measure the variation with time of the

location zm of a specific fringe of constant m value (say, unity), x will be

constant because n will remain unchanged at value n1 (i.e., nm evaluated at

m ¼ 1).

Tsay and McHugh have shown that for the system dimethyl

formamide (DMF) in water, containing 0.635 volume fraction water, z21
equaled 6:766� 10�5t cm2 [91]. If n1ð0Þ � n2ð0Þ is 0.005, l is 632.8 nm,

and o is 4 mm, what is the value of the mutual diffusion coefficient?

[Hint: Equate the right-hand side of Eq. (i) to the right-hand side of Eq.

(ii) with m ¼ 1.]

13.9. Use the Stokes–Einstein equation to predict the diffusivity of a chlorine

ion at 25�C in a sugar solution of 3.7 P viscosity. Assume that the radius

of the ion can be taken to equal 1:8� 10�8 cm [15].

13.10. Wickramasinghe et al. used the open-ended capillary to independently

measure the diffusivity of the Cl� ion of Problem 13.9 [15]. In this

experiment, Dt=4L2 was approximately 0.002. Estimate the time scale of

the experiment if L was 2 cm.

13.11. Oship measured the steady-state rate of permeation of CO2 gas at 155
�C

through a glassy polyimide film [92]. The membrane area was 7.197 cm2

and the thickness was 0.0025 cm. When the pressure difference across the

membrane was 80 cmHg, the steady-state molar flow rate was

2:055� 10�9 g mol=sec. Determine the permeability in barrers where 1

barrer ¼ 10�10 cm3 (STP)=(cm sec cm of Hg).

13.12. Show that if all the clay platelets in Figure 13.6 are uniformly distributed,

are aligned parallel to each other, and are square in shape, with thickness

h and edge L, then the permeability P of the nanocomposite, in a direction

perpendicular to the faces, is given by [93]

P

Pp

¼ 1

1þ ðL=2hÞf

in which Pp is the permeability of the unfilled polymer and f is the

volume fraction of filler.

13.13. Calculate the diffusivity of CO2 in polypropylene at 224�C if the

corresponding value at 188�C is 4:25� 10�5 cm2=sec [88]. The activa-

tion energy is 3 kcal=mol.

13.14. Arnould and Laurence found that a straight-line plot was obtained when

the logarithm of the self-diffusion coefficient of acetone in polymethyl

methacrylate was plotted against ðK22 þ T � Tg2Þ�1 at temperatures close

to the Tg of the polymer and at small values of the mass fraction of

acetone [94]. Show that this behavior is consistent with the free-volume
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theory in general and with Eq. (13.6.9) in particular. What is the physical

significance, if any, of the slope and intercept of such a plot?

13.15. Use the data given in Figure 13.13 to obtain the parameters kD, C
0
H , and b

for the methane–polystyrene system at 25�C.
13.16. If we use Eq. (13.3.19) to determine the diffusion coefficient at high gas

pressures in the presence of a dual-sorption mechanism, will the measured

value equal the quantity D that appears in Eq. (13.7.10)?

13.17. Show that the solution to Eq. (13.3.7) subject to cð0Þ ¼ cs and cð1Þ ¼ 0,

is as follows,

cðz; tÞ
cs
¼ 1� erf

z

2
ffiffiffiffiffiffiffiffiffiffi
DABt
p

� �
and thus determine the time required for one polymer melt to interdiffuse

into another polymer melt such that c=cs equals 0.48 at a distance of 1mm

from the interface. Let DAB be 10�10 cm2=sec.
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14

Flow Behavior of Polymeric Fluids

14.1 INTRODUCTION

In order to use polymers (whether available in the form of pellets or as melt from

a polymerization reactor), the material has to be converted into useful shapes such

as fibers, films, or molded articles. This is done using unit operations such as fiber

spinning and injection molding, which are analyzed in detail in Chapter 15. Here,

we simply mention that flow is an integral part of any shaping operation, and,

very frequently, it is useful to know quantities such as the pressure drop needed to

pump a polymeric fluid at a specified flow rate through a channel of a given

geometry. The answer is easy to obtain if we are working with low-molecular-

weight liquids that behave in a Newtonian manner; all we need, by way of

material properties, is information about the temperature dependence of the shear

viscosity. If the process is isothermal, the shear viscosity is a constant and it can

be measured in any one of several ways. Polymer melts and solutions, however,

have a steady shear viscosity that depends on the shear rate. Therefore, it is a

material function rather than a material constant. For polymeric fluids the typical

shape of the steady shear viscosity curve as a function of shear rate is shown in

Figure 14.1. At steady state, the viscosity is constant at low shear rates. It usually

decreases with increasing shear rate and often becomes constant again at high

shear rates. There is, therefore, a lower Newtonian region characterized by the

zero shear rate viscosity Z0 and an upper Newtonian region characterized by an
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infinite shear viscosity Z1. Between these two regions, the viscosity versus shear

rate behavior can usually be represented as a straight line on logarithmic

coordinates—this is the power-law region.

In the foregoing, we have been careful to append the word ‘‘steady’’ to the

shear viscosity. Unlike with Newtonian liquids, the shear stress takes some time

to reach a steady value upon inception of shear flow at a constant shear rate. This

is sketched in Figure 14.2, which shows that the shear stress can also overshoot

the steady-state value. Polymeric fluids are therefore non-Newtonian in the sense

that the shear viscosity depends on both shear rate and time. Obtaining the

pressure drop corresponding to a given flow rate is, consequently, a slightly more

complicated process.

FIGURE 14.1 Qualitative behavior of the steady shear viscosity of polymeric fluids.

FIGURE 14.2 Start-up and shutdown of shearing at constant shear rate.
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A shear-thinning viscosity is not the only non-Newtonian feature of the

behavior of polymeric fluids; several other unusual phenomena are observed. If,

in the situation depicted in Figure 14.2, the shear rate is suddenly reduced to zero

after the attainment of a steady state, low- and high-molecular-weight liquids

again behave differently. The stress in the Newtonian fluid goes to zero instantly,

but it takes some time to disappear in the polymer. The time scale over which this

stress relaxation occurs is known as the relaxation time and is denoted by the

symbol y. Additionally, if a small-amplitude sinusoidal strain is imposed on the

polymer, the resulting stress is neither in phase with the strain nor out of phase

with the strain: There is an out-of-phase component representing energy dissipa-

tion and an in-phase component representing energy storage (see Sect. 12.4).

Both stress relaxation and the phase difference in dynamic experiments are elastic

effects; we say that the polymers are both viscous and elastic (i.e., viscoelastic).

In time-dependent flow, the relative extent of these two effects depends on the

value of the dimensionless group known as the Deborah number (De) and defined

as follows:

De ¼ y
T

ð14:1:1Þ

where T is the characteristic time constant for the process of interest. For low

values of De, the polymer response is essentially liquidlike (viscous), whereas for

high values, it is solidlike (elastic). A further manifestation of viscoelasticity is

the swelling of a jet of polymer on emerging from a ‘‘die’’ or capillary. This is

shown in Figure 14.3. Die swell, or jet swell, can be such that Dj=D easily

exceeds 2; the corresponding Newtonian value is 1.13. This is true at very low

flow rates. At high flow rates, die swell reduces but unstable behavior called melt

fracture can occur. The jet can become wavy or the surface can become grossly

distorted, as sketched in Figure 14.4; the extent of distortion is also influenced by

the geometry of the capillary, its surface character, and the properties of the

polymer. Note that melt fracture is never observed with Newtonian liquids.

The phenomena just described are interesting to observe and explain. A

quantitative description of them is, however, essential for developing models of

FIGURE 14.3 The die-swell phenomenon.
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various polymer processing operations. Some of these models are discussed in

Chapter 15, and these are based on the conservation principles of mass,

momentum, and energy, together with appropriate constitutive equations and

boundary conditions. They are useful for process optimization and for determin-

ing the effect of the various material, geometrical, and processing variables on the

properties of the polymeric product. The models also allow us to relate

performance variables to machine variables. They are also useful for predicting

the onset of flow instabilities. In this chapter, though, we describe methods of

measuring the stress response of polymeric fluids in well-characterized flow

situations, present the associated methods of data analysis, and give typical

results. This naturally leads to a discussion of theories available to explain the

observed behavior in terms of material microstructure and to methods of

mathematically representing the stress–deformation relations or constitutive

behavior. This is the realm of rheology, wherein we examine both polymer

solutions and polymer melts. Note that, at a less fundamental level, these

measurements can be employed for product characterization and quality-control

purposes. A succinct treatment may be found in Ref. [1].

14.2 VISCOMETRIC FLOWS

The flow field that is generated in most standard instruments used to measure

rheological or flow properties is a particular kind of shear flow called viscometric

flow. All of the motion in a viscometric flow, whether in Cartesian or curvilinear

coordinates, is along one coordinate direction (say, x1 in Fig. 14.5), the velocity

varies along a second coordinate direction (say, x2), and the third direction is

neutral. An illustration of this, shown in Figure 14.5, is the shearing of a liquid

between two parallel plates due to the motion of one plate relative to the other.

The velocity gradient or shear rate, _gg, then is dv1=dx2, where v1 is the only

nonzero component of the velocity vector. If the shear rate is independent of

position, the flow field is homogeneous and the components of the extra stress

[see Eq. (10.5.6) of Chap. 10] are also independent of position. This is intuitively

obvious (the extra stress depends on the rate of shear strain), and because the

shear rate is the same everywhere, so must be the extra stress. This fact is used to

FIGURE 14.4 Extrudate melt fracture.
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great advantage in several viscometers or rheometers, as such instruments are

called.

As discussed in Section 10.5, there are, in general, only six independent

stress components. For a Newtonian liquid, these can be evaluated using

Newton’s law of viscosity,

Tij ¼ tij ¼ Z
@vi
@xj
þ @vj

@xi

 !
ð14:2:1Þ

provided that i 6¼ j and

Tii ¼ �pþ tii ¼ �pþ 2Z
@vi
@xi

ð14:2:2Þ

in which both i and j can be 1, 2, or 3. For the situation depicted in Figure 14.5,

therefore, only t12 is nonzero for a Newtonian liquid. For polymeric fluids, we

can use symmetry arguments and show that t13 and t23 are still zero [2], but the

normal stresses tii can be nonzero. Furthermore, if the tii exist, they are even

functions of the shear rate. The shear stress, however, is an odd function. Now,

note that due to incompressibility, p is indeterminate and we cannot obtain tii
from a measurement of Tii. However, p can be eliminated if we take stress

differences. We can, therefore, define the first and second normal stress differ-

ences as follows:

N1ð_ggÞ ¼ T11 � T22 ¼ t11 � t22 ð14:2:3Þ
N2ð_ggÞ ¼ T22 � T33 ¼ t22 � t33 ð14:2:4Þ

and these must depend uniquely on the shear rate _gg, because each of the extra-

stress components is a unique function of _gg.
The existence of a positive first normal stress difference during shear flow

can be used to explain die swell. If the fluid being sheared between parallel plates

in Figure 14.5 were to emerge into the atmosphere, T11 would obviously equal

FIGURE 14.5 Viscometric flow in rectangular Cartesian coordinates.

Flow Behavior of Polymeric Fluids 577

Copyright © 2003 Marcel Dekker, Inc.



�pa, where pa is atmospheric pressure and is a compressive stress. A positive first

normal stress difference would then imply that T22 is negative (compressive) and

greater than pa in magnitude. In other words, the upper plate pushes down on the

liquid being sheared and the liquid pushes up on the plate with a stress that

exceeds pa in magnitude. Because only atmospheric pressure acts on the outside

of the upper plate, it has to be held down by an externally applied force to prevent

the fluid from pushing the two plates apart. When the fluid emerges into the

atmosphere, there is no plate present to push down on it, and it, therefore,

expands and we observe die swell.

Because the shear stress is an odd function of the shear rate and the normal

stress differences are even functions, it is customary to define the viscosity

function and the first and second normal stress coefficients as follows:

Zð_ggÞ ¼ t12
_gg

ð14:2:5Þ

C1ð_ggÞ ¼
N1

_gg2
ð14:2:6Þ

C2ð_ggÞ ¼
N2

_gg2
ð14:2:7Þ

which tend to attain constant values Z0, C10, and C20 as the shear rate tends to

zero. Next, we examine two of the most popular methods of experimentally

determining some or all of these quantities.

14.3 CONE-AND-PLATE VISCOMETER

In this instrument, the liquid sample is placed in the gap between a truncated cone

and a coaxial disk, as shown in Figure 14.6a. The cone is truncated so that there is

no physical contact between the two members. The disk radius R is typically a

couple of centimeters, whereas the cone angle a is usually a few degrees. Either

of the two members can be rotated or oscillated, and we measure the torque M

needed to keep the other member stationary. We also measure the downward

force F needed to hold the apex of the truncated cone at the center of the disk.

From these measurements, we can determine the three material functions defined

by Eqs. (14.2.5)–(14.2.7). Note that F equals zero for a Newtonian liquid.

This flow is a viscometric flow when viewed in a spherical coordinate

system, and there is only one nonzero component of the velocity. This component

is vf, which varies with both r and y; the streamlines are closed circles. If we

rotate the plate at an angular velocity O, the linear velocity on the plate surface at

any radial position is Or. On the cone surface at the same radial position,

however, the velocity is zero. If the cone angle is small, we can assume that vf
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varies linearly across the gap between the cone and the plate. The shear rate _gg at
any value of r is then given as follows:

_gg ¼ Or � 0

ra
¼ O

a
ð14:3:1Þ

in which a is measured in radians and O in radians per second. Thus, the shear

rate is independent of position within the gap. As a consequence, the stress

components resulting from fluid deformation do not depend on position either.

Also, because this is a viscometric flow, the only nonzero stress components are

the shear stress tfy and the normal stresses tff, tyy, and trr. Note that, due to

symmetry, all derivatives with respect to f are zero. Also note that, by a similar

line of reasoning, the stresses will be independent of position even when the plate

is oscillated or given a step strain.

If we integrate the shear stress over the cone surface, we can get an

expression for the torque M as follows:

M ¼
ðR
0

rtfy2pr dr ¼
2pR3tfy

3
ð14:3:2Þ

so that

tfy ¼
3M

2pR3
ð14:3:3Þ

and the viscosity is

Z ¼ 3Ma
2pR3O

ð14:3:4Þ

FIGURE 14.6 (a) A cone and plate viscometer; (b) force balance on the plate.
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In order to obtain the normal stress functions, we need to solve the

equations of motion in spherical coordinates [3]. An examination of the y
component of this equation shows @p=@y ¼ 0. Thus, p depends on r alone,

because derivatives with respect to f are zero. Further, because most polymer

fluids are fairly viscous, we can neglect inertia and, as a result, the r component of

the equation of motion yields the following [3]:

dp

dr
¼ 2

r
trr �

tyy þ tff
r

ð14:3:5Þ

Integrating with respect to r from R to r gives

pðrÞ ¼ pðRÞ þ ð2trr � tyy þ tffÞ ln
r

R

� �
ð14:3:6Þ

At r ¼ R, Trr equals �pa, where pa is atmospheric pressure. Thus, from the

definition of the extra stress, we have

�pðRÞ þ trr ¼ �pa ð14:3:7Þ
To make further progress, we examine the equilibrium of the plate and balance

forces in the y direction (Fig. 14.6b). The result is

F þ pR2pa þ
ðR
0

½�pðrÞ þ tyy�2pr dr ¼ 0

or

F þ pR2pa þ pR2tyy ¼
ðR
0

pðrÞ2pr dr ð14:3:8Þ

Introducing Eqs. (14.3.6) and (14.3.7) into Eq. (14.3.8), integrating by parts, and

simplifying the result gives the first normal stress difference:

N1 ¼ tff � tyy ¼
2F

pR2
ð14:3:9Þ

Clearly, the first normal stress difference in shear is a positive quantity.

Finally, if we were to use a pressure transducer to measure Tyy on the plate

surface, we would have

Tyy ¼ �pðrÞ þ tyy

¼ �pa � trr þ tyy � ð2trr � tyy � tffÞ ln
r

R

� �
¼ �pa þ N2 þ ðN1 þ 2N2Þ ln

r

R

� � ð14:3:10Þ

Knowing N1, we can get N2 from Eq. (14.3.10). This measurement is not easy to

make, but the general consensus is that N2 is negative and about 0.1–0.25 times

the magnitude of N1.
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Shown in Figure 14.7 are data for the shear viscosity of a low-density

polyethylene sample (called IUPAC A) as a function of the shear rate over a range

of temperatures [4]. These data were collected as part of an international study

that involved several investigators and numerous instruments in different labora-

tories. For this polymer sample, �MMn is 2� 104 and �MMw exceeds 106. It is seen that

the shear rates attained are low enough that, at each temperature, the zero shear

rate viscosity can be identified easily; these Z0 values are noted in Figure 14.7

itself. Clearly, the viscosity values increase with decreasing temperature. If we

plot Z0 as a function of the reciprocal of the absolute temperature, we get a

straight line, showing that the Arrhenius relation is obeyed; that is,

Z0 / exp
E

RT

� �
ð14:3:11Þ

where the activation energy E equals 13.6 kcal=mol in the present case. The

activation energy typically increases as the polymer chain stiffness increases.

FIGURE 14.7 Determination of zero shear viscosity Z0; sample A. I: u WRG (25-mm

diameter, cone angle a ¼ 4�); j sample A stabilized, temperature shift of 130�C data

using E ¼ 11:7 kcal=mol [4]. II: � Kepes (26.15-mm diameter. a ¼ 21�40). IV: s WRG

modified (72-mm diameter, a ¼ 4�). (From Ref. 4.) (Reprinted with permission from

Meissner, J.: ‘‘Basic Parameters, Melt Rheology, Processing and End-Use Properties of

Three Similar Low Density Polyethylene Samples,’’ Pure Appl. Chem., vol. 42, pp. 553–

612, 1975.)
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Note, though, that close to the glass transition temperature, the WLF equation

[see also Eqs. (12.5.4) and (13.6.13) of Chapters 12 and 13, respectively]

log
Z0ðT Þ
Z0ðTgÞ

 !
¼ � 17:44ðT � TgÞ

51:6þ ðT � TgÞ
ð14:3:12Þ

may be a more appropriate equation to use. This is because at temperatures

between Tg and Tg þ 100�C, the viscosity is strongly influenced by increases in

free volume; at higher temperatures, we essentially have an activated jump

process.

In addition to temperature, the zero-shear viscosity is also influenced by the

pressure, especially at high pressures and especially close to the glass transition

temperature. The pressure dependence is again of the Arrhenius type,

Z0 / expðBpÞ ð14:3:13Þ
and is the result of the tendency of the free volume to decrease on the application

of a large hydrostatic pressure.

The first normal stress difference in shear, N1, on the IUPAC A sample and

measured at 130�C is displayed on logarithmic coordinates in Figure 14.8. If we

compare this figure to Figure 14.7, we determine that N1 is comparable to the

shear stress at low shear rates but significantly exceeds this quantity at higher

shear rates. This happens because of the stronger dependence of N1 on _gg
compared with the dependence of tfy on _gg. Indeed, straight lines typically

FIGURE 14.8 First normal stress difference in shear for IUPAC A LDPE at 130�C.
(From Ref. 4.)
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result when these two functions are plotted in terms of the shear rate on

logarithmic coordinates. Although the slope of the N1 plot usually lies between

1 and 2, the maximum value of the slope of the shear stress plot is unity.

Although all of the data discussed so far have been melt data, the shear

behavior of polymer solutions is similar to that of polymer melts, except that the

stress levels are lower. The same viscometers are used for both fluids, and the

cone-and-plate viscometer has become a standard laboratory tool. Indeed, it is the

instrument of choice for making simultaneous measurements of the viscosity and

the first normal stress difference. This is because data analysis involves few

assumptions. There are limitations, though; we can have viscous-heating effects if

the viscosity of the fluid is high but, more importantly, centrifugal forces and

elastic instabilities cause the sample to be expelled from the gap at high rates of

revolution. This limits the instrument to shear rates less than about 100 sec�1.
Difficulties also arise during measurements on filled polymers if the size of the

particulates is comparable to the gap size. In such a situation, we use two parallel

plates with a large gap. This situation can also be analysed [5], but the analysis is

significantly more involved. Also, N1 and N2 cannot be obtained separately.

Example 14.1: If lnN1 is plotted versus ln tfy, a straight line of slope 2

frequently results. Furthermore, the same plot is obtained irrespective of the

temperature of measurement. If data are obtained with the help of a cone-and-

plate viscometer, how would M be related to F for this relationship to hold?

Solution: We know that lnN1 ¼ 2 ln tfy þ ln c, where c is a constant. Conse-

quently,

N1

t2fy
¼ c

and using Eqs. (14.3.3) and (14.3.9) gives

2F

pR2
¼ c

3M

2pR3

� �2

or

F / M 2

The cone-and-plate viscometer is also routinely used to make time-

dependent measurements. If O or, alternatively, _gg is not constant but is some

specified function of time, the measured quantities M and F also depend on time.

Data analysis, however, remains unchanged and the shear stress and N1 are again

given by Eq. (14.3.3) and Eq. (14.3.9), respectively, and are functions of time.

Note that today’s viscometers can be operated not just at specified values of the
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shear rate but also at specified values of the shear stress; the shear rate then

becomes the dependent variable. Other popular rotational viscometers are the

parallel-plate viscometer and the Couette viscometer. These are described in

Problems 14.4 and 14.5, respectively.

14.4 THE CAPILLARY VISCOMETER

The need to measure fluid properties at shear rates higher than those accessible

with rotational viscometers arises because deformation rates can easily reach

105–106 sec�1 in polymer processing operations. To attain these high shear rates,

we use flow through capillaries or slits and calculate the viscometric functions

from a knowledge of the pressure drop-versus-flow rate relationship.

Consider the steady flow through a horizontal capillary of circular cross

section, as shown in Figure 14.9. In most of the capillary in a region of length L,

away from the exit or inlet, the pressure gradient is constant and there is fully

developed flow. Thus, Dp=L equals dp=dz. In the entry and exit regions, though,

there are velocity rearrangements and the actual pressure drops exceed those

calculated based on fully developed flow. To neglect these extra pressure losses,

we need to use capillaries for which L=D exceeds 50, where D is the capillary

diameter and its value is usually greater than about 0.025 cm. For polymer melts,

though, short capillaries are used because of thermal degradation problems and

because long capillaries require very high pressures. However, methods exist that

correct for entrance effects, which are the larger of the two losses [6]. Of course,

FIGURE 14.9 Schematic diagram of a capillary viscometer.
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to obtain consistent results, the ratio of the reservoir diameter to the capillary

diameter should also be large—a value of 12–18 is safe.

The fully developed flow region is again a region of viscometric flow

because only vz is nonzero and it varies only with r. Thus, the shear rate _gg is

dvz=dr. However, the deformation is not homogeneous because the shear rate

varies from zero at the capillary axis to a maximum at the tube wall. To obtain the

viscosity, we need to be able to measure the shear stress and the shear rate at the

same location. Although the shear stress can be obtained at any radial position

from a macroscopic force balance, the shear rate is most easily calculated at the

tube wall. Note that in the analysis that follows, @=@z is taken to be zero for the

extra stresses due to fully developed flow and @=@y is zero due to symmetry. From

a macroscopic force balance on the control volume shown in Figure 14.9, we

have

pr2ð p1 � p2Þ � 2prLtrz ¼ 0 ð14:4:1Þ
or

trz ¼ �
Dpr
2L

ð14:4:2Þ

from which we can calculate the wall shear stress, trzðRÞ. The shear stress, as

shown, is a positive quantity because Dp is a negative number.

To obtain the shear rate at the wall, we note that the volumetric flow rate Q

is given by

Q ¼
ðR
0

2prvz dr ð14:4:3Þ

Integrating by parts and knowing that r equals zero at the centerline and vz equals

zero at the tube wall yields the following:

Q ¼ �p
ðR
0

r2 _ggðrÞ dr ð14:4:4Þ

Changing the independent variable from r to trz through the use of Eq. (14.4.2)

and noting that trz depends uniquely on _gg and vice versa gives

Q ¼ 8pL3

ðDpÞ3
ðtw
0

t2rz _ggðtrzÞ dtrz ð14:4:5Þ

where

tw ¼ trzðRÞ ¼ �
DpR
2L

ð14:4:6Þ
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Eliminating Dp in Eq. (14.4.5) through the use of Eq. (14.4.6) and

rearranging the result, we have

Qt3w
pR3
¼ �

ðtw
0

t2rz _ggðtrzÞ dtrz ð14:4:7Þ

Using Leibnitz’ rule to differentiate Eq. (14.4.7) with respect to tw gives

3t3wQ
pR3
þ t3w
pR3

dQ

dtw
¼ �t2w _ggðtwÞ ð14:4:8Þ

so that

�_ggðtwÞ ¼
4Q

pR3

3

4
þ 1

4

d lnQ

d ln tw

� �
ð14:4:9Þ

To measure the viscosity as a function of shear rate, the flow rate is

determined as a function of the pressure drop. This can be converted to flow rate

as a function of the wall shear stress using Eq. (14.4.6). Therefore, lnQ can be

plotted versus ln tw. At any given value of tw, this plot yields the slope

d lnQ=d ln tw, which, with the help of Eq. (14.4.9), gives _ggðtwÞ. Dividing tw
by this value of _ggw gives Zð_ggwÞ. By repeating this process, we can get Z at other

values of _ggw. Because it does not matter where the viscosity is measured so long

as the shear stress and shear rate are determined at the same location, we can drop

the subscript w, resulting in the term Zð_ggÞ.
For a Newtonian liquid the fully developed velocity profile is parabolic and

the wall shear rate is as follows (see Problem 14.6):

�_ggw ¼
4Q

pR3
ð14:4:10Þ

Because d lnQ=d ln tw is unity, the result in Eq. (14.4.10) is consistent with Eq.

(14.4.9), which can be rewritten as

�_ggw ¼ _ggapp
3

4
þ 1

4

d lnQ

d ln tw


 �
ð14:4:11Þ

in which _ggapp is the apparent shear rate, assuming Newtonian liquid behavior, and

the quantity in brackets is called the Rabinowitsch correction factor.

Figure 14.10 shows capillary viscometry data at 150�C for the IUPAC A

LDPE considered earlier in Figure 14.7. It is apparent that these data blend nicely

with the data generated using a cone-and-plate viscometer. At shear rates greater

than about 1 sec�1, the viscosity-versus-shear rate behavior is linear. Conse-

quently, one can say that the shear stress t (where subscripts have been dropped

for convenience) is given by

t ¼ K _ggn ð14:4:12Þ
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in which K and n are constants. Equation (14.4.12) is known as the power-law

equation, K is called the consistency index, and n is called the power-law index.

Usually, n � 1.

Equation (14.4.12) obviously cannot represent the viscosity over the entire

range of shear rates, because it suggests the following:

Z ¼ K

_gg1�n
ð14:4:13Þ

which predicts a meaningless increase in the viscosity as the shear rate is

decreased. A popular alternative model that does not have this shortcoming is

the Carreau model [7],

Z� Z1
Z0 � Z1

¼ ½1þ ðlc _ggÞ2�ðn�1Þ=2 ð14:4:14Þ

which has four constants: Z0, Z1, lc, and n. Although this model can accom-

modate a limiting shear viscosity at both high and low shear rates, the flexibility

comes at the expense of greater complexity. Note that the parameter lc
determines the point of onset of shear thinning; the onset of shear thinning is

found to move to larger values of the shear rate as the temperature of measure-

ment is increased (see Fig. 14.7).

FIGURE 14.10 Viscosity functions for samples A, B, and C at 150�C. Ia, IVa:

Weissenberg rheogoniometer (Ia measures at 130�C and shifts the data); II: Kepes

rotational rheometer (cone-and-plate); Ib, IVb: capillary viscometers. MF denotes the

onset of melt fracture. (From Ref. 4.) (Reprinted with permission from Meissner, J.: ‘‘Basic

Parameters, Melt Rheology, Processing and End-Use Properties of Three Similar Low

Density Polyethylene Samples,’’ Pure Appl. Chem., vol. 42, pp. 553–612, 1975.)
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Example 14.2: The (unstable) melt fracture behavior illustrated in Figure 14.4 is

found to occur in polymer melts when the wall shear stress is about 106 dyn=cm2.

If we were to extrude IUPAC A LDPE through a long capillary 0.025 cm diameter

at 150�C, at what flow rate might we expect to observe melt fracture?

Solution: By trial and error, we find that the shear rate at which Z_gg equals

106 dyn=cm2 in Figure 14.10 is about 100 sec�1 (as indicated in the figure, melt

fracture actually occurs at slightly lower shear rates).

If we represent this polymer as a power-law fluid, the shear rate at the wall

is given by the following (see Problem 14.7):

�_ggw ¼
4Q

pR3

3nþ 1

4n

� �
so that Q is known once n is known. From Figure 14.10, however, n equals 0.42.

Thus, we have

Q ¼ ð�_ggwÞpR
3

ð3nþ 1Þ=n

¼ 100� p� ð0:025=2Þ3
ð3� 0:42þ 1Þ=ð0:42Þ
¼ 1:14� 10�4 cc=s

Capillary viscometers come in two basic designs, which differ in the

method of melt extrusion. In the pressure-driven instrument, gas pressure is

used to pump the liquid out of a reservoir and into the capillary, and we measure

the volumetric flow rate corresponding to the applied Dp. In a plunger-driven

instrument, as the name implies, the flow rate is set and the corresponding Dp is

measured. Shear rates of 105–106 sec�1 can easily be achieved with these

instruments, with the upper limit on the shear rate being decided by the maximum

speed of the plunger in a plunger-driven instrument and the maximum pressure in

a pressure-driven instrument. Of course, it must be ensured that viscous dissipa-

tion does not lead to nonisothermal conditions; this computation is easy to carry

out [8]. The lower limit of operation of a plunger-type viscometer is set by the

amount of friction between the plunger and the barrel. As the plunger speed

decreases, this friction can become a significant part of the total Dp and make the

viscosity measurements unreliable. More details about capillary viscometry are

available in the article by Kestin et al. [9]. The theory for flow through slits is

similar to that for circular tubes [10]. An advantage of slit viscometry, as shown

by Lodge, is that the technique can also be used to measure normal stress

differences [10].
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14.5 EXTENSIONAL VISCOMETERS

Besides viscometric flow, the other major category of flow that can be generated

in the laboratory is extensional flow. In mathematical terms, extensional flow may

be represented in a rectangular Cartesian coordinate system xi by the set of

equations for the three components of the velocity vector

v1 ¼ _ee1x1 ð14:5:1Þ
v2 ¼ _ee2x2 ð14:5:2Þ
v3 ¼ _ee3x3 ð14:5:3Þ

which also define the stretch rates _eei. In uniaxial extension at constant stretch rate,

_ee1 ¼ _ee and _ee2 ¼ _ee3 ¼ �_ee=2. Interest in this mode of deformation stems from the

fact that industrially important polymer processing operations such as fiber

spinning are, essentially, examples of uniaxial extension.

In physical terms, the distance between material planes that are perpendi-

cular to the flow direction increases in extensional flow. This is illustrated for

uniaxial extension in Figure 14.11a. A material plane is a surface that always

contains the same material points or particles. In viscometric flow, the fluid on

any surface for which the coordinate x2 is a constant forms a material plane (see

Figure 14.11b). Here, each material plane moves as a rigid body and there is

FIGURE 14.11 (a) Increase in distance between material planes in a uniaxial exten-

sional flow; (b) Sliding of material planes in viscometric flow. (From Ref. 11.)
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relative sliding between neighboring material planes. In extensional flow, as

opposed to shear flow, polymer molecules tend to uncoil and ultimately there can

even be stretching of chemical bonds, which results in chain scission. Therefore,

stresses in the flow direction can reach fairly large values.

Although it is somewhat difficult to visualize how a rod of polymer might

be stretched in the manner of Figure 14.11a, this can be done for both polymer

melts [11] and polymer solutions [12]. For polymer melts, a cylindrical sample is

immersed in an oil bath with one end attached to a force transducer and the other

end moved outward so that the stretch rate is maintained constant. Similarly, for

polymer solutions, we merely place the liquid sample between two coaxial disks,

one of which is stationary and connected to a microbalance, and the other disk

moves outward, generating the stretching. The filament diameter thins progres-

sively but remains independent of position. Simultaneously, the filament length l

increases exponentially as follows:

ln
l

l0

� �
¼ _eet ð14:5:4Þ

which follows directly from Eq. (14.5.1).

In this flow field, there is no shear deformation, and the total stress tensor as

well as the extra stress tensor are diagonal. As a consequence, there are only three

nonzero stress components, but, due to fluid incompressibility, we can measure

only two stress differences. Further, in uniaxial extension, the two directions that

are perpendicular to the stretching direction are identical, so there is only one

measurable material function: the net tensile stress sE, which is the difference

T11 � T22 or t11 � t22.
For constant-stretch-rate homogeneous deformation, which begins from

rest, a tensile stress growth coefficient is defined as

ZþE ðt; _eeÞ ¼
sE
_ee

ð14:5:5Þ
which has the dimensions of viscosity. The limiting value of ZþE as time tends to

infinity is termed the tensile, elongational, or extensional viscosity, ZE. In general,
ZE is a function of the stretch rate, although in the limit of vanishingly low stretch

rates, we have the following [5]:

lim
_ee!0

ZE
Z0

� �
¼ 3 ð14:5:6Þ

where Z0 is zero-shear rate viscosity.

Laun and Munstedt have obtained tensile stress growth data on the IUPAC

A LDPE sample at 150�C [13,14], and these are shown in Figure 14.12. At a

given stretch rate, the stress increases monotonically and, ultimately, tends to a

limiting value even for stretch rates as high as 10 sec�1. The extensional

viscosity, calculated using these steady-state data, is displayed in Figure 14.13
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as a function of the stretch rate, and at low stretch rates, Eq. (14.5.6) is found to

hold. As the stretch rate is increased, the extensional viscosity increases, goes

through a maximum, and finally decreases to a value even below that of the zero-

shear value. The behavior of polymer solutions is qualitatively similar to that of

polymer melts, except that the extensional viscosity of polymer solutions can

exceed the corresponding shear viscosity by a far wider margin than does the

extensional viscosity of polymer melts [15].

Example 14.3: How is the extensional viscosity of a Newtonian fluid related to

the shear viscosity?

Solution: Using Eqs. (14.2.2), (14.5.1), and (14.5.2) gives

T11 � T22 ¼ 2Z
@v1
@x1
� @v2
@x2

� �
¼ 2Zð_ee1 � _ee2Þ

FIGURE 14.12 Time-dependent elongational viscosity at different stretching rates.

(From Ref. 13.) Reprinted from Rheol. Acta, vol. 18, Munstedt, H., and H. M. Lann:

Elongational behavior of an LDPE MeH: II. Transient behavior in constant stretching rate

and tensile creep experiments. Comparison with shear data. Temperature dependence of

the elongational properties, 492–504, 1979. Used by permission of Steinkopft Publishers,

Darmstadt (FRG).
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For uniaxial extension, however, _ee1 ¼ �2_ee2 ¼ _ee. Therefore sE ¼ 2Z½_eeþ ð_ee=2Þ� ¼
3Z_ee and ZE ¼ 3Z.

Even though commercial instruments are available for making extensional

viscosity measurements on polymer melts, this is not a routine measurement. The

stretch-rate range of these extensional viscometers is such that the maximum

stretch rate that can be achieved is of the order of 1 sec�1; in polymer processing

operations, a stretch rate of 100 sec�1 is commonplace. Also, not every polymer

stretches uniformly, and, even when it does, steady-state stress levels are not

always attained. For all of these reasons, extensional viscometry is an area of

current research. Additional details regarding extensional and other viscometers

may be found in the book by Dealy [16].

14.6 BOLTZMANN SUPERPOSITION PRINCIPLE

Experimental data obtained in viscometric flow or extensional flow are obviously

useful for predicting material behavior in a flow field that is predominantly shear

or extension. Thus, the shear viscosity function is needed to compute the pressure

drop for flow through a channel, whereas the extensional viscosity function can

FIGURE 14.13 Steady-state viscosity in shear and elongation as a function of

deformation rate. (From Ref. 14.) Reprinted from Rheol. Acta, vol. 17. Laun, H. M.,

and H. Munstedt: Elongational behavior of an LDPE melt: I. Strain rate and stress

dependence of viscosity and recoverable strain in steady state. Comparison with shear data.

Influence of interfacial tension, 415–425, 1978. Used by permission of Steinkopff

Publishers, Darmstadt (FRG).
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be employed to calculate the force of peel adhesion in a pressure-sensitive

adhesive. In addition, the data reveal material behavior and can be used for

material characterization and product comparison. However, it is logical to ask

whether it is necessary to conduct a new experiment every time we want

information in a different flow field or if we want transient data in the same

flow field. The answer, we hope, is that behavior in one flow situation can be

predicted using data generated in a different flow situation. In other words, a

stress constitutive equation for non-Newtonian fluids is sought. This equation

would involve a limited number of constants or functions that would be specific

to the material being examined and whose numerical values could be determined

by conducting one or two experiments in idealized flow fields. In this section, we

show how this goal can be partially achieved.

As seen earlier in Problem 12.3 of Chapter 12 and more recently in Figure

14.2, the stress in a polymeric fluid does not decay to zero once deformation is

halted. Instead, stress relaxation occurs. Thus, upon imposition of a shear strain g,
we expect the shear stress t to be

tðtÞ ¼ GðtÞg ð14:6:1Þ
in which GðtÞ is a modulus function that decays with time.

If a series of strains g1, g2; . . . is imposed on the material at times t1, t2; . . .
in the past, the stress at the present time t is a combination of the stresses resulting

from each of these strains. If this combination can be taken to be a linear

combination (which is the thesis of the Boltzmann superposition principle), we

can write the following expression:

tðtÞ ¼ Gðt � t1Þg1 þ Gðt � t2Þg2 þ � � � ð14:6:2Þ
where t � ti is the time elapsed since the imposition of strain gi. Converting the

sum in Eq. (14.6.2) into an integral gives

tðtÞ ¼
ðt
�1

Gðt � sÞ dg ¼
ðt
�1

Gðt � sÞ_gg ds ð14:6:3Þ

wherein s is a past time and _gg is the rate of deformation. The function Gðt � sÞ is a
stress-relaxation modulus and Eq. (14.6.3) is the mathematical form of the

Boltzmann superposition principle. This equation can be generalized to three

dimensions by rewriting it as follows:

tijðtÞ ¼
ðt
�1

Gðt � sÞ_ggij ds ð14:6:4Þ

with the deformation rate components _ggij being ð@vi=@xj þ @vj=@xiÞ.

Example 14.4: Is a shear-thinning viscosity consistent with the predictions of

the Boltzmann superposition principle?
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Solution: If the shear rate is held constant, the shear viscosity according to Eq.

(14.6.3) is given by

Z ¼ tðtÞ
_gg
¼
ðt
�1

Gðt � sÞ ds

If we allow t � s to equal t0 we have

Z ¼
ð1
0

Gðt0Þ dt0 ¼ constant

and, not surprisingly, we find that a linear superposition of stresses does not allow

for nonlinear effects such as shear thinning. Shear thinning is a nonlinear effect

because the shear stress is less than doubled when we double the shear rate. Thus,

the viscosity calculated in this example is the zero-shear viscosity.

The Boltzmann superposition principle is the embodiment of the theory of

linear viscoelasticity, and it is valid for both steady and transient deformations,

provided that the extent of deformation is low. A specific form of the stress–

relaxation modulus may be obtained by permitting the stress response in a

polymer to be made up of an elastic contribution and a viscous contribution.

Thus, if we again use the Maxwell element encountered previously in Example

12.2 and Figure 12.4 of Chapter 12, the total strain g in the spring and dashpot

combination is (at any time) a sum of the individual strains; that is,

g ¼ gs þ gd ð14:6:5Þ
where the subscripts s and d denote the spring and dashpot, respectively.

Because the applied stress t equals the stress in both the spring and the

dashpot, Eq. (14.6.5) implies (see Example 12.1) the following:

dg
dt
¼ dgs

dt
þ dgd

dt
¼ 1

G

dt
dt
þ t
Z

ð14:6:6Þ

If we assume that t! 0 as t!�1, the solution of this first-order, linear,

nonhomogeneous differential equation is given by

tðtÞ ¼ G

ðt
�1

e�ðt�sÞ=y
dg
ds

� �
ds ð14:6:7Þ

in which s is a dummy variable of integration and y equals Z=G, where G is the

constant spring modulus and not the stress relaxation modulus of spring-and-

dashpot combination.

Comparing Eqs. (14.6.3) and (14.6.7) yields

Gðt � sÞ ¼ G exp � t � s

y

� �
ð14:6:8Þ

which, when introduced into Eq. (14.6.1), reveals that

tðtÞ
g
¼ Ge�t=y ð14:6:9Þ
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and it is seen that the stress decays over a time scale of the order of y.
Consequently, y is called a relaxation time. Although a single relaxation time

can be expected to fit data on monodisperse polymers, most polymer samples are

polydisperse. It is for this reason that we modify the mechanical analog to make it

consist of N Maxwell elements in parallel; each spring has a modulus Gi and each

dashpot has a damping constant Zi. By repeating the analysis presented here, we

find that

Gðt � sÞ ¼PN
i¼1

Gi exp �
t � s

yi

� �
ð14:6:10Þ

in which yi ¼ Zi=Gi. The constants Gi and yi are usually obtained from the results

of dynamic mechanical experiments rather than by conducting a stress–relaxation

experiment.

14.7 DYNAMIC MECHANICAL PROPERTIES

As discussed in Section 12.4 of Chapter 12, dynamic mechanical testing is

conducted by subjecting a polymer sample to a sinusoidal strain of amplitude g0
and frequency o. Because the strain amplitude is usually of infinitesimal

magnitude, we can legitimately apply the Boltzmann superposition principle to

this flow situation. Before doing this, though, we change the independent variable

in Eq. (14.6.3) from s to t0, where t0 ¼ t � s. Thus, we have

tðtÞ ¼
ð1
0

Gðt0Þ_ggðt � t0Þ dt0 ð14:7:1Þ

in which _gg is set to be og0 cos½oðt � t0Þ�. As a result, we have

tðtÞ
g0
¼ o cosðotÞ

ð1
0

Gðt0Þ cosðot0Þ dt0 þ o sinðotÞ
ð1
0

Gðt0Þ sinðot0Þ dt0

ð14:7:2Þ
which when compared to Eq. (12.4.4) yields the following expressions for the

storage and loss moduli, respectively:

G0ðoÞ ¼ o
ð1
0

Gðt0Þ sinðot0Þ dt0 ð14:7:3Þ

G00ðoÞ ¼ o
ð1
0

Gðt0Þ cosðot0Þ dt0 ð14:7:4Þ

Example 14.5: How do the storage modulus and loss modulus vary with

frequency when o! 0?
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Solution: As o! 0, sinðot0Þ ! ot0 and cosðot0Þ ¼ 1, with the result that

lim
o!0

G0ðoÞ ¼ ½
ð1
0

t0Gðt0Þ dt0�o2 ð14:7:5Þ

lim
o!0

G00ðoÞ ¼ ½
ð1
0

Gðt0Þ dt0�o ¼ Z0o ð14:7:6Þ

where the second equality in Eq. (14.7.6) follows from the result of Example

14.4.

Equations (14.7.5) and (14.7.6) are valid for all materials at low enough

frequencies. However, we may not always observe this behavior due to the

inability to accurately measure small stresses at very low frequencies. The

limiting behavior at very high frequencies can also be obtained (see Problem

14.17). The final expressions are as follows:

lim
o!1 G0ðoÞ ¼ Gð0Þ ð14:7:7Þ
lim
o!1

G00ðoÞ ¼ 0 ð14:7:8Þ

Although a knowledge of the stress–relaxation modulus allows us to

calculate G0 and G00 via Eqs. (14.7.3) and (14.7.4), in practice we find that the

experimental measurement of G0ðoÞ or G00ðoÞ (using a cone-and-plate visco-

meter, for example) is much more accurate than the measurement of Gðt0Þ.
Consequently, we measure G0ðoÞ and G00ðoÞ and use these data to compute Gðt0Þ.
The computed value of Gðt0Þ can, in turn, be used to calculate any other linear

viscoelastic function through the use of Eq. (14.7.1).

In order to accomplish these objectives, we need methods of interrelating

the various linear viscoelastic functions. The general techniques of obtaining one

function from another have been discussed by Ferry [17]. In the present case,

Baumgaertel and Winter have proposed a particularly simple method [18]. If we

introduce Eq. (14.6.10) into Eqs. (14.7.3) and (14.7.4) and carry out the

integrations, we get (see also Example 12.2).

G0ðoÞ ¼PN
i¼1

GiðoyiÞ2
1þ ðoyiÞ2

ð14:7:9Þ

G00ðoÞ ¼PN
i¼1

GiðoyiÞ
1þ ðoyiÞ2

ð14:7:10Þ

The terms Gi and yi are found by simply fitting Eqs. (14.7.9) and (14.7.10)

to measured G0ðoÞ and G00ðoÞ data using a nonlinear least-squares procedure

[18]. In doing so, the choice of N is crucial; a small value of N can lead to errors,

whereas a large value of N cannot be justified given the normal errors associated

with measuring G0 and G00. The set of relaxation times yi and moduli Gi is called
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a discrete-relaxation time spectrum, and we typically choose between one and two

relaxation modes per decade of frequency. Figure 14.14 shows a master curve of

G0 and G00 values in a temperature range of 130–250�C on an injection-molding

grade sample of polystyrene; all of the data have been combined by means of a

horizontal shift using time–temperature superposition with a 150�C reference

temperature according to the procedure of Section 12.5. The stress–relaxation

modulus (calculated in the manner of Baumgaertel and Winter) is displayed in

Figure 14.15 along with actual stress–relaxation data at 150�C; the agreement

could not be better.

The utility of dynamic data appears to go beyond the theoretical applica-

tions considered in this section. We find, for example, that the modulus of the

complex viscosity Z*, defined as

jZ*j ¼ ½ðZ0Þ2 þ ðZ00Þ2�1=2 ð14:7:11Þ

where Z0 ¼ G00=o and Z00 ¼ G0=o, when plotted versus frequency, often super-

poses with the steady shear viscosity as a function of the shear rate [19]. This is

known as the Cox–Merz rule, and it provides information about a nonlinear

property from a measurement of a linear property. Note that Z0 is generally called

the dynamic viscosity.

FIGURE 14.14 Master curve of storage and loss moduli of polystyrene.
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Another useful empiricism, Laun’s rule, relates the first normal stress

coefficient to dynamic data [20]:

c1 ¼
2Z00ðoÞ

o
1þ Z00

Z0

� �0:7
" #

o¼_gg
ð14:7:12Þ

It should be noted that relating the various material functions to properties such as

the molecular weight can only be done with the help of molecular theories. These

theories are examined in some detail in the remainder of this chapter.

14.8 THEORIES OF SHEAR VISCOSITY

The shear viscosity of polymer melts depends primarily on the molecular weight,

the temperature, and the imposed shear rate; for polymer solutions, the concen-

tration and nature of solvent are additional variables. In one of the earliest

theories, [21,22], the shear viscosity was calculated by determining the amount of

energy dissipated due to fluid friction in a steady laminar shearing flow at a

constant shear rate _gg. For this flow situation, depicted in Figure 14.16, the energy

dissipated per unit time, per unit volume, P, is given as follows [23]:

P ¼ Z
dv1
dx2

� �2

ð14:8:1Þ

FIGURE 14.15 Stress relaxation modulus of polystyrene at 150�C.
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Because ðdv1=dx2Þ is _gg, the viscosity is known if P can be computed. P, in turn, is

calculated as the dot product, or scalar product, of the drag force with the velocity

vector.

If, in this flow field, we consider the end-to-end vector of the typical

polymer molecule, the two ends move at different velocities in the x1 direction

due to the presence of a velocity gradient. The analysis is simplified if we bring

the center of mass of the molecule to rest by imposing the average velocity in the

negative x1 direction. In this case, as is clear from Figure 14.16, the molecule

rotates in the clockwise direction. At steady state, the torque due to the imposed

shear flow balances the opposing torque due to fluid friction and there is no

angular acceleration. The polymer molecule, as represented by the end-to-end

vector, rotates at a constant angular velocity o. The linear velocity at any radial

position r is or. The drag force F acting on any segment of polymer (say, a

monomer unit) is as follows:

F ¼ zv ð14:8:2Þ

where z is the friction coefficient per monomer unit, and Eq. (14.8.2) is similar in

concept to Stokes’ law for drag on spheres [3].

The work done per unit time against fluid friction on a single polymer

segment is given as

F � v ¼ zjvj2 ¼ zðorÞ2 ð14:8:3Þ

FIGURE 14.16 Polymer molecule in steady laminar shearing flow.
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For all of the n segments taken together,

F � v ¼PN
1

zðoriÞ2 ¼ nzo2hr2i i ð14:8:4Þ

where hr2i i is the two-dimensional analog of the radius of gyration hs2i
encountered earlier. It can be shown that hr2i i equals 2

3
hs2i [24], and because

hs2i is given by nl2=6 for a freely jointed chain [see Eq. (10.2.17)], we have

F � v ¼ n2l2zo2

9
ð14:8:5Þ

in which the angular velocity, in general, is given by

o ¼ 1

2

@v2
@x1
� @v1
@x2

� �
ð14:8:6Þ

which reduces to o ¼ �_gg=2 for the situation of Figure 14.16. Thus, we have

F � v ¼ n2l2z_gg2

36
ð14:8:7Þ

To obtain the energy dissipated per unit volume, we need to know the

number of polymer molecules per unit volume. For melts, this is rNA=M and for

solutions it is cNA=M , where r is density, c is the concentration in mass units, NA

is Avogadro’s number, and M is the molecular weight (assuming monodisperse

polymer). Multiplying the right-hand side of Eq. (14.8.7) by either rNA=M or

cNA=M and dividing by _gg2 gives the viscosity [recall Eq. (14.8.1)]:

Z ¼ rNA

M

n2l2z
36
¼ cNA

M

n2l2z
36

ð14:8:8Þ

Finally, noting that M equals nM0, where M0 is the monomer molecular weight,

we have

Z ¼ rNAz
36M0

nl2

M

� �
M ¼ cNA

36M0

z
nl2

M

� �
M ð14:8:9Þ

and Z is predicted to be proportional to M or cM because nl2=M is not a function

of M . Although the dependence on temperature can enter through z, it is obvious
that Eq. (14.8.9) cannot predict shear thinning, which is almost always observed

at high enough shear rates.

When experimental data for the zero-shear viscosity of polymer melts and

solutions are examined in light of Eq. (14.8.9), it is found that melts exhibit the

expected proportionality with molecular weight (at least for low molecular

weights), whereas solutions show a much stronger dependence of the viscosity

on molecular weight. The unexpected behavior of solutions apparently results

from a dependence of z onM and c. When data are corrected to give viscosities at
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a constant value of z, the behavior of polymer solutions also agrees with Eq.

(14.8.9); this is shown in Figure 14.17 for both polymer melts and polymer

solutions [25]. More extensive data are available in earlier reviews, which also

discuss the influence of temperature, chain branching, polydispersity, and solvent

viscosity [26,27].

FIGURE 14.17 Viscosity versus the product cMw for polystyrenes at concentrations

between 25% and 100%:s, undiluted at 217�C;s, 0.55 g=mL in n-butyl benzene at 25�C;
s–, 0.415 g=mL in di-octyl phthalate at 30�C; s0.310 g=mL in di-octyl phthalate at 30�C;
and –s, 0.255 g=mL in n-butyl benzene at 25�C. Data at the various concentrations have

been shifted vertically to avoid overlap. (From Ref. 25.) Reprinted with permission from

Graessley, W. W.: The entanglement concept in polymer rheology, Adv. Polym. Sci., vol.

16, 1–179, 1974. Copyright 1974 Springer-Verlag GmbH & Co, kG.
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An examination of Figure 14.17 reveals that Eq. (14.8.9) is obeyed only up

to a critical value of cM . Beyond this critical value, the slope of the viscosity-

versus-cM curve increases to about 3.4 on logarithmic coordinates. For undiluted

polystyrene the change in slope occurs at a molecular weight of about 32,000

[25], whereas for solutions, the critical molecular weight increases with decreas-

ing concentration. To within the accuracy of experimental data, we find the

following:

ðMcÞsol ¼
r
c

� �
Mc ð14:8:10Þ

where Mc is the value for the molten polymer and is about 300–600 monomer

units [28]. This behavior can be explained by saying that when M exceeds Mc,

polymer chains begin to become entangled with each other and the entanglement

density increases with increasing molecular weight. Entanglements may be

visualized as temporary cross-links whose effect is to prevent chain crossability

and to vastly increase the fluid friction beyond the value assumed in the Debye–

Bueche theory; the net result is a rapid increase in viscosity with increasing

molecular weight. In other words, Eq. (14.8.9) is valid only when polymer

molecules act independently of each other. When molecules interact, we can no

longer say that the energy dissipated by rNA=M molecules equals rNA=M times

the energy dissipated by a single molecule acting alone.

Graessley [29] used the concept of intermolecular entanglements to

successfully and quantitatively explain the reduction of shear viscosity with

increasing shear rate. Now, we talk about the drag force at an entanglement

junction and add together the contribution to energy dissipation from all the

entanglements in a unit volume of polymer. The result, which is straightforward,

is as follows [29]:

Z ¼ N

2
z
P

Jiðx2Þ2i ð14:8:11Þ

where N is the number of polymer chains per unit volume, z is the friction

coefficient at an entanglement junction, and Ji is the number of entanglements

between the chain at the origin and the ith chain.

Changes in viscosity with changing shear rate are attributed to shear-

induced changes in the entanglement density. In other words, Ji is a function of _gg,
and its value tends to a constant at low shear rates. It is assumed that a certain

amount of time, of the order of the relaxation time, is needed for a polymer chain

to both disengage itself from other chains and to get entangled with them. It is

further assumed that a polymer chain can entangle itself only with those chains

whose centers lie within a sphere of specified radius. Thus, a reduction in

entanglement density comes about in a sheared fluid because some polymer

molecules, which would otherwise be entangled with the chain under considera-
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tion, pass through this sphere of influence with a residence time that is less than

the fluid relaxation time. A summation over all of the entanglements formed by

the motion of nearby molecules allows us to evaluate the right side of Eq.

(14.8.11) and leads to the following [29]:

Z
Z0
¼ 2

p
cot�1 aþ að1� a2Þ

ð1þ a2Þ2
� �

ð14:8:12Þ

in which a ¼ ðZ=Z0Þ½ð1=2Þ_ggy0�, where y0 is the zero-shear-rate relaxation time.

This equation suggests that a unique curve should result if the steady-shear

viscosity data of entangling polymers is plotted as Z=Z0 versus _ggy0. This is,

indeed, found to be the case for solutions of narrow-molecular-weight-distribu-

tion polystyrene dissolved in n-butyl benzene; these data are displayed in Figure

14.18 [30]. Note that the entanglement theory has also been extended to

polydisperse polymers [30].

To properly understand why the zero-shear viscosity of an entangled

polymer melt or solution increases so rapidly with increasing molecular weight

FIGURE 14.18 Master curve composed of data on solutions of narrow-distribution

polystyrene in n-butyl benzene. Molecular weights range from 160,000 to 2,400,000,

concentrations range from 0.20 to 0.55 g=cm3, and distribution breadths Mw=Mn range

from 1.06 to 1.15. The data were shifted parallel to the shear-rate axis to achieve the best fit

with the solid line calculated. (Reprinted with permission from W. W. Graessley, Viscosity

of Entangling Polydisperse Polymers, J. Chem. Phys., vol. 47, pp. 1942–1953, 1967.

Copyright 1967 American Institute of Physics.)
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(see Figure 14.17), we need to use a model such as the reptation model, [31,32],

which was introduced in Chapter 13.

Section 13.9 of Chapter 13 has shown that, for one-dimensional diffusion,

D ¼ h�xx
2i
2t

ð14:8:13Þ

where D is the diffusion coefficient and x is the distance traveled by a typical

molecule in time t. Applying this equation to the reptating polymer molecule

inside the tube shown in Figure 13.15 and letting x be the contour length nl gives

the time yd taken by the molecule to entirely free itself of the constraining tube.

Thus, yd is the time needed for the molecule to wriggle out of the tube or to

disengage itself from the tube. This is the largest relaxation time that we would

observe in a mechanical measurement because it is related to the motion of the

entire molecule. It is often called the terminal relaxation time. Therefore, we have

yd ¼
ðnlÞ2
2D

ð14:8:14Þ

Replacing D with an equation similar to the Stokes–Einstein equation [see Eq.

(13.4.6)],

D ¼ kT

nz
ð14:8:15Þ

gives us [28,33]

yd ¼
zl2n3

2kT
ð14:8:16Þ

which shows that yd is proportional to M3 because n equals M=M0.

The zero-shear viscosity Z0 can be obtained from linear viscoelasticity by

replacing y in Eq. (14.6.8) with yd and employing the result of Example 14.4:

Z0 ¼
ð1
0

Ge�t
0=yd dt0 ¼ Gyd ð14:8:17Þ

or

Z0 ¼
Gzl2

2kTM 3
0

� �
M 3 ð14:8:18Þ

which is the desired result. Even though the 3.4 power dependence is not

obtained, the reptation model provides a remarkably consistent interrelationship

between the various viscoelastic functions that has been confirmed with observa-

tions on linear polymer liquids [34]. As might be expected, the basic picture

presented here has been modified by a large number of authors [33,34]. The

resulting articles, however, are too numerous to be summarized here.
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In closing this section, we summarize the observed viscosity behavior of

polymer melts and polymer solutions. The zero-shear-rate viscosity of low-

molecular-weight polymers increases linearly with molecular weight; this obser-

vation can be explained by the Debye–Bueche theory. Also, the behavior of

polymer solutions becomes identical to that of polymer melts if data are plotted

against the product of molecular weight with polymer concentration. With

increasing molecular weight, polymer–polymer entanglements occur, and the

zero-shear viscosity of melts increases at the 3.4–3.6 power of the molecular

weight. It has been shown experimentally that this relationship holds for

polydisperse polymers as well if the weight-average molecular weight is

employed for data representation [35]. This nonlinear increase of viscosity can

be understood with the help of the reptation model. For linear, entangled

polymers (both monodisperse and polydisperse) the viscosity at a fixed molecular

weight and concentration decreases with increasing shear rate, with polydisperse

systems showing the onset of shear thinning at a lower shear rate compared to the

monodisperse system. As seen earlier in this section, the reduction of viscosity

with shear rate can be modeled by Graessley’s entanglement theory. Finally, it is

found that all of the data for monodisperse samples, including those at different

constant temperatures, can be made to superpose if we plot the ratio of the shear

viscosity to the zero-shear viscosity as a function of the ratio of the shear rate to

the shear rate at which the viscosity has fallen to 80% of the zero-shear value.

Additional details may be found in Ref. [35], which also discusses the effect of

structural variables such as chain branching.

14.9 CONSTITUTIVE BEHAVIOR OF DILUTE
POLYMER SOLUTIONS

When the concentration of polymer molecules in solution is sufficiently low (as

shown in Sect. 8.6 of Chap. 8, ½Z�c < 1 is the usual criterion), the molecules are

isolated from each other and solution behavior can be predicted from a knowl-

edge of the behavior of a single polymer molecule. Because linear polymer

molecules act like springs and also possess a finite mass, it is common practice to

model an individual polymer molecule as a series of N þ 1 spheres, each of mass

m, connected by N massless springs. The polymer solution then is a noninteract-

ing suspension of these stringy entities in a Newtonian liquid. In the absence of

flow, the equilibrium probability that one end of a given polymer molecule is

located at a specified distance from the other end is given by Eq. (10.2.12). Under

the influence of flow, the strings can uncoil and stretch and also become oriented.

If we could calculate the new probability distribution, we could again determine

the tension in each spring and, therefore, the contribution to the stress resulting

from the deformation of an individual polymer molecule. Multiplying this
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contribution by the total number of molecules would yield the stress. We,

therefore, have a two-part problem: Suspension micromechanics gives the

instantaneous structure and this structure is translated into a stress. This process

can become fairly elaborate [36], depending on the value of N and the nature of

the elasticity and extensibility of the springs. Here (see Figure 14.19), we

consider the simplest possible situation, that of an infinitely extensible, linear

elastic dumbbell [37]. The dumbbell consists of two equal masses connected by a

spring whose force-versus-extension behavior is given by Eq. (10.3.7). Such a

study is useful for pedagogical reasons. In addition, the results have a practical

utility because they describe the flow behavior of constant-viscosity elastic

liquids called Boger fluids [38,39].

14.9.1 Elastic Dumbell Model

Consider a polymer solution containing c polymer molecules per unit volume.

(Note the change in definition.) As a consequence, a cube of volume c�1 contains
exactly one molecule or one dumbbell. For this situation, the polymer contribu-

tion to the stress tensor (see Sect. 10.5 of Chap. 10) can be calculated using the

method of Bird and co-workers [36,37]. Referring to Figure 14.20, if the end-to-

end vector of the dumbbell is r, its projection along n, the unit normal to the

arbitrary plane contained within the cube, is r � n. The probability that this

dumbbell cuts the arbitrary plane is r � n divided by the length of the cube edge

[i.e., ðr � nÞc1=3]. Further, if the probability that a dumbbell has an end-to-end

vector in the range r and rþ dr, is pðrÞ dr, then the probability that such a

FIGURE 14.19 A linear elastic dumbbell.
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dumbbell cuts an arbitrary plane having a unit normal n is ðr � nÞc1=3pðrÞ dr. If
the force in the dumbbell spring is F (and has to be aligned with r), the ensemble

average of this force is hFigiven by

hFi ¼
ð
Fc1=3ðr � nÞpðrÞ dr ð14:9:1Þ

Because the cross-sectional area of the arbitrary plane is c�2=3, the average stress
vector, f , acting on the plane is hFi=c�2=3; that is,

f ¼ c


 ð
ðF � rÞpðrÞ dr

�
� n ð14:9:2Þ

in which the ‘‘dyad’’ ðFr) is the 3� 3 matrix obtained by the matrix multi-

plication of the 3� 1 column vector F with the 1� 3 row vector r.

For elastic dumbbells, F is given by Eq. (10.3.7); that is,

F ¼ Kr ð14:9:3Þ
where the constant K equals 3kT=nl2. Thus, Eq. (14.9.2) becomes

f ¼ cK½
ð
ðrrÞpðrÞ dr� � n ð14:9:4Þ

Finally, from the definition of the stress tensor
~~
t in Eq. (10.5.5), we have

f ¼
~
t � n ð14:9:5Þ

FIGURE 14.20 Calculation of the stress contributed by a dumbbell. (From Ref. 37.)

Reprinted with permission from Bird, R. B., H. R. Warner, Jr., and D. C. Evans: Kinetic

theory and rheology of dumbell suspensions with Brownian motion, Atd. Polym. Sci. vol.

8, pp. 1–90. 1971. Copyright 1971 Springer-Verlag GmbH & Co. kG.
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and by comparison with Eq. (14.9.4),

~
t ¼ cK

ð
ðrrÞpðrÞ dr ¼ cKhrri ð14:9:6Þ

where hrri is the ensemble average of the dyad rr. If r can be represented as

r ¼ xiþ yjþ zk ð14:9:7Þ
then

rr ¼
x2 xy xz

xy y2 yz

xz yz z2

24 35 ð14:9:8Þ

It can also be shown that the momentum of the beads crossing the plane

contributes a term to
~
t, but this term simply adds to the isotropic pressure term p.

The total stress
~
T in the polymer solution then is the sum of the solvent stress,

which is Newtonian [given by Eqs. (14.2.1) and (14.2.2)], and the polymer stress,

which is yet to be calculated but is given formally by Eq. (14.9.6). Thus,

~
T ¼ �p

~
lþ 2Zs

~
Dþ cKhrri ð14:9:9Þ

in which
~
1 is the unit matrix having 1’s along the diagonal and 0’s elsewhere, Zs is

the solvent viscosity and
~
D is called the deformation rate tensor, whose

components are given by

ð
~
DÞij ¼

1

2

@vi
@xj
þ @vj

@xi

 !
ð14:9:10Þ

Note that when there is no flow,
~
D is zero and pðrÞ is given by Eq.

(10.2.11). Evaluating the integral in Eq. (14.9.4) gives the following:

hrri ¼ nl2

3 ~
l ð14:9:11Þ

When flow begins from a state of rest, the initial value of pðrÞ is still given
by Eq. (10.2.11), but this changes with time due to flow-induced extension and

orientation of the dumbbells. The time-dependent probability distribution can be

calculated by analyzing the motion of one bead of the dumbbell with respect to

the other.

To calculate pðrÞ in the presence of flow, consider a dumbbell with one bead

anchored to the origin of a rectangular Cartesian coordinate system x; y; z, as
shown in Figure 14.19. The other bead is free to move and, at any time, its

position is given by a balance of forces that act on it. Although drag due to flow

tends to separate the beads and orient the dumbbell, drag is resisted by the spring

force and the Brownian motion force. As seen in Chapter 13, Eq. (13.4.1), the
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Brownian motion force is equivalent to an osmotic pressure force whose

magnitude in one-dimensional flow is �kT ðd ln c=dxÞ; when there is three-

dimensional flow, this expression is generalized to �kTHH ln c. Neglecting inertia,

the force balance on bead 2 yields

Fspring þ Fosmotic þ Fdrag ¼ 0 ð14:9:12Þ

The spring force is given by Eq. (14.9.3), whereas the drag force is

Fdrag ¼ �z0ð_rr� vÞ ð14:9:13Þ

in which z0 is the friction coefficient given by Stokes’ law, _rr is the velocity of the

bead, and v is the fluid velocity. If the velocity gradient is HHv (with components

@vi=@xj), the fluid velocity at r is HHv � r because the velocity at the origin is zero.

Introducing the relevant expressions in Eq. (14.9.12) gives

�Kr� kTHH ln c� z0ð_rr� HHv � rÞ ¼ 0 ð14:9:14Þ

and, solving for _rr, we have

_rr ¼ � K

z0
r� kT

z0
HH ln cþ HHv � r ð14:9:15Þ

Because the dumbbells are neither created nor destroyed, the species conservation

equation is as follows:

@c

@t
þ HH � ð_rrcÞ ¼ 0 ð14:9:16Þ

Recognizing that it is meaningless to talk about concentration when working with

a single bead, we replace c with the probability pðrÞ and also introduce Eq.

(14.9.15) into Eq. (14.9.16) with the following result:

� @p

@t
¼ HH � � K

z0
rþ HHv � r

� �
p� kT

z0
HHp


 �
ð14:9:17Þ

which is called the diffusion equation. The solution of this equation for a given

flow field (or velocity gradient) yields pðr; tÞ which can then be used to evaluate

the stress through Eq. (14.9.6).

Example 14.6: Obtain the nonzero components of hrri for steady laminar

shearing flow at a constant shear rate _gg.
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Solution: If vx equals _ggy and all other velocity components are zero, then

HHv ¼
0 _gg 0

0 0 0

0 0 0

264
375

HHv � r ¼
0 _gg 0

0 0 0

0 0 0

264
375 x

y

z

264
375 ¼ _ggy

0

0

264
375

At steady state, @p=@t is zero, and the diffusion equation becomes

� K

z0

@

@x
ðxpÞ þ @

@y
ðypÞ þ @

@z
ðzpÞ

� �
þ _ggy

@p

@x
� kT

z0

@2p

@x2
þ @2p

@y2
þ @2p

@z2

� �
¼ 0

ð14:9:18Þ

Instead of explicitly solving for pðrÞ, we multiply Eq. (14.9.18) by x2, xy, y2, z2,

and so on, in turn, and integrate from �1 to þ1, assuming that p tends to zero

faster than any power of x; y, or z as x; y, and z tend to �1. Also, on physical

grounds,
Ð1
�1 p dx dy dz ¼ 1.

Multiplying Eq. (14.9.18) by xy and integrating from �1 to þ1, we find

that the very first integral is given as follows [40]:ð ð ð
xy

@

@x
ðxpÞ dx dy dz ¼

ð ð
y

ð
x

@

@x
ðxpÞ dx

� �
dy dz

¼
ð ð

y



x2pj1�1 �

ð
xp dx

�
dy dz

¼ �
ð ð ð

xyp dx dy dz

¼ �hxyi

ð14:9:19Þ

from the definition of the ensemble average. Continuing in this manner, it is

relatively easy to show [40]

� K

z0
ð�2hxyiÞ þ _ggð�h y2iÞ ¼ 0 ð14:9:20Þ

Further, if the diffusion equation is multiplied by y2 and integrated, we get

2K

z0
h y2i � 2kT

z0
¼ 0 ð14:9:21Þ
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and on multiplying by x2 and integrating, the result is

�2_gghxyi þ 2K

z0
hx2i � 2kT

z0
¼ 0 ð14:9:22Þ

Solving the previous three equations for the three unknowns, hxyi, hx2i, and h y2i,
gives

hxyi ¼ z0 _gg
2K
h y2i ð14:9:23Þ

hx2i ¼ kT

K
þ z0 _gg

K
hxyi ð14:9:24Þ

h y2i ¼ kT

K
¼ nl2

3
ð14:9:25Þ

and we can show that hz2i equals h y2i.
With the results of Example 14.6 in hand, we can use Eq. (14.9.6) to

compute the material functions in a steady laminar shearing flow as follows:

t12 ¼ txy ¼ cKhxyi ¼ cz0 _gg
6

nl2 ð14:9:26Þ

t11 � t12 ¼ txx � tyy ¼ N1 ¼ cK½hx2i � h y2i� ¼ cnl2z20 _gg
2

6K
ð14:9:27Þ

t22 � t33 ¼ tyy � tzz ¼ N2 ¼ 0 ð14:9:28Þ
Accordingly, the polymer contribution to the shear viscosity is

t12
_gg
¼ cz0nl

2

6
ð14:9:29Þ

which is proportional to the polymer molecular weight. Consequently, the

solution viscosity is given by

Zsol ¼ Zs þ
cz0nl

2

6
ð14:9:30Þ

which does not depend on the shear rate. This is somewhat unrealistic because

shear thinning is generally observed at high enough shear rates even for

unentangled systems. In practical terms, though, a constant solution viscosity,

independent of shear rate, will be measured if the second term on the right-hand

side of Eq. (14.9.30) is negligible compared to the first term. This is the situation

that obtains with constant-viscosity, ideal elastic liquids [38]. Regarding the

molecular weight dependence, n is proportional to M , but c (the number of

molecules per unit volume) is proportional to M�1 at a fixed mass concentration.

Thus, the molecular-weight dependence of the polymer contribution to the

viscosity depends on z0 alone. From Stokes’ law, z0 is proportional to the bead
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radius, which increases with increasing molecular weight. However, the extent of

the increase depends on whether the solvent is good or poor. Typically, we find

that z0 / Ma, where 0:5 � a � 1.

As far as elastic effects are concerned, Eqs. (14.9.27) and (14.9.28) state

that N1 is proportional to _gg2 and N2 equals zero. Both of these relations are found

to be true for dilute polymer solutions in high-viscosity solvents [38]. Typical

data for N1 are shown in Figure 14.21.

Although this process can be repeated to obtain the stress predictions for

any other flow field, we find that this laborious procedure is not necessary for the

special case of the dumbbell model [41]. On multiplying Eq. (14.9.17) by ðrrÞ
and integrating by parts, we get a closed-form differential equation for hrri.
Replacing hrri with

~
t=cK through the use of Eq. (14.9.6) yields the equation for

the polymer contribution to the stress,

~
tþ y

d
~
t

dt
¼ 2Z

~
D ð14:9:31Þ

FIGURE 14.21 First normal stress difference as a function of shear rate for a solution

of 1000-ppm polyisobutylene in a solvent of polybutene and kerosene. (From Ref. 38.)
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in which Z is given by the right-hand side of Eq. (14.9.29) and the relaxation time

y equals Z=ckT . Equation (14.9.31) is known as the upper-convected Maxwell

equation because the form of the equation is similar to Eq. (14.6.6), which results

from the use of a Maxwell element. ‘‘Upper convected’’ refers to the appearance

of the upper-convected derivative d=dt, defined as follows:

dtij
dt
¼ @tij

@t
þ P3

m¼1
vm

@tij
@xm
� tim

@vj
@xm
� tmj

@vi
@xm


 �
ð14:9:32Þ

Example 14.7: Obtain an expression for the net tensile stress (neglecting the

solvent contribution) in a uniaxial extension experiment according to the upper-

convected Maxwell equation.

Solution: It is easy to show [42]

dt11
dt
¼ @t11

@t
� 2t11_ee ð14:9:33Þ

dt22
dt
¼ @t22

@t
þ t22_ee ð14:9:34Þ

and the equations for t11 and t22 are uncoupled. Introducing Eqs. (14.9.33) and

(14.9.34) into Eq. (14.9.31) and noting that the components of
~
D are given by Eq.

(14.9.10), we can integrate Eq. (14.9.31) to yield t11 � t22 , the extensional stress
contributed by the polymer as follows:

t11 � t12 ¼
3Z_ee

ð1� 2y_eeÞð1þ y_eeÞ �
2Z_ee

1� 2y_ee
exp � ð1� 2y_eeÞt

y

� �
� Z_ee
ð1þ y_eeÞ exp �

ð1þ y_eeÞt
y

� � ð14:9:35Þ

which attains a steady value only when 2y_ee < 1.

Equation (14.9.31) is the simplest two-parameter equation that correctly

predicts the qualitative viscoelastic behavior of polymer solutions. For this

reason, it has been extensively used in non-Newtonian fluid mechanics for

predicting elastic effects in complex flow fields [43]. Note that it reduces to

the Newtonian equation if y is allowed to become zero. Also, it can be written in

an equivalent integral form as follows [43]:

~
tðtÞ ¼ Z

y2

ðt
�1

exp � t � s

y

� �
~
C�1ðsÞ ds ð14:9:36Þ

in which
~
C�1 is the Finger tensor, given earlier by Eq. (10.6.18) of Chapter 10.
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14.9.2 Multiple Bead^Spring Models

At the next level of complexity, the polymer molecule can be represented as a

necklace of N þ 1 alternating beads and N Hookean springs. If the presence of

the polymer molecule does not disturb the imposed flow field, the result is a

‘‘free-draining’’ molecule, the situation considered by Rouse [44]. At the other

extreme, the result can be hydrodynamic interactions, which result in fluid being

trapped within the molecule. This result has been accounted for by Zimm [45]. In

both cases, we assume that we have a theta solvent so that there are no excluded

volume effects. The analysis is identical to the one followed for the dumbbell

model, except that now an equation of motion [similar to Eq. (14.9.14)] is written

for each bead, which leads to a set of N þ 1 coupled equations. A closed-form

constitutive equation such as Eq. (14.9.31) can be obtained by means of an

orthogonal transformation of coordinates, with the new coordinate axes being

aligned with the eigenvectors of the matrix describing the coupled set of

equations [46]. The final result is as follows:

~
t ¼PN

i¼1 eti ð14:9:37Þ

where

eti þ yi edtidt
¼ 2Zi

~
D ð14:9:38Þ

in which Zi equals yickT . For the Rouse model, the relaxation times yi are as

follows [25]:

yi ¼
hr2inz
6p2kTi2

; i ¼ 1; 2; . . . ð14:9:39Þ

in which hr2i is the equilibrium mean-square end-to-end distance of the entire

molecule, n is the number of monomers, and z is the monomeric friction

coefficient.

In terms of experimentally measurable quantities, the Rouse relaxation time

can be written as [25]

yi ¼
6

p2
Z0 � Zs
ckTi2

; i ¼ 1; 2 ð14:9:40Þ

Correspondingly, the Zimm relaxation times are as follows [25]:

yi ¼
6

p2
Z0 � Zs
ckTbi

; bi ¼ 1:44; 4:55; 8:60; . . . ð14:9:41Þ

Because both the Rouse and Zimm theories should become more and more

accurate as the polymer concentration decreases, they ought to be tested at low
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polymer concentrations. Because neither theory predicts a shear-thinning vis-

cosity and because normal stress differences are difficult to measure at low

concentrations, storage modulus data are generally used for experimental valida-

tion of the theory. The theoretical expressions for G0 and G00 for both models are

the same and identical to those given earlier in Eqs. (14.7.9) and (14.7.10), with

Gi being ckT , except that the yi values are different and are given by Eqs.

(14.9.40) and (14.9.41). Note that for polymer solutions, the expression given by

Eq. (14.7.10) is only the polymer contribution G00 � oZs to G00 and not the G00 of
the entire solution. Usually, it is more convenient to make G0 and G00 � oZs
dimensionless and use the reduced moduli G0R and ðG00 � oZsÞR for comparison

with experimental data. Thus,

G0R ¼
G0

ckT
¼PN

i¼1

o2
Rðyi=y1Þ2

1þ o2
Rðyi=y1Þ2

ð14:9:42Þ

ðG00 � oZsÞR ¼
G00 � oZs

ckT
¼PN

i¼1

oRðyi=y1Þ
1þ o2

Rðyi=y1Þ2
ð14:9:43Þ

where the reduced frequency oR equals oy1, with y1 being the longest relaxation

time given by either Eq. (14.9.40) or Eq. (14.9.41). For both models, plots of G0R
and (G00 � oZsÞR versus oR should have slopes of 2 and 1, respectively, at low

frequencies. At high frequencies, though, the Rouse theory predicts a merger of

the two curves, each with a slope of 1=2, whereas the Zimm theory says that the

two curves become parallel with a slope of 2=3. Data of Tam and Tiu on an

aqueous polyacrylamide solution (see Figure 14.22) seem to follow the trend

predicted by the Zimm model, as far as the slopes are concerned [47]. More data

are available in the book by Ferry [17].

Shear thinning can be introduced into the foregoing equations either in a

phenomenological manner [48] or by making the entropic springs nonlinear and

finitely extensible [36]. The resulting expressions have, however, not been tested

extensively.

14.10 CONSTITUTIVE BEHAVIOR OF
CONCENTRATED SOLUTIONS AND
MELTS

Although the bead–spring models of the previous section can be considered

representative of the behavior of dilute polymer solutions, they cannot be used to

predict the behavior of concentrated solutions or melts due to the formation of

entanglements. Here, we turn instead to network models. The motivation for

using these models is the success of the theory of rubber elasticity in explaining

the stress–strain behavior of a network of polymer molecules linked together by
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junctions that are permanent in nature. In the case of polymer melts, it is assumed

that the entanglements are not permanent but are continually being created and

destroyed. This, then, is equivalent to approaching the problem from the other

asymptote—that of a solid rather than that of an infinitely dilute solution.

14.10.1 Lodge’s Rubberlike Liquid

The assumptions involved in the simplest of network theories have been listed by

Lodge [49], and these include the affine deformation assumption. It is also

assumed that each segment, which is that part of a polymer molecule contained

between two junctions, behaves in a Gaussian manner. This means that the

tension in any given segment is proportional to the end-to-end distance of the

segment; the constant of proportionality is again 3kT=hr2i, with hr2i being the

mean-square end-to-end distance at equilibrium. Thus, the situation is the same as

that for a rubber (see Chap. 10), except that the number of junctions changes with

time due to flow. At any given time, there is an age distribution of segments. In

the absence of flow, of course, the equilibrium distribution function for the

network segments at the moment of creation is identical to the equilibrium

FIGURE 14.22 Master curve of G0 and G00 � oZs versus oaT for 1000 ppm Separan

AP30, u, j: 10�C; s, d, 25�C, n, m, 40�C, q, w, 60�C. (From Ref. 47.) (Reprinted

with permission from Tam, K. C., and C. Tiu: ‘‘Steady and Dynamic Shear Properties of

Aqueous Polymer Solutions,’’ J. Rheol., vol. 33, pp. 257–280, 1989.)
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distribution function for a freely jointed bead–rod chain with no constraints at the

end points [7].

Equation (10.7.8) of Chapter 10 has shown that a block of rubber

containing N chain segments per unit volume has stress-versus-strain behavior

given by

tij ¼ NkTC�1ij

Similarly, for the rubberlike liquid, we would expect that the contribution to the

stress at time t from nðt; t0Þ dt0 (the number of segments per unit volume created in

interval dt0 at some past time t0) would be

nðt; t0ÞkTC�1ij dt0 ð14:10:1Þ

The total stress, however, is the sum of all these contributions:

tij ¼
ðt
�1

nðt; t0ÞkTC�1ij dt0 ð14:10:2Þ

in which the function n is still unspecified.

In order to determine n, we assume that chain segments are created at a

constant rate equal to Z=kTy2 per unit time per unit volume, with Z and y being

unknown constants [7,49]. Thus, during unit time, Z=kTy2 segments are created

at time t0. These are assumed to decay at a rate proportional to the number of

segments remaining, with the constant of proportionality 1=y. To determine the

number of segments nðt; t0Þ still remaining at a later time t, we solve the following

equation:

d

dt
nðt; t0Þ ¼ � nðt; t0Þ

y
ð14:10:3Þ

where nðt; t0Þ is Z=ðkTy2. Clearly, then, we have

nðt; t0Þ ¼ Z

kTy2

� �
exp � t � t0

y

� �
ð14:10:4Þ

Introducing Eq. (14.10.4) into Eq. (14.10.2) gives the equation of the Lodge

rubberlike liquid [49]:

tij ¼
Z

y2

ðt
�1

exp½�ðt � t0Þ=y�C�1ij dt0 ð14:10:5Þ

where the constants Z and y are obtained by comparison with experimental data.

It is remarkable that Eq. (14.10.5) has the same form as Eq. (14.9.36),

which was obtained from dilute solution theory. Therefore, it is equivalent in form
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to Eq. (14.9.31) as well. The parameters in Eq. (14.10.5), though, do not have the

same physical significance as the parameters in Eqs. (14.9.31) and (14.9.36).

Nonetheless, all of these equations suffer from the same shortcomings, namely

that they cannot predict shear thinning. Modern constitutive equations overcome

this and other limitations in different ways. A particularly popular modification is

the (four-parameter) model of Phan-Thien and Tanner [50].

14.10.2 Other Single-Integral Equations

Rubber elasticity theory can also be used to derive a general class of single-

integral equations, as opposed to a particular equation such as that for the Lodge

rubberlike liquid. To proceed, consider a cube of rubber, initially of unit edge, in

an extensional deformation as shown in Figure 14.23. In the deformed state, the

block of rubber has dimensions l1, l2, and l3, which also happen to be the

extension ratios.

The work done by force F1 is

dW ¼ F1 dl1 ð14:10:6Þ

so that

t11 ¼
F1

l2l3
¼ 1

l2l3

@W

@l1
¼ l1

@W

@l1
ð14:10:7Þ

FIGURE 14.23 Extensional deformation of a cube of rubber.
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where the last equality follows from volume conservation. Similarly, we have

t22 ¼ l2
@W

@l2
ð14:10:8Þ

t33 ¼ l3
@W

@l3
ð14:10:9Þ

where it is clear that W is a function of the stretch ratios.

To make further progress, we recognize that just as the dot product of a

vector with itself is independent of the coordinate system used to represent the

vector, certain properties of a matrix are also independent of the coordinate

system used. There are three such quantities, and they are called the invariants of

the matrix. For a matrix
~
A with elements aij, the invariants are as follows [51]:

I1 ¼ tr
~
A ¼P3

1

aij ð14:10:10Þ

I2 ¼ ½ðtr
~
AÞ2 � tr

~
A2� ð14:10:11Þ

I3 ¼ Determinant of
~
A ð14:10:12Þ

where tr is an abbreviation for the word ‘‘trace.’’

The Cauchy and Finger tensors for the deformation described in Figure

14.23 are given by

~
C ¼

l�21

l�22

l�23

264
375 ð14:10:13Þ

~
C�1 ¼

l21
l22

l23

264
375 ð14:10:14Þ

so that for the Finger tensor

I1 ¼ l21 þ l22 þ l23 ð14:10:15Þ
I2 ¼ l�21 þ l�22 þ l�23 ð14:10:16Þ
I3 ¼ 1 ð14:10:17Þ
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Because W depends on li, which, in turn, depends on I1 and I2 for the

Finger tensor, we can conclude the following:

t11 ¼ l1
@W

@l1
¼ l1

@W

@I1

@I1
@l1
þ @W

@I2

@I2
@l1

� �
¼ l1

@W

@I1
2l1 þ

@W

@I2
ð�2l�31 Þ

� �
¼ 2

@W

@I1
l21 � 2

@W

@I2
2l�21 ð14:10:18Þ

t22 ¼ l2
@W

@l2
¼ l2

@W

@I1

@I1
@l2
þ @W

@I2

@I2
@l2

� �
¼ l2

@W

@I1
2l2 þ

@W

@I2
ð�2l�32 Þ

� �
¼ 2

@W

@I1
l22 � 2

@W

@I2
l�22 ð14:10:19Þ

and similarly for t33. However, with the help of Eqs. (14.10.13) and (14.10.14),

these equations can be written compactly as follows:

~
t ¼ 2

@W

@I1 ~
C�1 � 2

@W

@I2 ~
C ð14:10:20Þ

Note that for the theory of rubber elasticity considered in detail in Chapter

10 [see Eq. (10.4.4)], we have

w ¼ G

2
ðI1 � 3Þ ð14:10:21Þ

where G is the modulus of the rubber. Thus, @W=@I1 equals G=2 and @W=@I2
equals zero, yielding

~
t ¼ G

~
C�1

which is the same as Eq. (10.7.8). Consequently, Eq. (14.10.20) is much more

general than Eq. (10.7.8) but contains no molecular information.

To obtain a constitutive equation for viscoelastic liquids using Eq.

(14.10.20), we must recognize that, due to stress relaxation, W depends not

only on I1 and I2 but also on time. If we assume that

W ¼
ðt
�1

mðt � t0ÞU ðI1; I2Þ dt0 ð14:10:22Þ
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in which m and U are as yet unspecified functions, we get the factorable form of

the Kaye–BKZ equation [52,53]:

~
t ¼

ðt
�1

mðt � t0Þ 2
@U

@I1 ~
C�1 � 2

@U

@I2 ~
C

� �
dt0 ð14:10:23Þ

Because m and U are unspecified functions, it it possible to predict most observed

rheological phenomena by picking specific functional forms for these quantities

[7].

A particular form of Eq. (14.10.23) that deserves special mention is the one

resulting from the theory of Doi and Edwards [54] and based on the reptation idea

of de Gennes [32]. These authors assumed that upon deformation of the polymer,

stress relaxation took place by two separate mechanisms. In the first instance

there was a rapid retraction of the chain within the deformed tube (see Figure

13.15 of Chap. 13), and in the second instance, there was slow diffusion of the

chain out of the original tube by the process of reptation. Within the confines of

the tube, the polymer acts like a Rouse chain. This leads to the following linear

stress relaxation modulus [33]:

GðtÞ ¼ G
P1

i¼1;3;...:
i�2 exp � ti2

yd

� �
ð14:10:24Þ

which is close to a single exponential function expð�t=ydÞ over a fairly wide

range of times around yd, the time for chain disengagement. As shown in Section

14.7, experimentally obtained dynamic moduli can be employed in conjunction

with Eqs. (14.7.9) and (14.7.10) to yield the discrete relaxation time spectrum,

which, in turn, gives the stress relaxation modulus through the use of Eq.

(14.6.10). Reptation model parameters can then be obtained by fitting Eq.

(14.10.24) to the stress–relaxation modulus.

By experiment, it is found that polydispersity has a strong effect on the

shapes of the G0 and G00 functions and, therefore, on the relaxation time spectrum

[55]. By theory, it is found that the reptation model can be used to relate the

stress–relaxation modulus of polydisperse polymers to the corresponding results

for monodisperse polymers using what is essentially a mixing rule that involves

the molecular-weight distribution (MWD) [56]. By inverting this mixing rule, it is

possible to obtain the molecular-weight distribution from the relaxation time

modulus of a polydisperse polymer [57]. This procedure can be tailored to both

addition polymers that typically have a log normal distribution and to condensa-

tion polymers that have a ‘‘most probable’’ distribution, and it has several

advantages: (1) For polymers, such as polypropylene, that dissolve in common

solvents only at high temperatures, rheological methods of obtaining the MWD

are much less expensive than the use of light scattering or size-exclusion

chromatography. (2) For polymers, such as fluoropolymers, that do not dissolve
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in common solvents, this is the only technique of determining MWD. (3) For all

polymers, rheology is much better able to detect the presence of a high-

molecular-weight tail or the presence of long-chain branching as compared to

chromatography; the largest molecules in a polymer sample often determine how

easy or how difficult it is to process the material.

Osaki and Doi have discussed the predictions of the Doi–Edwards theory in

nonlinear viscoelasticity and compared these with available experimental data

[33]. Although this model has a remarkable degree of internal consistency,

agreement with data is not always quantitative. As a consequence, the model has

been modified on a number of occasions and is still a subject of research

[34,58,59].

14.11 CONCLUSION

This chapter has been a guided tour through the difficult study of rheology. The

difficulties stem primarily from the very mathematical nature of the material,

especially where constitutive modeling is concerned. Because the practitioner

involved in polymer processing requires at least a qualitative understanding of

non-Newtonian fluid mechanics, non-Newtonian effects and measurement tech-

niques have been discussed at the beginning of the chapter. In addition, the

theories presented are those that have provided the basic underpinning for much

of the technical literature that is read by rheologists today. A remarkable feature

of these theories is that the upper-convected Maxwell equation (or the Lodge

rubberlike liquid) emerges as the simplest viscoelastic constitutive equation

irrespective of the approach used. Although this equation has several short-

comings, some of which have been noted in the chapter, it has been extensively

used to model polymer processing operations; it should also be the first choice of

anyone wishing to understand the qualitative features of any new flow situation

involving polymeric liquids. The best evidence that this equation has merit is

provided by the existence of the Boger fluid, a dilute solution of a high-molecular-

weight polymer dissolved in a very viscous solvent. This liquid has a constant

viscosity and is highly elastic. In recent years, it has been used as the test fluid for

verifying computations done using the Maxwell model. The theory and practice

of rheology have, of course, advanced far beyond the limited material contained

in this chapter. Current developments may be found in the numerous books on

rheology, including those cited in the chapter and several that have been

published recently [55,60–65].
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PROBLEMS

14.1. Sketch the shear stress-versus-shear rate behavior corresponding to the

viscosity-versus-shear rate behavior depicted in Figure 14.1. Indicate the

lower and upper Newtonian regions clearly on your sketch.

14.2. Fill in the missing steps needed to go from Eq. (14.3.8) to Eq. (14.3.9).

14.3. Calculate the percentage change in the zero-shear viscosity of the LDPE

sample shown in Figure 14.7 if the temperature is increased from 150�C
to 151�C. What do you conclude?

14.4. If, in Figure 14.6, we replace the cone by a coaxial plate also of radius R,

we get the parallel-plate viscometer. If the vertical gap between the two

plates is H , where H � R, show that the shear rate at any radial position

(in cylindrical coordinates now) is or=H . How is the viscosity of a

Newtonian liquid related to the measured torque in this instrument?

14.5. In a couette viscometer, the liquid sample is kept in the annular gap

between two concentric cylinders, as shown in Figure P14.5. If one

FIGURE P14.5 A couette viscometer.
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cylinder is rotated relative to the other at an angular velocity o, obtain an

expression, in terms of tyr, for the torque that has to be applied to the

other cylinder to keep it stationary. Assume that R0 � Ri is small enough

that the circumferential velocity varies linearly across the gap. Also

assume that the viscometer length L is large enough that the influence

of the ends can be ignored. How is the liquid viscosity related to the

measured torque? Do not assume Newtonian fluid behavior.

14.6. Let trz be �Z dvz=dr in Eq. (14.4.2) and solve for the velocity profile vzðrÞ
for the fully developed tube flow of a Newtonian liquid. Integrate the

velocity profile over the tube cross section to relate the volumetric flow

rate Q to the pressure gradient. Substitute this relationship back into Eq.

(14.4.2) and evaluate the result at r ¼ R to obtain Eq. (14.4.10).

14.7. What is the Rabinowitsch correction factor for a power-law fluid?

14.8. The capillary is always positioned vertically in commercial capillary

viscometers. Yet, the analysis in Section 14.4 was for a horizontal

capillary. Does the theory need to be modified in any way? Justify your

answer.

14.9. Capillary viscometer data on a food emulsion are given as follows in

terms of the wall shear stress as a function of the volumetric flow rate. Use

Eq. (14.4.9) to compute the wall shear rate corresponding to each datum

point and thus obtain a graph of the shear viscosity versus the shear rate.

The capillary radius is 0.094 cm.

tw ðdyn=cm2Þ Q ðcm3=secÞ
2271 0.0045

2711 0.0067

3196 0.0111

3554 0.0161

3948 0.0224

4200 0.0284

14.10. Given here are shear viscosity data at 20�C for a 500-ppm solution of a

high-molecular-weight polyacrylamide in distilled water. Obtain the best-

fit parameters for the power-law and Carreau models.

Shear rate ðsec�1Þ Viscosity (P)

0.022 3.46

0.040 3.42

0.075 3.19
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0.138 2.89

0.255 2.53

0.471 2.16

0.870 1.76

1.607 1.38

2.970 1.06

5.490 0.79

10.150 0.58

18.740 0.42

34.600 0.30

14.11. Several articles in the technical literature suggest that melt fracture is

caused by the violation of the no-slip boundary condition at the tube wall.

In other words, at high enough flow rates, vzðRÞ equals Vs, which is called

a slip velocity.

Beginning with Eq. (14.4.3), redo the analysis in Section 14.4 using

the slip boundary condition and show that the equivalent form of Eq.

(14.4.7) is as follows:

4Q

pR3
¼ 4Vs

R
� 4

t3w

ðtw
0

t2rz _ggðtrzÞ dtrz

By partially differentiating this equation with respect to 1=R while

holding tw constant, suggest a method of obtaining Vs with the help of

pressure drop-versus-flow rate data.

14.12. A pressure-driven capillary viscometer is used to extrude polyethylene

terephthalate (PET) at 300�C, as shown in Figure P14.12. If PET can be

assumed to be a Newtonian liquid with a shear viscosity of 1000 P and

density of 1:3 g=cm3, what is the volumetric flow rate through the

capillary? You might want to use the results of Problem 14.6. Assume

isothermal conditions. If the filament emerging from the capillary at point

B is stretched continuously with a net downward force of 7� 104 dyn,

will the volumetric flow rate change? If so, by what percentage?

14.13. Sketch the force-versus-time behavior corresponding to any one of the

filament stretching runs in Figure 14.12.

14.14. Use Eq. (14.6.4) to obtain expressions for the first and second normal

stress differences during shearing at a constant shear rate. What do you

conclude from these expressions?

14.15. What is the relation between the extensional viscosity and the shear

viscosity according to the Boltzmann superposition principle?

14.16. Use Eq. (14.6.7) to determine the time dependence of the shear stress

when a fluid is sheared at a constant rate _gg beginning from a state of rest at

s ¼ 0.
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14.17. Derive Eq. (14.7.7) by integrating Eq. (14.7.3) by parts and noting that (a)

Gðt0Þ ! 0 as t0 ! 1 and (b) dG=dt0 is a negative exponential. Similarly,

derive Eq. (14.7.8), beginning with Eq. (14.7.4).

14.18. Is the neglect of the solvent contribution to the stress in the solution

justified in Example 14.7? Justify your answer by doing some calcula-

tions.

14.19. If a polymer solution is sheared at a constant shear rate _gg, beginning from

a state of rest, how does the shear stress vary with time if we use the

upper-convected Maxwell model?

14.20. Equation (14.9.31) gives only the polymer contribution to the stress. What

is the equivalent equation that gives the combined polymer and solvent

contribution?

14.21. Obtain an expression for the first normal stress difference in shear at

steady state according to the upper-convected Maxwell equation. Is there

a solvent contribution in this case?

FIGURE P14.12 Extrusion of PET using a pressure-driven capillary viscometer.
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15

Polymer Processing

15.1 INTRODUCTION

Thus far, we have talked about how polymers are synthesized, how they are

characterized, and how they behave as solids, melts, or in the form of solutions.

Ultimately, however, it is necessary to convert the polymer into useful products.

Typically, these may be rods, pipes, films, fibers, or molded articles. Most

frequently these materials are made from a single polymer. Increasingly,

though, blends, filled polymers, and composite materials are used. It should be

noted that even when a single polymer is used, it is rarely a chemically pure

material. Almost invariably, it contains additives that act as dyes, plasticizers,

antioxidants, and so on. A variety of physical structures can result, depending on

the kind of polymer and additives used and also on how these materials are

processed. Because the final structure obtained determines the physical properties

of the product, the process used has to be chosen with care. For inexpensive,

high-volume disposable items such as beverage containers or toys, the most

inexpensive process is used. The manufacture of high-value-added sophisticated

items such as compact disks or optical lenses, on the other hand, requires a great

deal of engineering and an intimate knowledge of the fundamentals of polymer

behavior.

In this chapter, we discuss just three of the most common polymer

processing operations-extrusion, injection molding, and fiber spinning. Because

630

Copyright © 2003 Marcel Dekker, Inc.



most polymers are sold in the form of pellets, an extruder is required to melt,

homogenize, and pump the thermoplastic material. Although articles such as

tubes, rods, and flat sheets can be made by extrusion, an extruder is often coupled

with other polymer processing machinery. A knowledge of extrusion is therefore

a prerequisite for studying other polymer processing operations. Note that

extrusion is a continuous operation. As opposed to this, injection molding is a

cyclic operation used to make a very wide variety of low- and high-technology

items of everyday use. It is now also being used to fabricate ceramic heat engine

components, which have complex shapes and are useful for high-temperature

applications. Ceramics such as silicon carbide and silicon nitride are hard,

refractory materials, and injection molding is one of the very few processes

that can be used for the purpose of mass production. Fiber spinning is studied not

only because it is the mainstay of the synthetic textiles industry but also because it

is used to make novel fibers out of liquid-crystalline polymers, graphite, glass,

and ceramics for use in composite materials. It is also a process where polymer

elasticity becomes important due to the extensional nature of the flow field. In

contrast, extrusion and injection molding are shear-dominated processes.

Although this is the last chapter of the book, it is really an introduction to

the very practical and fascinating topic of manufacturing items made from

polymeric materials. The major purpose of this chapter is to describe these

three operations and also to show how first principles are used to mathematically

simulate these or any other process. Such analyses are a sine qua non for

improving product quality, for designing new products, and for process optimiza-

tion. The material presented here is necessarily simplified, and we have restricted

ourselves wherever possible to steady-state and isothermal operations; extensions

to more realistic situations are conceptually straightforward, and we have

provided citations of the appropriate technical literature. For more details on

the process of constructing mathematical models, the reader is directed to the

excellent book by Denn [1].

15.2 EXTRUSION

This is the most common polymer processing operation. It is generally used to

melt and pump thermoplastic polymers through a die, which gives a desired shape

to the extrudate. Although extrusion can be carried out using pressure-driven and

plunger-driven devices, it is the screw extruder that is used almost universally in

industrial applications. Extruders can contain multiple screws, but we shall

initially focus on the single-screw extruder, which consists of a helical screw

rotating inside a cylindrical barrel. This is shown schematically in Figure 15.1 [2].

The polymer is generally fed to the extruder in the form of pellets through a

hopper, which leads to the channel formed between the screw and the barrel. If
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the polymer being processed is hygroscopic, it is usually dried beforehand and the

hopper is blanketed by a dry inert gas such as nitrogen. Although the barrel is

heated to a temperature above the melting point of the polymer, the region very

close to the base of the hopper is often water cooled to prevent polymer from

melting in the hopper and forming a solid plug, which would block additional

polymer from entering the extruder. The rotation of the screw forces the polymer

to move along the channel, and it does so initially as a solid plug, then as a

semisolid, and, finally, as a melt. The channel depth is usually fairly large in the

solids-conveying zone and it decreases progressively as the polymer melts and

ultimately becomes constant in the melt zone. Although it is convenient to think

in terms of these three separate zones and the screw geometry often reflects this

thinking, it is probably true that the processes of solids conveying, melting, and

melt pressurization occur simultaneously. For the purposes of analysis, though,

we shall still treat the three zones separately. Of course, if the extruder is fed

directly by a polymerization reactor, as happens during the manufacture of

synthetic textiles by melt spinning, the solids-conveying and melting zones are

absent. Only the melt zone remains; it is also called the metering zone.

The purpose of any mathematical model of steady-state extrusion is to

relate quantities such as energy dissipation, the volumetric flow rate, the melting

profile, the temperature profile, and the pressure profile to the extruder geometry,

to the processing variables such as barrel temperature and screw rpm, and to the

material properties of the polymer. In order to accomplish this task, we also need

to know the details of the die that is attached to the extruder. Because the process,

in general, is nonisothermal and the rheological models are nonlinear, analytical

solutions cannot be obtained for realistic cases of interest. Invariably, numerical

techniques of solution have to be used. Here, though, we will consider the

simplest possible cases with a view toward both elucidating the physics of the

problem and illustrating the approach to be taken for problem solving. Analyses

FIGURE 15.1 Schematic representation of a single-screw extruder. (From Ref. 2)
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for more realistic situations are available in the literature; here, the mathematics is

more complicated, but the basic approach is the same. It should be realized,

though, that the process of determining the screw geometry to yield desired

extruder performance is much more difficult than determining extruder perfor-

mance for a given geometry.

15.2.1 Screw Geometry

A section of a simplified screw is shown in Figure 15.2 to define the variables that

characterize the screw geometry [3]. The notation used is that of Tadmor and

Klein [3]. The inside diameter of the barrel is Db, whereas the screw diameter is

D; both of these quantities can range from 1 to 12 in. A typical value of the ratio

of the screw length to its diameter is 24. The channel depth is H , and it is clear

from Figure 15.1 that both H and D vary with axial position. The radial clearance

between the tip of the flights and the inner surface of the barrel is df , and L is the

axial distance moved by the screw during one full revolution. The width of the

screw flight in the axial direction is b, and the width in a direction perpendicular

to the flight is e. Finally, W is the distance between flights measured perpendi-

cular to the flights, and y, the helix angle, is the angle between the flight and the

plane perpendicular to the screw axis. In general, y, b, and W vary with radial

position; nonetheless, we will take them to be constant. We will also assume that

df is negligible and that there is no leakage of material over the flights. Also, for

purposes of analysis, we will assume that Db is approximately the same as D.

To begin the analysis, we recognize that flow occurs because friction at the

surface of the barrel makes the plastic material slide down the channel and go

toward the extruder exit as the screw is rotated. This motion of a material element,

resulting from the relative velocity between the barrel and the screw, can be

FIGURE 15.2 Line a–a indicates a cut perpendicular to the flight at the barrel surface.

(From Ref. 3.)
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studied more easily by allowing the barrel to rotate in a direction opposite to that

of screw rotation and holding the screw stationary. Further, if we realize that the

curvature of the screw is hardly felt by the polymer, we can consider that the

polymer is moving down a long, rectangular cross-sectional channel due to the

movement of the upper surface. This is shown in Figure 15.3. In effect, we can

unwind the channel and use Cartesian coordinates for the analysis.

15.2.2 Solids-Conveying Zone

This is the region from the point at which material enters the hopper to a point in

the extruder channel where melting begins. Although a large number of models

have been proposed to determine the flow rate of solids in this region, the

accepted analysis is that of Darnell and Mol [4], which is presented here in

simplified form.

As polymer pellets move down the channel, they become compacted into a

plug that moves at a velocity Vp in the down channel or z direction. In general,

there is slip between the plug and both the barrel and screw surfaces. The barrel

moves at a velocity Vb , which in magnitude equals pDN , where N is the

revolutions per unit time of the screw; this velocity vector makes an angle y to

the down-channel direction. Clearly, the velocity of the barrel relative to the plug

is (Vb � Vp) and it makes an angle (yþ f) to the z direction; this is the angle at

which the barrel appears to move for an observer moving with the plug.

With reference to Figure 15.4, we have

tanf ¼ Vpl Vb �
Vpl

tan y

� ��1
ð15:2:1Þ

FIGURE 15.3 Polymer flow in the channel between the screw and barrel surface.
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where Vpl is the component of the plug velocity along the screw axis. Thus,

Vpl ¼ Vb

tanf tan y
tanfþ tan y

ð15:2:2Þ

The volumetric flow rate, Qs, of the solid plug is the product of the axial

component of the plug velocity and the area for flow in that direction,

Qs ¼ VplpDH ð15:2:3Þ
which, in combination with Eq. (15.2.2), gives

Qs ¼ ðp2D2NHÞ tanf tan y
tanfþ tan y

ð15:2:4Þ

where all the quantities except f are known; f is obtained by a simultaneous

force and moment balance on a section of the solid plug, as shown in Figure 15.5.

The force that causes the plug to move is the force of friction, F1, between

the barrel and the plug. As mentioned previously, the barrel velocity relative to

the plug is in a direction that makes an angle yþ f to the z direction. This,

therefore, is the direction of F1. The magnitude of F1 is given by

F1 ¼ fb pW dz ð15:2:5Þ
where fb is the coefficient of friction between the plug and the barrel surface, p is

the isotropic pressure within the plug, and dz is the thickness of the plug. A

pressure gradient develops across the plug and the force due to this is as follows:

F6 � F2 ¼ HW dp ð15:2:6Þ

FIGURE 15.4 Diagram showing the different velocity vectors.
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As will be evident later, dp is a positive number, so pressure increases with

increasing z.

Normal forces act on the plug at the flights due to the presence of the

isotropic pressure. Thus, we have

F8 ¼ pH dz ð15:2:7Þ

The normal force that acts on the other flight is

F7 ¼ pH dzþ F* ð15:2:8Þ

where F* is a reaction force.

Finally, there are friction forces on the two flights and on the screw surface,

as shown in Figure 15.5. Their magnitudes are as follows:

F3 ¼ fsF7 ð15:2:9Þ
F4 ¼ fsF8 ð15:2:10Þ
F5 ¼ fs pW dz ð15:2:11Þ

where fs is the coefficient of friction between the plug and the screw surface.

Each of the forces F1 to F8 can be resolved into a component parallel to the

screw axis and a component perpendicular to the screw axis. These must sum to

zero because the plug does not accelerate. The axial force balance takes the

following form:

F1 sinfþ ðF6 � F2Þ sin y� ðF7 � F8Þ cos yþ ðF3 þ F4 þ F5Þ sin y ¼ 0

ð15:2:12Þ

FIGURE 15.5 Forces acting on the solid plug. (From Ref. 3.)
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Introducing expressions for the various forces into Eq. (15.2.12) and

rearranging, we find that

F* ¼ A1 p dzþ A2 dp

cos y� fs sin y
ð15:2:13Þ

where

A1 ¼ fbW sinfþ 2Hfs sin yþWfs sin y ð15:2:14Þ
A2 ¼ HW sin y ð15:2:15Þ
Another expression for F* can be obtained by a moment balance about the

axis of the screw,

D

2
½F1 cosf� ðF6 � F2Þ cos y� ðF7 � F8Þ sin y
� ðF3 þ F4 þ F5Þ cos y� ¼ 0 ð15:2:16Þ

with the result that

F* ¼ B1 p dz� B2 dp

sin yþ fs cos y
ð15:2:17Þ

where

B1 ¼ fbW cosf� 2Hfs cos y�Wfs cos y ð15:2:18Þ
B2 ¼ HW cos y ð15:2:19Þ
Equating the two expressions for F* and rearranging yields

dp

dz
¼ � ðA1K � B1Þ
ðA2K þ B2Þ

p ð15:2:20Þ

where

K ¼ sin yþ fs cos y
cos y� f2 sin y

ð15:2:21Þ

Integrating Eq. (15.2.20) from z ¼ 0, near the hopper base, where p ¼ pB to z

gives

p ¼ pB exp �
ðA1K � B1Þ
ðA2K þ B2Þ

z

� �
ð15:2:22Þ

and pressure rises exponentially with distance z. If zb is taken as the length of the

solids-conveying zone in the down-channel direction, p at zb gives the pressure at

the end of this zone.

We began this analysis seeking the angle f so that we could calculate the

solids-conveying rate from Eq. (15.2.4). Now, f is found to be given implicitly in
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terms of the pressure rise by Eq. (15.2.22), because it is hidden in the constants

A1 and B1. Thus, a knowledge of Dp is needed for the determination of Qs. If Dp
is nonzero, we would have to calculate this quantity. In principle, we can work

backward from the extruder exit and compute p at zb using the condition that the

mass flow rate has to be the same throughout the extruder. Note from Eq. (15.2.4)

that the volumetric flow rate increases linearly with the screw speed. If, on the

other hand, the flow rate is known, we can determine f from Eq. (15.2.4) and the

pressure rise from Eq. (15.2.22). To calculate the pressure at the end of the solids-

conveying region, though, we need the value of pB, the pressure at the base of the

hopper. For this, it is necessary to examine the flow of granular solids in a conical

bin. This has been done, and results are available in the literature [5,6].

Example 15.1: What is the maximum possible rate of solids conveying through

an extruder?

Solution: The flow rate is maximum when there is no obstruction at the extruder

exit (i.e., Dp ¼ 0) and when there is no friction between the polymer and the

screw surface. Under these conditions, Eq. (15.2.12) becomes

F1 sinf� F* cos y ¼ 0

whereas Eq. (15.2.16) takes the form

F1 cosf� F* sin y ¼ 0

with the result that

tanf ¼ cot y

which when inserted into Eq. (15.2.4) leads to the desired result:

Qmax ¼ p2D2NH sin y cos y

In closing this section we mention that Chung has observed that the model

of Darnell and Mol is strictly valid only up to the point that the polymer begins to

melt [7]. Because the barrel temperature is kept above the melting point of the

polymer, a layer of liquid forms fairly quickly and coats the solid plug. As a

consequence, Eqs. (15.2.5) and (15.2.9)–(15.2.11) have to be modified and the

forces F1, F3, F4, and F5 calculated using the shear stress in the molten polymer

film. A result of this modification is that f becomes a function of the screw

revolutions per minute (rpm) [7,8]. We also mention that Campbell and Dontula

have proposed a new model that does not require us to assume that the screw is

stationary [9]. This model appears to give better agreement with experimental

data.
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15.2.3 Melting Zone

Melting of the polymer occurs due to energy transfer from the heated barrel and

also due to viscous dissipation within the polymer itself. This melting does not

happen instantly but takes place over a significant part of the screw length. The

purpose of any analysis of the melting process is to predict the fraction of

polymer that is melted at any down-channel location and to relate this quantity to

material, geometrical, and operating variables.

Maddock [10] and Tadmor and Klein [3] studied the melting process by

‘‘carcass analysis’’: They extruded colored polymer and stopped the extruder

periodically. By cooling the polymer and extracting the screw, they could track

the progress of melting and also determine the sequence of events that ultimately

resulted in a homogeneous melt. They found that a thin liquid film was formed

between the solid bed of the polymer and the barrel surface. This is shown in

Figure 15.6. Because of the relative motion between the barrel and the polymer

bed, the molten polymer was continually swept from the thin film in the x

direction into a region at the rear of the bed between the flight surface and the

bed. Liquid lost in this manner was replaced by freshly melted polymer so that the

film thickness d and the bed thickness both remained constant. As melting

proceeded, the solid polymer was transported at a constant velocity Vsy to the thin

film–solid bed interface and, correspondingly, the bed width X decreased with

increasing down-channel distance.

A large number of models, of varying degrees of complexity, exist for

calculating X as a function of distance z [3,8,11,12]. In the simplest case, it is

assumed that the solid polymer is crystalline with a sharp melting point Tm and a

latent heat of fusion l and that the molten polymer is a Newtonian liquid. It is also

assumed that the solid and melt physical properties such as the density, specific

FIGURE 15.6 Melting of a polymer inside the extruder. (From Ref. 2.)
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heat, and thermal conductivity remain constant, independent of temperature. The

barrel temperature is taken to be Tb and the screw temperature is Ts. Furthermore,

the velocity of the solid bed in the z direction, Vsz, is taken to be constant.

Because there is no accumulation of mass anywhere within the extruder, this

velocity is obtained from Eq. (15.2.4) as follows:

Vsz ¼
Qs

HW
ð15:2:23Þ

From the viewpoint of an observer moving with the solid polymer, the

barrel appears to move with a velocity Vj (see Figure 15.6),

Vj ¼ Vb � Vsz ð15:2:24Þ
so that (see Fig. 15.6)

jVjj2 ¼ jVbj2 þ jVszj2 � 2jVbkVszj cos y ð15:2:25Þ
If we now consider a coordinate system xyz with its origin located at the

solid bed–melt interface (see Fig. 15.6) and moving with a velocity Vsz , the

differential form of the energy balance as applied to the melt film is given by

km
d2T

dy2
þ Z

dv

dy

� �2

¼ 0 ð15:2:26Þ

where km is the melt thermal conductivity, Z its viscosity, and v ¼ jVjj. Here, it is
assumed that that temperature varies only in the y direction and conduction is the

only mode of heat transfer. Note that the second term in Eq. (15.2.26) results from

viscous dissipation; this term equals the constant quantity Zðv=dÞ2, provided that

this is considered to be a flow between two infinite parallel plates.

Integrating Eq. (15.2.26) twice with respect to y and using the conditions

T ð0Þ ¼ Tm and T ðdÞ ¼ Tb gives the following:

T � Tm

Tb � Tm
¼ Zv2

2kmðTb � TmÞ
y

d
1� y

d

� �
þ y

d
ð15:2:27Þ

The heat flux into the interface from the melt film is

qy1 ¼ �km
dT

dy
ð0Þ ¼ � km

d
ðTb � TmÞ �

Zv2

2d
ð15:2:28Þ

Within the solid polymer bed, the energy balance is

rscsVsy

dT

dy
¼ ks

d2T

dy2
ð15:2:29Þ

where the various symbols have their usual meanings and the subscript s denotes

the solid polymer.
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For the purpose of integrating Eq. (15.2.29), it is assumed that the

temperature far away from the interface at y ¼ �1 is the screw temperature

Ts. Because T ð0Þ is Tm, then, we have within the solid bed

T � Ts

Tm � Ts
¼ exp

Vsyrscs
ks

y

� �
ð15:2:30Þ

The heat flux into the interface from the solid bed is

qy2 ¼ �ks
dT

dy
ð0Þ ¼ �rscsVsyðTm � TsÞ ð15:2:31Þ

The difference in heat fluxes across the interface represents the energy needed to

melt the polymer per unit time per unit interface area. Thus, we have

jqy1j � jqy2j ¼ Vsyrsl ð15:2:32Þ

Introducing Eqs. (15.2.28) and (15.2.31) into Eq. (15.2.32) gives

Vsyrsl ¼
km

d
ðTb � TmÞ þ

Zv2

2d
� rscsVsyðTm � TsÞ ð15:2:33Þ

which involves two unknowns, d and Vsy.

An additional relation between d and Vsy is needed, and this is obtained by

proposing that the mass that enters the melt film in the y direction from the solid

bed all leaves with the melt in the x direction. Consequently, we have the

following:

VsyrsX ¼
Vbx

2

� �
rmd ð15:2:34Þ

Although Eq. (15.2.34) does relate d to Vsy, it also involves a new unknown X .

Solving for Vsy from Eq. (15.2.33) and introducing the result into Eq. (15.2.34)

gives

d ¼ 2kmðTb � TmÞ þ Zv 2

Vbxrm½csðTm � TsÞ þ l

� �1=2

X 1=2 ¼ c1X
1=2 ð15:2:35Þ

where the constant c1 is defined by Eq. (15.2.35).

The polymer that melts has to come from the bed of the solid polymer

whose width X decreases with down-channel distance. This change in width is

obtained from a mass balance on the solid polymer as follows:

�rsVszH
dX

dz
¼ Vbx

2

� �
rmd ð15:2:36Þ
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which can be combined with Eq. (15.2.35) to yield

� dX

dz
¼ Vbx

2

rm
rs

c1X
1=2

VszH
¼ c2X

1=2 ð15:2:37Þ

where the constant c2 is defined by Eq. (15.2.37). Integrating Eq. (15.2.37) using

X ð0Þ ¼ W gives

X

W
¼ 1� c2z

2W 1=2

� �2
ð15:2:38Þ

Complete melting will occur when X ¼ 0. The total down-channel distance zT
needed for this is

zT ¼
2W 1=2

c2
ð15:2:39Þ

The foregoing analysis combines experimental observations with funda-

mentals of transport phenomena to analytically relate X to z. It is obviously quite

restrictive. Given the known behavior of polymeric fluids, we can immediately

think of a number of modifications, such as making the shear viscosity in Eq.

(15.2.26) depend on temperature and shear rate. We can also relax the assumption

that T ð�1Þ ¼ Ts and assume that the screw is adiabatic [13]. These modifica-

tions have all been done, and the results are available in the literature. The

modifications bring model predictions closer to experimental observations but

also necessitate numerical or iterative calculations. The various melting models

have been reviewed by Lindt [14].

Finally, we note that there is usually a region preceding the melting zone

wherein a melt film exists but in the absence of a melt pool. This is called the

delay zone; its length is small, typically one to two screw turns [11]. Empirical

correlations exist for estimating the extent of the delay zone [3].

15.2.4 The Melt Zone

The completely molten polymer entering the melt zone is usually pressurized

before it leaves the extruder. Pressure builds up because relative motion between

the barrel and the screw forces the polymer downstream, but the exit is partially

blocked by a shaping die. In modeling this zone, we are interested in relating the

volumetric flow rate to the screw rpm and in calculating the pressure rise for a

given volumetric flow rate. This is fairly easy to do if we take the polymer to be

Newtonian and the melt conveying process to be isothermal. All that we have to

do is to solve the Navier–Stokes equation in the z direction for the flow situation

shown earlier in Figure 15.3. Whereas the z component of the barrel velocity

contributes to the volumetric flow rate out of the extruder, the x component

merely causes recirculation of fluid, because there is no leakage over the flights.

642 Chapter 15

Copyright © 2003 Marcel Dekker, Inc.



Because polymer viscosities are usually very large, the Reynolds numbers are

small and we can safely neglect fluid inertia in the analysis that follows. In

addition, we can take pressure to be independent of y because the channel depth is

very small in comparison to both the width and length. The simplified form of the

z component of the Navier–Stokes equation is as follows:

@p

@z
¼ Z

@2vz
@y2

ð15:2:40Þ

where we have assumed fully developed flow in the z direction. As a conse-

quence, @p=@z is constant.
Integrating Eq. (15.2.40) subject to the conditions vz ¼ 0 at y ¼ 0 and

vz ¼ Vbz at y ¼ H gives

vz ¼ Vbz

y

H
� yðH � yÞ

2Z
@p

@z
ð15:2:41Þ

The volumetric flow rate is given by

Q ¼ W

ðH
0

vz dy ð15:2:42Þ

Introducing Eq. (15.2.41) into Eq. (15.2.42) gives

Q ¼ VbzHW

2
�WH3

12Z
Dp
L

ð15:2:43Þ

where Dp is the total change in pressure over the entire length L of the melt-

conveying zone and Vbz is given by pDN cos y.

Example 15.2: In their study, Campbell et al. rotated the barrel and measured the

volumetric flow rate Q as a function of the screw rotational speed N in

revolutions per second for the extrusion of a Newtonian oil under open-discharge

conditions [15]. How should the measured value of Q depend on N? For their

extruder, D ¼ 5:03 cm, W ¼ 1:1 cm, H ¼ 0:36 cm, and y ¼ 6:3�.

Solution: In the absence of a die, Dp is zero and Eq. (15.2.43) predicts that

Q ¼ p� 5:03� N cosð6:3�Þ � 0:36� 1:1

2

¼ 3:11N cm3=sec

and the result does not depend on the shear viscosity of the polymer.

The experimental results of Campbell et al., along with the theoretical

predictions, are shown in Figure 15.7 [15]. Although the measured output varies

Polymer Processing 643

Copyright © 2003 Marcel Dekker, Inc.



linearly with N as expected, the theory overpredicts the results. This happens

because the theory is valid for an infinitely wide channel, whereas there is

actually just a finitely wide channel. To correct for the finite width, we multiply

the theoretical output by the following correction factor [15]:

Fd ¼
16W

p3H
P 1

i3
tanh

ipH
2W

� �
ð15:2:44Þ

which, for conditions of Example 15.2, has a value of 0.82. Excellent agreement

is found with data when this correction is applied, and the line marked ‘‘corrected

theory’’ passes through all the data points in Figure 15.7. Interestingly enough,

this perfect agreement between theory and practice is not obtained when the

extruder is operated with the barrel stationary and the screw moving. Campbell et

al. ascribe this to the small contribution made to the flow by the helical flights

[15]. They have proposed a theory that takes this contribution into account and

eliminates the mismatch [15].

The flow rate calculated in Example 15.2 is the maximum possible flow rate

through the extruder. In general, the extruder is equipped with a die whose shape

depends on whether the end product will be rods, tubes, fibers, or flat films. In

this case, the Dp in Eq. (15.2.43) is nonzero and positive. To obtain the

volumetric flow rate now, we need an independent equation for the pressure

rise; this is developed by considering the flow of the polymer through the die. For

Newtonian liquids, we can easily show that the volumetric flow rate through the

FIGURE 15.7 Theoretical and experimental flow rate for barrel rotation. (From Ref.

15.)
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die has to be proportional to the pressure drop across the die. For the fully

developed flow through a rod die (a tube), for example (see Chap. 14), we have

Q ¼ pR4

8Z
Dp
l

ð15:2:45Þ

where R is the tube radius and l is the tube length. This equation allows us to

calculate the pressure at the extruder–die interface because the pressure at the die

exit is atmospheric.

If you read the previous section again, you will realize that the change in

pressure across the melting zone remains an unknown quantity. Because the melt

pool geometry is similar to the screw channel geometry, the pressure rise is

calculated by again solving the Navier–Stokes equation.

15.2.5 Overall Extruder Simulation

In order to predict extruder performance, we have to solve the equations

describing the three different extruder zones in sequence. This is because

information generated in one zone is an input for a different zone. Even then,

the solution is iterative [16]. We begin by assuming the mass flow rate and

calculating the pressure change across each zone for a specified rpm. If the

calculated pressure at the die exit, obtained by adding up the individual pressure

drops, differs from atmospheric, we guess the flow rate again and repeat the

computations until agreement is obtained. Typical pressure profiles for the

extrusion of polyethylene through a 4.5-cm diameter extruder are shown in

Figure 15.8. It can sometimes happen, due to the nonlinear nature of the

equations involved, that there is more than one admissible solution. This implies

the existence of multiple steady states, which can be the cause of surges in

throughput as the extruder cycles between different steady states.

In any proper extruder simulation, we also must take into account the

nonisothermal nature of the process, because a significant amount of heat is

generated due to viscous dissipation. In addition, we cannot ignore the shear-

thinning behavior of the molten polymer. All this, along with the iterative nature

of the calculations, mandates the use of a computer. However, it is possible to

obtain reasonable answers to fairly realistic steady-state problems using just a

personal computer [2]. Using computer models of the type described by

Vincelette et al. [2], it is possible to try to optimize extruder performance with

respect to energy consumption or temperature uniformity or any other criterion of

interest. Note again, though, that in this brief treatment of single-screw extrusion,

we have not considered phenomena such as leakage flow over the flights and the

variation of the coefficient of friction between the polymer and the extruder

surface. We have also not accounted for complexities arising from features such

as extruder venting, a variable channel depth, and the change in parameters (such
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as the helix angle) with axial position. For a discussion of all these effects, the

reader is referred to advanced texts on the subject [3,6,17].

15.2.6 Extruders as Mixers

A single-screw extruder is an excellent device for melting and pumping polymers,

but it is not an efficient mixer due to the nature of the flow patterns inside the

extruder channels. During polymer processing, however, we often need to do the

following:

1. Blend in additives such as pigments, stabilizers, and flame retardants

2. Add fillers such as carbon black, mica or calcium carbonate

3. Disperse nanofillers such as montmorillonite and carbon nanotubes

4. Mix elastomers such as ABS or EPDM that act as toughening agents

5. Put in reinforcements like short glass fibers

6. Make polymeric alloys using two miscible plastics

7. Carry out reactive extrusion for the synthesis of copolymers.

For all of these purposes, it is generally desirable that the dispersed phase

leaving the extruder be in the form of primary particles (not agglomerates), if

solid, and that it have molecular dimensions, if liquid. Also, it is necessary that

the concentration of the dispersed phase be uniform throughout the mixture; this

is a particularly challenging proposition when the process has to be run in a

FIGURE 15.8 Predicted and experimental pressure profiles N ¼ 1 (1), 0.8 (2), 0.6 (3),

0.4 (4), 0.2 (5) min�1. (From Ref. 2)
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continuous manner and the dispersed phase is only a small volume fraction of the

total mixture.

A simple method of providing mixing in a single-screw extruder, especially

for liquid–liquid systems, is by introducing mixing pins that are a series of

obstacles protruding from the screw surface; these force the polymer stream to

divide and recombine around the pins. Alternately, one may add mixing devices

to the end of the extruder. These devices may be motionless, or they may have

moving parts such as in the case of kneading gears. Motionless mixers or static

mixers consist of blades or obstructions that are placed lengthwise in a tube,

forming open but intersecting channels [18]. When the extruder forces liquid to

flow through these channels, the melt has to go around the obstacles and

recombine periodically, and this ultimately leads to a very homogeneous mixture.

A recent innovation in static mixer technology has been the development of the

extensional flow mixer [19]. Here, material is made to flow through a series of

converging and diverging regions of increasing intensity. This again results in a

fine and well-dispersed morphology, but at the expense of a higher pressure drop.

Note that a single-screw extruder in combination with a static mixer is well suited

for the manufacture of polymer alloys or blends and for making color concen-

trates or master batches.

An immense amount of plastic, particularly nylon, polycarbonate, and

polyester, is compounded with short glass fibers. The addition of up to 40 wt%

glass to the polymer significantly increases the heat distortion temperature and

allows the compounded product to be used for under-the-hood automotive

applications. The process of compounding polymers with glass fibers is typically

carried out with the help of twin-screw extruders; multiple strands of the glass-

filled resin are extruded into a water bath and then cut, often under water, to give

pellets that are ready for injection molding into finished products. As the name

implies, a twin-screw extruder (TSE) has two screws which are generally parallel

to each other, but, unlike single-screw extruders, the screw diameter here does not

vary with axial position. If the screws turn in opposite directions, we have a

counterrotating TSE, whereas if the two rotate in the same direction, we have a

corotating TSE. Shown in Figure 15.9 is the top view of a corotating machine

[20]; this is a fully intermeshing extruder because the two (identical) screws are

situated as close to each other as possible. Note that the counterrotating geometry

features screws having leads of opposite hands. A beneficial consequence of

intermeshing screws is that, during extruder operation, each screw wipes the

entire surface of the other screw. The polymer can, therefore, not remain inside

the extruder for long periods of time, and thermal degradation is prevented. The

residence time distribution is narrow, and the residence time can be made as short

as 5–10 sec [21]. Flushing the extruder between different product grades is

therefore quick and easy.
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If the screw cross section is circular and the screws are intermeshing, the

barrel cross section has to be a figure 8, and this is shown in Figure 15.10. Here,

each screw has three tips (i.e., it is trilobal), although newer extruders are bilobal.

The intermeshing nature of the screws dictates the channel geometry, and, if we

section a screw parallel to its axis, the channel shape that results is the one

presented in Figure 15.11. The channel shape changes as we change the number

of tips (parallel channels), and this affects the average shear rate in the channel

and the mixing characteristics of the extruder. Each screw of a corotating TSE is

assembled by sliding a number of modular elements on to a shaft in a desired

sequence and then locking the elements in place. Two of the basic elements that

make up any screw are screw bushings (also called conveying elements) and

kneading disks. When conveying elements are employed, the screws look like

those shown in Figure 15.9. If we unwind the channels of trilobal conveying

elements, we get five parallel channels as shown in Figure 15.12. As the screws

turn, the polymer is conveyed from one screw to the other and back, and the flow

is very much a drag flow, quite like that in a single-screw extruder.

The reason that a TSE is considered to be superior to a single screw

extruder is due to the mixing provided by the presence of kneading disks. A

FIGURE 15.9 Cut-away view of a self-wiping, corotating twin-screw extruder. (From

Ref. 20.)
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collection of kneading disks is known as a kneading block (KB), and a typical KB

is shown in Figure 15.13 [22]. A KB consists of a number of disks having the

same cross section (or number of lobes) as the conveying elements but stuck

together at different stagger angles. The result may be looked upon as a

conveying element having a helix angle of 90�. Material is sheared and severely

squeezed as it goes through the KB, and the extent of deformation can be

controlled by varying the number of disks, their width, and the stagger angle.

Indeed, by changing the nature and location of the different elements, we can alter

the ‘‘severity’’ of the screw. This is what makes a corotating twin-screw extruder

FIGURE 15.10 Cross-sectional view of a three-tip screw in a self-wiping, corotating

twin-screw extruder. (From Ref. 20.)

FIGURE 15.11 Channel configuration corresponding to Figures 15.9 and 15.10. (From

Ref. 20.)
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so versatile. Note that TSEs allow for multiple feeding ports at different locations

on the barrel so that glass, for example, may be introduced after the polymer has

melted and also for the application of vacuum for purposes of devolatalization.

Also, a TSE is typically ‘‘starve-fed,’’ and there is no relation between the screw

rpm and the extruder throughput. In other words, we do not use a hopper to feed

the extruder. Instead, a single-screw device feeds solid polymer to the TSE at any

desired rate, and as a consequence, the conveying channels of the TSE are only

partially filled with polymer; the degree of fill is typically 25–50%, and it changes

as the screw pitch changes. There is, therefore, no pressurization of melt in the

screw bushings. A consequence of this is a decoupling of the different parts of the

extruder, and what happens in one portion of the extruder does not instantly affect

what happens in another portion of the extruder. Through the KBs, though, the

conveying capacity is small, material backs up, and in the region before the KB

the degree of fill reaches 100%. Here, the polymer gets pressurized, and it is this

increase in pressure that forces the polymer to go through the kneading disks. For

additional details, we refer the reader to excellent books on the topic [6,21,23].

FIGURE 15.12 Unwound channels of three-tip screw elements. Arrows show the

motion of the fluid as it is transferred from one screw to the other in the intermeshing

region. (From Ref. 20.)
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15.3 INJECTION MOLDING

One of the conceptually simplest methods of fabricating a plastic component,

though complex in geometry, is to make a mold or cavity that is identical in shape

and size to the article of interest and to fill it with a molten polymer, which then

solidifies and yields the desired product. This is the essence of the process of

injection molding, and machines are now available that can mass produce items

ranging in weight from a fraction of an ounce to several pounds and do so with

little or no human intervention. As a consequence, production costs are low, but

start-up costs can be high due to the high costs of both the injection-molding

machine and the molds themselves. The process is versatile, though, and can

be used to mold thermoplastics as well as thermosets. In addition, fillers can be

added to make high-strength composite materials and foaming agents can

FIGURE 15.13 Isometric view of a bilobal kneading block. (From Ref. 22.)
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be added to reduce the density of the molded article. By simultaneous or sequential

injection of two polymers into the same cavity, it is possible to make a part with a

foamed core and a dense skin. During injection molding (as shown in Fig. 15.14),

we can also inject an inert gas such as nitrogen into the mold so that it channels

through the less viscous sections of the molten polymer. This results in weight

reduction and also allows us to produce curved, hollow sections [24]. Some of the

polymers that are commonly used for injection molding are polyethylene,

polypropylene, and polystyrene for making containers, toys, and housewares.

Polyesters are used for gears, bearings, electrical connectors, switches, sockets,

appliance housings, and handles. Nylons are used for high-temperature applica-

tions such as automobile radiator header tanks and, for anticorrosion properties,

acetals are preferred for making items such as gears, bearings, pump impellers,

faucets, and pipe fittings. Other moldable polymers that are frequently encoun-

tered are polymethyl methacrylate for lenses and light covers, and polycarbonates

and ABS for appliance housings and automobile parts.

As shown in schematic form in Figure 15.14, an injection-molding machine

is essentially a screw extruder attached to a mold. The action of the extruder

results in a pool of molten polymer directly in front of the screw tip, and this

causes a buildup in pressure that forces the screw to retract backward. Once a

predetermined amount of polymer (the shot size) has been collected, screw

rotation stops and the entire screw moves forward like a plunger pushing material

into the mold. This type of machine is therefore known as a reciprocating-screw

injection-molding machine. Once the polymer has solidified, the mold is opened,

FIGURE 15.14 In the CINPRES I process, a controlled volume of inert gas (oxygen-

free N2) is injected through the nozzle into the center of the still-molten polymer. (From

Ref. 24.)
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the part is removed, and the cycle of operations is repeated. Typical cycle times

range from a few seconds to a minute. Injection-molding machines are normally

described in terms of the screw diameter, the maximum shot size in ounces, and

the force in tons with which the mold is clamped to the injection unit of the

machine.

A mold is typically composed of two parts, called the cavity and the core.

The cavity gives the molding its external form, whereas the core gives it the

internal form. This is seen in Figure 15.15, which shows a mold used to make a

plastic tumbler. It is clear that an empty space having the shape and size of the

tumbler is formed when the cavity and core are clamped together. Most molds

designed for long service life are made from alloy steels and can cost several tens

of thousands of dollars. To consistently make moldings having the correct

dimensions, it is necessary that the mold material be wear resistant and corrosion

resistant and not distort during thermal cycling; chrome and nickel plating are

common. Details of mold design and of the mechanical aspects of opening and

closing molds and ejecting solidified parts are available in the book by Pye [25].

Note that most molds are water-cooled. Also, a mold frequently has multiple

cavities.

The melt that collects near the reciprocating screw leaves the injection unit

through a nozzle that is essentially a tapered tube, which is often independently

heated [26] and may also contain a screen pack. The simplest way to connect the

nozzle to the mold shown in Figure 15.15 is through the use of a sprue bush,

which is another tapered passage of circular cross section, as shown in Figure

15.16. For multicavity molds, however, we need a runner system to join the sprue

to the gate or entry point of each cavity. Because we want all the cavities to fill up

at the same time, the runners have to be balanced; one possible arrangement is

FIGURE 15.15 A simple mold.
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shown in Figure 15.17. The runner system should be such that the cavities fill up

rapidly with a minimum amount of pressure drop, and this suggests the use of a

large cross-sectional area. At the same time, though, we want the material in the

runner to solidify quickly after mold filling, and this is possible if the runner cross

section is small. It can, however, not be so small that the runner freezes before the

mold is full, because this results in a useless molding called a short shot. For

these reasons and the fact that the polymer in the runner has to be removed with

the molding and recycled, the actual runner length and diameter are a compromise

meant to satisfy conflicting requirements. Similarly, the gate diameter has to be

small for ease of runner removal but large enough that the high shear rates and

viscous heating in the gate region do not result in thermal and mechanical

degradation of the melt.

If we monitor the pressure at the gate as a function of time during

commercial injection molding, we typically get the result shown in Figure

15.18, so that the overall process can be divided into three distinct stages. In

the first stage, the mold fills up with polymer and there is a moderate increase in

pressure. Once the mold is full, the second stage begins and pressure rises

drastically in order that additional material be packed into the mold to compen-

sate for the shrinkage caused by the slightly higher density of the solid polymer

relative to the melt. Finally, during the cooling stage, the gate freezes and there is

a progressive reduction in pressure. As Spencer and Gilmore explain, if flow into

the mold did not take place during the packing stage, the formation of a solid

shell at the mold walls would prevent the shrinkage of the molten polymer inside

[27]. Stresses would then arise, leading to the collapse of the shell and the

formation of sink marks. If the shell were thick enough to resist collapse, a

FIGURE 15.16 Feed system for single-impression mold. (From Pye, R. G. W.:

Injection Mould Design, 4th ed., Longman, London, 1989. Reprinted by permission of

Addison Wesley Longman Ltd.)
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vacuum bubble would form and, in any case, some of the thermal stresses would

remain in the molded article. A consequence of the frozen-in stress would be that

dimensional changes could occur on raising the temperature of the molding.

Even though the presence of the packing stage eliminates thermal stresses,

this is a mixed blessing. This is because polymer chain extension and orientation

occur along with flow during the packing part of the cycle. Unlike that during the

filling stage, this orientation is unable to relax due to the increased melt viscosity

and attendant large relaxation times resulting from cooling. The orientation

therefore remains frozen-in and leads to anisotropic material properties. In

addition, dimensional changes again take place on heating, and the material

tends to craze and crack much more easily. The packing time is therefore picked

FIGURE 15.17 Feed system: (a) typical shot consisting of moldings with sprue, runner,

and gates attached; (b) section through feed portion of mold. (From Pye, R. G. W.:

Injection Mould Design, 4th ed., Longman, London, 1989. Reprinted by permission of

Addison Wesley Longman Ltd.)
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to minimize stresses resulting from both quenching and polymer chain orienta-

tion. A further level of complexity arises if the polymer is crystallizable. Because

the rate and nature of crystallization depend on the thermal and deformational

history, different morphologies can be obtained, depending on how the molding

cycle is run, and this can endow the molding with totally different physical

properties.

The major machine variables in injection molding include the melt

temperature, mold temperature, injection speed, gate pressure, the packing

time, and the cooling time. The interplay of these variables determines the

pressure, temperature, and velocity profiles within the mold and the position and

shape of the advancing front during mold filling. These field variables, in turn,

determine the structure that is ultimately witnessed in the molded part. Any

mathematical model of injection molding is therefore directed at calculating the

values of the primary microscopic variables as a function of time during the

molding cycle. This is done by examining the three stages of the injection

molding cycle separately. Given the complexity of the process, this is not an easy

job. Nonetheless, we shall try to illustrate the procedure using a simple

rectangular mold geometry.

15.3.1 Mold Filling

White and Dee carried out flow visualization studies for the injection molding of

polyethylene and polystyrene melts into an end-gated rectangular mold [28].

Experiments were conducted under isothermal conditions and also for situations

where the mold temperature was below the polymer glass transition temperature

or the melting point, as appropriate. The apparatus used was a modified capillary

rheometer in which, instead of a capillary die, a combined-nozzle mold assembly

was attached to the barrel, as shown in Figure 15.19. The mold could be heated to

FIGURE 15.18 Typical gate pressure profile during injection molding.
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any desired temperature and it had a glass window that permitted observation of

the flow patterns within. Results for the flow-front progression and the streamline

shape are displayed in Figure 15.20 for isothermal experiments conducted at

200�C. Here, the fluid was injected slowly and there was no influence of the

polymer type. In each case, there was radial flow at the gate and, once the corners

were filled, the front shape became almost flat and this front moved forward and

filled the mold. The corresponding results for injection into a cold mold at 80�C
are shown in Figure 15.21 [28]. Now, the front is much more curved and there is

pronounced outward flow toward the mold wall. In addition, because of the

increase in polymer viscosity resulting from cooling, stagnant regions develop in

corners and near the mold wall.

To a good approximation, most of the polymer that flows into the mold can

be considered to be flowing in almost fully developed flow between two parallel

plates. For this situation, the melt at the midplane moves at a velocity that is

greater than the average velocity. At the front, however, the fluid not only has to

FIGURE 15.19 Injection-molding apparatus. (From Ref. 28.)
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slow down but also has to curve toward the mold wall, as shown in Figure 15.22.

This phenomenon is called fountain flow, and it happens because there is no flow

at the mold wall and the only way to fill the region near the wall is by fluid

flowing to the wall from the central core. This has been demonstrated quite

strikingly by Schmidt, who used colored markers to show that the first tracer to

enter the cavity gets deposited near the gate, whereas the last tracer shows up on

the mold wall at the far end of the molded plaque [29]. A consequence of fountain

flow is that fluid elements near the front get stretched during the journey to the

FIGURE 15.20 Mold filling under isothermal conditions. (From Ref. 28.)

FIGURE 15.21 Filling a cold mold. (From Ref. 28.)
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mold wall and freeze in an extended conformation with the chain axis aligned

with the overall flow direction.

The results of White and Dee also revealed that if fluid injection was rapid,

a jet emerged from the gate, struck the mold wall at the far end, and piled up upon

itself, as shown in Figure 15.23 [30]. Later, a front entered the gate and filled the

mold. The advancing front, however, could not entirely absorb the piled-up

material within itself, and the solidified molding showed evidence of jetting in the

form of weld lines. Note that whenever flow splits around an insert in the mold,

the two fronts meet later and the place where they meet shows up as a weld line.

A weld line usually represents a region of weakness and is undesirable. One way

to eliminate jetting is to place an obstruction directly in front of the gate or to

mold against a wall. Oda et al. have found that if the die swell were large enough,

the jet thickness would equal the mold thickness and the polymer would contact

the mold walls; the mold walls would then act as a barrier and jetting would not

occur [30].

In order to simulate mold filling, we can normally neglect inertia and body

force terms in the equations of motion due to the very viscous nature of polymer

FIGURE 15.22 Fountain flow during mold filling.

FIGURE 15.23 Jetting in injection-mold filling. (From Ref. 30)
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melts. Using the rectangular Cartesian coordinate system shown in Figure 15.22,

we have

@p

@x
¼ @tzx

@z
ð15:3:1Þ

@p

@y
¼ @tzy

@z
ð15:3:2Þ

and there is no pressure variation in the thickness direction because the mold

thickness H is at least an order of magnitude smaller than the mold length L or

mold width W . For the same reason, we can neglect the derivatives of the stresses

in the x and y directions compared to the derivative in the z direction.

Integrating Eqs. (15.3.1) and (15.3.2) from z ¼ 0 to any other value of z

and assuming symmetry gives

tzx ¼
@p

@x
z ¼ Z

@vx
@z

ð15:3:3Þ

tzy ¼
@p

@y
z ¼ Z

@vy
@z

ð15:3:4Þ

where the viscosity itself may depend on temperature and the rate of deformation,

even though we have represented the shear stress in terms of a product of a shear

viscosity and a shear rate. Solving for the velocity components by integrating

from the mold wall to z gives

vx ¼
@p

@x

ðz
�H=2

x
Z
dx ¼ @p

@x
I ð15:3:5Þ

vy ¼
@p

@x

ðz
�H=2

x
Z
dx ¼ @p

@y
I ð15:3:6Þ

where the integral in these equations has been denoted by I. If we introduce these

expressions for the velocity into the incompressible continuity equation

@vx
@x
þ @vy

@y
¼ 0 ð15:3:7Þ

we get

I
@2p

@x2
þ @2p

@y2

� �
þ @p

@x

@I

@x
þ @p

@y

@I

@y
¼ 0 ð15:3:8Þ

If the flow is almost fully developed, the shear rate as well as the temperature and,

consequently, the viscosity varies strongly in the thickness direction but weakly in
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the x and y directions. The x and y derivatives of I can, therefore, be neglected

and we have

@2p

@x2
þ @2p

@y2
¼ 0 ð15:3:9Þ

This equation was derived independently by White [31] and by Kamal and co-

workers [32,33]. Now, we define a stream function c as follows [33]:

vx ¼ �
@c
@y

IGðtÞ ð15:3:10Þ

vy ¼
@c
@x

IGðtÞ ð15:3:11Þ

so that the continuity equation is identically satisfied. Here, the function GðtÞ
accounts for the time variation of pressure. Differentiating Eq. (15.3.10) with

respect to y and Eq. (15.3.11) with respect to x and subtracting one equation from

the other gives

@vx
@y
� @vy

@x
¼ �IGðtÞ @2c

@y2
þ @2c

@x2

� �
ð15:3:12Þ

Using Eqs. (15.3.5) and (15.3.6), however, we find that the left-hand side of Eq.

(15.3.12) equals zero. Consequently, we have

@2c
@x2
þ @2c

@y2
¼ 0 ð15:3:13Þ

and both the pressure and the stream function obey Laplace’s equation. Based on

potential flow theory, we know that lines of constant pressure are orthogonal to

the streamlines. This fact allows us to obtain the stream function once the isobars

have been computed; it is not necessary to determine the function GðtÞ. The
pressure boundary conditions that we use are that the pressure at the gate is

specified and that the advancing front is a line of constant pressure. Because

molds are vented, this constant pressure is atmospheric. In addition, because

vy ¼ 0 at the mold walls, Eq. (15.3.6) implies that @p=@y ¼ 0 there. Because Eq.

(15.3.9) and the associated boundary conditions do not involve the rheological

properties of the polymer, the pressure variation, the front shape, and the

streamlines are independent of the fluid rheology. The velocity profiles and,

consequently, the mold-filling time, however, involve the integral I and must, as a

result, depend on the rheology. These conclusions have been verified experimen-

tally [33]. Note that fluid elasticity has been conspicuously absent from the

previous development. This was the case because the flow was essentially a

viscometric flow. Indeed, pressure profiles computed using viscoelastic rheo-
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logical models are the same as those obtained with inelastic fluid models in this

situation [34].

Because the temperature variation in the x and y directions has been

neglected, the differential energy balance including viscous dissipation becomes

rc
@T

@t
¼ k

@2T

@z2
þ Z

@vx
@z

� �2

þ @vy
@z

� �2
" #

ð15:3:14Þ

The boundary conditions applicable to this equation are as follows: The

mold temperature is TM at all times and the melt temperature at the gate is T0.

Also, there is symmetry about z ¼ 0. The spatial velocity derivatives appearing in

Eq. (15.3.14) can be eliminated [35] with the help of Eqs. (15.3.3) and (15.3.4) so

that

rc
@T

@t
¼ k

@2T

@z2
þ z2

Z
@p

@x

� �2

þ @p

@y

� �2
" #

ð15:3:15Þ

The simplest realistic representation for the viscosity is a generalization of

the power-law model,

Z ¼ A exp
DE
RT

� �
IIND ð15:3:16Þ

where IID is the second invariant of the rate of deformation tensor and A and N

are constants. For the case at hand,

IID ¼
@vx
@z

� �2

þ @vy
@z

� �2

¼ z2

Z2
@p

@x

� �2

þ @p

@y

� �2
" #

ð15:3:17Þ

Substituting Eq. (15.3.17) into Eq. (15.3.16) gives the following [35]:

Z ¼ A exp
DE
RT

� �
z2

@p

@x

� �2

þ @p

@y

� �2
" #( )N

0@ 1A1=ð2Nþ1Þ

ð15:3:18Þ

and the viscosity is known once the temperature and the pressure distribution are

known.

The computations are begun by assuming an initial value of the average

injection velocity and a constant initial temperature [35]. This allows us to locate

the position xF of the melt front a time instant Dt later. At time Dt, Eq. (15.3.9) is
solved to obtain the pressure variation so that we can find the temperature

variation from Eqs. (15.3.15) and (15.3.18). Similarly, the velocity components

are obtained from Eqs. (15.3.5), (15.3.6), and (15.3.18). Integrating the x

component of the velocity over the mold cross section yields the volumetric

flow rate Q into the mold. The quotient Q=WH is the new front velocity;
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multiplying this quantity by Dt and adding to xF ðDtÞ gives xF ð2DtÞ. The previous
calculations are repeated many times until the mold fills. In this manner, we can

obtain the mold-filling time as well as the pressure and temperature within the

filled mold; these form inputs to any model of the packing stage.

The procedure just described is very simple and does not yield information

about the velocity and temperature profile rearrangement near the front due to

fountain flow. To obtain this information, we must allow for a nonzero value of vz
and impose stress boundary conditions on the free surface. This has been done by

Kamal et al., who used a Marker and Cell computational scheme to solve the

problem [36]. For more complex mold shapes, we must resort to finite-difference

or finite-element methods, for which several commercial computer programs are

now available [37]. These programs are useful for balancing runners, helping

decide gate locations, avoiding thermal degradation due to high shear rates,

predicting weld-line formation due to the meeting of flow fronts, and eliminating

the possibility of short shots. In addition, we can explore trends with varying (1)

injection temperature, (2) pressure, and (3) other machine variables.

Example 15.3: How long would it take to fill the rectangular mold shown in

Figure 15.22 with an isothermal Newtonian liquid if the pressure at the gate is

held fixed at value p0? Assume that vx is the only nonzero velocity component.

Solution: Using Eq. (15.3.3) gives

@vx
@z
¼ 1

Z
@p

@x
z

Integrating with respect to z and using the boundary condition of zero velocity at

z ¼ H=2 gives

vx ¼
1

2Z
@p

@x
z2 � H2

4

� �
The instantaneous volumetric flow rate Q is given by

Q ¼ 2

ðH=2

0

vxW dz ¼ �W

Z
@p

@x

H3

12

If the advancing front is located at x ¼ L* at time t, @p=@x equals �p0=L*.
Also, from a mass balance, Q is equal to WHðdL*=dtÞ. Substituting these

expressions for Q and @p=@x into the above equation gives

WH
dL*

dt
¼ W

Z
H3

12

p0

L*
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or

L* dL* ¼ H2

12Z
p0 dt

Integrating from time zero to t, we have

L�2

2
¼ H2

12Z
p0t

The mold fills up when L* ¼ L. From the above equation, this time is

6ZL2=H2p0.

15.3.2 Mold Packing and Cooling

Once the mold is filled, there is no more free-surface flow, but melt still enters the

cavity to compensate for shrinkage caused by cooling, which results in an

increased density. Because the change in density is the major phenomenon

taking place during packing, the assumption of incompressibility is obviously

invalid, and we need an equation relating polymer density to pressure and

temperature. Kamal et al. assume the following [32]:

ð pþ wÞðV � V0Þ ¼ RcT ð15:3:19Þ
where V is the specific volume or the reciprocal of the density r and w, V0, and Rc

are constants. The appropriate form of the continuity equation is now

@r
@t
þ @

@x
ðrvxÞ ¼ 0 ð15:3:20Þ

where we have assumed that flow is essentially in the x direction alone. Polymer

compressibility does not alter the momentum balance, which again leads to

vx ¼
@p

@x
I ð15:3:5Þ

Because both I and r will be independent of x, the previous two equations

imply that

@r
@t
þ Ir

@2p

@x2
¼ 0 ð15:3:21Þ

If necessary, we can eliminate r between Eqs. (15.3.19) and (15.3.21) and obtain

a single partial differential equation relating pressure to position, time, and

temperature [32]. This has to be solved simultaneously with the energy balance,

rc
@T

@t
¼ k

@2T

@z2
þ z2

Z
@p

@x

� �2

ð15:3:22Þ
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wherein it is generally not necessary to account for the temperature and pressure

dependence of the density, specific heat, and thermal conductivity.

Because we know the temperature and pressure in the mold at the end of the

filling stage and the time dependence of pressure at the gate, we can numerically

solve Eqs. (15.3.19), (15.3.21), and (15.3.22) to obtain temperature as a function

of z and t and pressure as a function of x and t. Through the use of Eq. (15.3.3),

this information then allows us to calculate the shear-stress distribution in the

molding at the end of packing.

After filling and packing are complete, cooling continues, but in the

absence of flow. Now, we merely need to solve the heat-conduction equation,

rc
@T

@t
¼ k

@2T

@z2
ð15:3:23Þ

subject to the temperature distribution existing at the end of the packing stage. If

the polymer is crystallizable, Eq. (15.3.23) will also involve the heat of crystal-

lization. Because Eq. (15.3.23) is linear, an analytical series solution is possible

[32].

The major effect of polymer cooling is that it retards stress relaxation and,

as mentioned previously in the chapter, some of the stress remains frozen-in even

after the molding has completely solidified. This stress relaxation cannot be

predicted using an inelastic constitutive equation (why?); the simplest equation

that we can use for the purpose is the upper-convected Maxwell model. In the

absence of flow, the use of this model yields

tzxðt; xÞ ¼ tzxð0; xÞ exp �
ðt
0

dt0

l0

� �
ð15:3:24Þ

where l0 is the temperature-dependent zero-shear relaxation time and tempera-

ture shift factors may be used to relate l0ðT Þ to the relaxation time at a reference

temperature TR [38]. The simultaneous solution of Eqs. (15.3.23) and (15.3.24)

gives an estimate of the orientation stresses remaining unrelaxed in the injection-

molded part. Even though we have considered only shear stresses (because they

are the ones that influence mold filling), the deformation of a viscoelastic fluid

results in unequal normal stresses as well. Because the thermomechanical history

of mold filling is known, the magnitude of the normal stresses may be computed

with the help of an appropriate rheological model. Alternately, we can take a

short-cut and empirically relate the first normal stress difference in shear N1 to the

shear stress. The result is as follows [39,40]:

N1 ¼ Atbzx ð15:3:25Þ
where A and b are constants specific to the polymer used. These normal stresses

also contribute to the residual stresses in the molded part.
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15.3.3 Molding Microstructure

The simplified injection-molding model described in the previous sections gives

the temperature, pressure, velocity, and stress distribution at any time during the

molding cycle. Of greatest interest to the end user, however, are the mechanical

properties of the molded article, and these depend on the microstructure. As

explained in the previous chapters, properties such as the modulus, yield strength,

microhardness, shrinkage, and fracture behavior depend on the amount, size, and

nature of crystals and also on the orientation of polymer chains in the amorphous

and crystalline regions of the material. Because the microstructure varies with

position within the molding, these properties also vary with position. The goal of

the current research is to relate the thermomechanical history of the resin during

processing to the development of microstructure.

At present, there is no simple way of predicting the orientation of polymer

chains in the crystalline regions. In the amorphous regions, however, we can

relate chain orientation to fluid stresses through the use of optical birefringence.

The latter quantity is defined as the difference Dn between the principal refractive

indices parallel and perpendicular to the stretch direction for a uniaxially oriented

polymer. For shearing flows, using the stress-optic law gives the following [41]:

Dn ¼ n1 � n2 ¼ CðN2
1 þ 4t212Þ1=2 ð15:3:26Þ

where C is the stress-optical coefficient of the material. Because the right-hand

side of Eq. (15.3.26) is known from the injection-molding models, the birefrin-

gence can be calculated. The value Dn is related to the amorphous orientation

function, fam, as follows:

fam ¼
Dn
D�am

ð15:3:27Þ

where D�am is the intrinsic birefringence of the amorphous phase.

To determine the extent of crystallinity in the solidified molding, an

equation is necessary for the rate of crystallization in terms of temperature so

that we can follow the development of crystallinity during the cooling stage. For

use with injection molding, Lafleur and Kamal recommend the equation of

Nakamura et al. [38], which is based on the Avrami equation (see Chap. 11).

Their experimental results show good agreement between the experimental and

calculated crystallinity values for the injection molding of high-density poly-

ethylene [42].

The calculated distributions of crystallinity and orientation functions can be

used in conjunction with models of the type developed by Seferis and Samuels

[43] to predict quantities such as the Young’s modulus. Conceptually, this closes

the loop among polymer processing, polymer structure, and polymer properties.
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15.4 FIBER SPINNING

A significant fraction of the total worldwide polymer usage is devoted to

applications related to clothing, carpeting, and furnishing, and this demand is

the basis of the synthetic fiber industry. The process of fiber manufacture involves

the extrusion of a polymeric fluid in the form of long, slender filaments, which are

solidified and wound up on bobbins. If a polymer solution is used, solvent is

removed by evaporation with the help of a hot gas (dry process) or by means of a

coagulation bath (wet process). Fibers of cellulose acetate and polyvinyl acetate

are made by the former technique, whereas polyacrylonitrile and cellulose fibers

are made by the latter technique. If a polymer melt (such as a nylon, polyester, or

a polyolefin) is used, solidification occurs due to cooling, and this process of melt

spinning is therefore the simplest one to consider. Even so, the journey that a

polymer molecule takes in going from the extruder to the finished fiber has so

many twists and turns that it is necessary to analyze separate parts of the process

rather than the entire process itself. Here, we will examine melt spinning in as

much detail as possible. Practical details of all three processes are available in the

books by Walczak [44] and Ziabicki [45].

A schematic diagram of the melt-spinning process is shown in Figure

15.24. Molten polymer leaving the extruder passes through a gear pump, which

provides accurate control of the flow rate. It then goes through a filter pack, which

may consist of sand, wire mesh, or steel spheres, and whose purpose is to

FIGURE 15.24 Schematic diagram of the melt-spinning apparatus: (a) gear pump

drive, (b) gear pump, (c) hopper purged with nitrogen gas, (d) extruder, (e) spinneret, (f)

insulated isothermal oven, and (g) winder. (From J. Appl. Polym. Sci., vol. 34, Gupta R. K.,

and K. F. Auyeung: ‘‘Crystallization in Polymer Melt Spinning,’’ Copyright # 1987 by

John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

Polymer Processing 667

Copyright © 2003 Marcel Dekker, Inc.



homogenize the temperature, degrade any polymer gels, and remove foreign

matter that may plug the capillaries used to shape the fibers. The capillaries may

be noncircular in shape and are drilled into a spinneret or die. The multiple

filaments leaving the spinneret are cooled by cross-flow air in a chimney that may

contain several spinnerets. Simultaneously, the filaments are gathered together to

form a yarn, which is stretched by the action of rollers, leading to a significant

decrease in the fiber cross-sectional area. A liquid called a spin finish, which

facilitates fiber drawing and also prevents electrostatic charging, is applied to the

yarn, which is then wound onto a bobbin called a doff.

A spinneret is essentially a stainless-steel disk containing a dozen to a few

hundred holes arranged in a regular pattern, as in Figure 15.25a. If circular cross-

sectional fibers are to be made, each capillary can be machined as shown in

Figure 15.25b. The most critical aspect of a spinneret is the diameter of the

capillaries; each diameter has to be the same. This is because diameter variations

result in large flow-rate variations. Recall that for a given pressure drop, the flow

rate of a Newtonian liquid is proportional to the fourth power of the diameter.

Because dirt particles tend to block the capillaries, a very small capillary diameter

cannot be used; a value less than 0.01–0.02 in. may not allow continuous

operation. The larger the diameter is, the larger is the spinline draw ratio, defined

as the ratio of the capillary cross-sectional area to the solidified fiber cross-

sectional area. Especially with isothermal operations, we find that increasing the

draw ratio above a critical value results in periodic diameter oscillations called

draw resonance [47]. These and all other dimensional and structural variations

are undesirable because they can lead to uneven dye uptake, which shows up as

barre or stripes in a colored fabric. Of course, the maximum flow rate through the

capillaries is limited by the occurrence of melt fracture, which reveals itself as

extrudate distortion. This can be minimized by the use of a small capillary

entrance angle a. Letting a range from 60� to 90� instead of using a flat entry

(180�) also results in the elimination of recirculating regions in the corners of the

FIGURE 15.25 (a) Spinneret used for fiber spinning; (b) a simple capillary.
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abrupt contraction where polymer might remain for a long time and thermally

degrade. The incentive for employing noncircular cross-sectional capillaries is to

alter the optical properties of the spun fibers. We find that circular fibers yield

shiny fabrics.

The major process variables are volumetric flow rate, extrusion tempera-

ture, quench air temperature and velocity, take-up speed, and draw ratio. The

influence of some of these variables has already been discussed. For crystallizable

polymers, the lower limit of the extrusion temperature is about 20�C above the

melting point. Otherwise, the crystallites do not all melt, which makes it difficult

to control the structure of fiber. The upper limit is set by thermal degradation. It is

generally preferable to operate at a high temperature because the lowered melt

viscosity implies ease in processing, but the added heat has to be removed during

cooling and solidification. Most published data on commercial operations are on

polyethylene terephthalate (PET), and much of the following discussion applies

to this polymer. PET fibers are generally made at wind-up speeds of 1000–

3000m=min, although newer machines operate at speeds in excess of

5000m=min. For this polymer, the residence time on the spinline is usually

less than 1 sec, the length of the molten zone is about 1m, and the maximum

stretch rate is of the order of 100 sec�1. At spinning speeds below 3000m=min,

the fiber that results is almost totally amorphous and its tensile properties are not

very good. Therefore, it is heated to a temperature between the glass transition

temperature and the melting point in a second process step and stretched to

induce crystallization. This is a slow process that cannot be done in-line with melt

spinning. It is therefore labor-intensive. The crystalline fiber tends to shrink on

heating, but this can be prevented by heat-setting or annealing at a high

temperature, either at constant length or under tension. Finally, an additional

heat treatment may be applied to crimp or texture the yarn and make it bulky in

order to improve its feel or ‘‘hand.’’

The manufacture of an acceptable fiber involves a very large number of

process steps that are carried out to alter the fiber morphology. As a consequence,

it is difficult to predict the effect of changing a single variable in any given

process step on the final fiber and its properties. This makes a reading of the

textiles literature and interpretation of published results very difficult. Although

attempts have been made to relate morphological changes to fundamental

variables [48], the state of the art is not, for example, to predict, a priori, the

size, shape, and amount of crystals and the orientation of polymer chains within

the fiber at the end of any process step. Models that can be formulated and that do

exist relate only to the melt-spinning step and only for amorphous fibers. Detailed

reviews of single-filament models are available, and these yield the steady-state

temperature, velocity, and stress profiles in the molten fiber [49–52]. In addition,

they reveal the conditions under which the fiber diameter is likely to be sensitive

to changes in the process variables.
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In the next section, we develop, from first principles, the equations

governing the behavior of a fiber monofilament of circular cross section. We

derive solutions to some limiting cases and also discuss solutions obtained by

others to the more general set of equations. These results not only enhance our

understanding of the melt-spinning process but also have practical utility. Denn

has shown that on-line feedback control of fiber spinning is impractical due to the

very large number of spinning machines in a synthetic fiber plant [53]. Fiber-

spinning models can help to identify regions of operation where small changes in

operating variables do not influence fiber dimensions or fiber structure. In

addition, it has been observed that there is a good correlation between polymer

orientation in the spun fiber (as measured by the optical birefringence) and fiber

mechanical properties such as tenacity and modulus [54]. Furthermore, the stress

in the fiber at the point of solidification is found to be proportional to the optical

birefringence [54]. Because fiber-spinning models can predict stresses, we have a

means of predicting fiber mechanical properties, at least for PET fibers.

15.4.1 Single-Filament Model

The basic equations describing the steady-state and time-dependent behavior of a

molten spinline made up of a single fiber of circular cross section were first

developed by Kase and Matsuo [55]. It was assumed that the filament cross-

sectional area and polymer velocity and temperature varied with axial position

down the spinline but that there were no radial variations. The model, therefore, is

a one-dimensional model that is valid provided that the fiber curvature is small.

To derive the equations, we consider the differential control volume shown in

Figure 15.26 and carry out a simultaneous mass, momentum, and energy balance.

Because the rate of accumulation of mass within a control volume equals

the net rate at which mass enters the control volume, we have

@

@t
ðrADxÞ ¼ rvAjx � rvAjxþDx ð15:4:1Þ

or

@A

@t
¼ � @

@x
ðAvÞ ð15:4:2Þ

where A is the filament cross-sectional area.

Similarly, the rate at which the x-momentum accumulates within a control

volume equals the net rate at which x momentum enters the control volume due to
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polymer flow plus the sum of all x directed external forces acting on the control

volume. As a consequence (see Fig. 15.26b), we have

@

@t
ðrAvDxÞ ¼ rv2Ajx � rv2AjxþDx þ FxþDx � Fx þ rAgDx� 2pRtDx

ð15:4:3Þ

in which F is the tensile (rheological) force within the filament and t is the shear
stress due to air drag. The second-to-last term in Eq. (15.4.3) results from the

presence of gravity, and the small contribution due to surface tension has been

neglected. Dividing both sides of Eq. (15.4.3) by Dx and taking the limit as

Dx! 0 gives

r
@

@t
ðAvÞ ¼ �r @

@x
ðAv2Þ þ @F

@x
þ rAg � 2pRt ð15:4:4Þ

Finally, neglecting radiation, the rate of energy accumulation within a

control volume equals the net rate at which energy enters the control volume due

to polymer flow minus the rate at which energy leaves due to heat transfer by

convection to the cross-flow air. Therefore, we have

@

@t
ðrcATDxÞ ¼ rcATvjx � rcATvjxþDx � 2pRhDxðT � TaÞ ð15:4:5Þ

FIGURE 15.26 (a) Control volume used for mass, momentum, and energy balances

during fiber spinning; (b) forces acting on the control volume.
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where c is the polymer specific heat, h is the heat transfer coefficient, and Ta is the

temperature of the cooling air. From Eqs. (15.4.2) and (15.4.5), we have

@T

@t
¼ �v @T

@x
� 2h

rc

ffiffiffi
p
A

r
ðT � TaÞ ð15:4:6Þ

Before we can obtain solutions to the foregoing model equations, we need

to specify the functional forms of F, t, and h. Whereas F depends on the

rheological properties of the polymer, t and h are obtained by considering the

velocity and temperature profiles in the boundary layer adjacent to the fiber

surface. Sakiadis has used boundary layer theory to obtain an expression for the

drag coefficient, cf , for the laminar flow of air surrounding a moving, continuous,

infinite, circular cylinder of constant diameter D emerging from a slot in a wall

and traveling at a constant velocity v [56]. The resulting drag coefficient is

defined as

cf ¼
t

ð0:5rav2Þ
ð15:4:7Þ

where ra is the density of air. Equation (15.4.7) is found to underpredict the

experimentally measured drag force by a significant amount [52]. In a Reynolds

number range of 20–200, experimental data are best represented as follows [57]:

cf ¼ 0:27 Re�0:61 ð15:4:8Þ
where Re is the Reynolds number, Dvra=Za, and Za is the viscosity of air.

Theoretical analyses for the heat transfer coefficient also suffer from the

limitation that diameter attenuation with an attendant increase in the filament

velocity cannot be taken into account [58]. Other complicating factors are the

presence of cross-flow air and the fact that filaments generally do not remain still

but vibrate in a transverse manner. From experiments conducted using a

stationary, heated wire, Kase and Matsuo have proposed the following [55]:

hD

ka
¼ 0:42Re0:334ð1þ KÞ ð15:4:9Þ

where ka is the thermal conductivity of air and the quantity K, which equals

0.67 vy=v, arises due to the presence of cross-flow air at a velocity vy . When h is

derived from measurements made on an actual spinline, the result is slightly

different; George suggests the use of the following [59]:

h ¼ 1:37� 10�4ðv=AÞ0:259 1þ 8vy

v

� �2
" #0:167

ð15:4:10Þ

in which cgs units have been employed.
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15.4.2 Steady-State Behavior of Single
Filaments

The single-filament model presented in the previous section consists of a set of

coupled, nonlinear, partial differential equations. Although a general solution

does not exist, a number of analytical solutions can be derived for simplified

forms of the equations under steady-state conditions; these have been reviewed by

Petrie [50] among others. If the temperature is constant, the mass and momentum

balances become

Q ¼ Av ¼ constant ð15:4:11Þ
rQ

dv

dx
¼ dF

dx
þ rAg � 2pRt ð15:4:12Þ

where Q is the volumetric flow rate. In addition, if the fluid is Newtonian, we have

F

A
¼ 3Z

dv

dx
ð15:4:13Þ

in which Z is the shear viscosity of the polymer. If spinning is carried out at low

speeds, air drag can be neglected and the last three equations can be combined to

yield a single equation in v:

3Z
d2v

dx2
� 1

v

dv

dx

� �2
 !

¼ �rg þ rv
dv

dx
ð15:4:14Þ

In order to solve Eq. (15.4.14), two boundary conditions are needed. Typically,

these are

vð0Þ ¼ v0 ð15:4:15Þ
vðLÞ ¼ v0DR ð15:4:16Þ

where L is the spinline length and DR is called the draw ratio.

If, in addition to all the previous assumptions, we also assume that the force

contributed by gravity is small, then the solution to Eq. (15.4.14) is as follows

[60]:

v ¼ c1 c2e
�c1x � r

3Z

� ��1
ð15:4:17Þ

and the constants c1 and c2 are determined through the use of the two boundary

conditions. A further simplification occurs if inertia is also negligible [i.e., if the

right-hand side of Eq. (15.4.14) is zero]. In this case, either by using Eq. (15.4.14)
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or by letting the Reynolds number in the dimensionless version of Eq. (15.4.17)

go to zero, we can show that

v ¼ v0 exp
x lnDR

L

� �
ð15:4:18Þ

Combining Eq. (15.4.18) with Eqs. (15.4.11) and (15.4.13) yields

A ¼ A0 exp �
x lnDR

L

� �
ð15:4:19Þ

F ¼ 3ZðlnDRÞA0v0
L

ð15:4:20Þ

Example 15.4: Calculate the force needed to isothermally draw a single filament

of a Newtonian liquid of 1000 P shear viscosity at a draw ratio of 20. The spinline

length is 2m, and the volumetric flow rate is 3.5 cm3=min.

Solution: If we use Eq. (15.4.20) we can find force as follows:

F ¼ 3� 1000ðln 20Þð3:5Þ
200

¼ 157:2 dyn

In attempting to compare experimental data on a Newtonian sugar syrup

with these results, we find that although the neglect of inertia, air drag, and

surface tension is justified, the neglect of gravity is not [61]. Indeed, gravity can

constitute as much as 75% of the total spinline force.

Kase has made use of the simplified Newtonian results to check the validity

of the flat-velocity profile assumption (i.e., the assumption that the axial velocity

v is independent of radial position r) [62]. Kase assumed that the actual velocity

profile was of the form

v ¼ v0 exp
x lnDR

L

� �
1þ a2r

2 þ a4r
4 þ a6r

6 þ � � �Þ� ð15:4:21Þ

and introduced this expression into the Navier–Stokes equations. By comparing

terms of the same power in r, he solved for the coefficients a2, a4, a6, and so on.

He found that under most conceivable spinning conditions, the higher-order terms

in Eq. (15.4.21) were negligible and, for all practical purposes, the velocity profile

was flat across the filament.

Turning now to data on the nonisothermal, low-speed spinning of polymer

melts such as PET, we find that Eq. (15.4.13) (Newtonian rheology) can often still

be used, but that the coefficient 3Z on the right-hand side has to be replaced by b,
a temperature-dependent quantity whose value can exceed 3ZðT Þ. If b is large
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enough, as happens with polymer melts, the momentum balance [Eq. (15.4.12)]

simplifies to

dF

dx
¼ 0 ð15:4:22Þ

so that Eqs. (15.4.11) and (15.4.13) imply the following:

dA

dx
¼ � FA

bQ
ð15:4:23Þ

The steady-state energy balance is obtained from Eq. (15.4.6):

dT

dx
¼ � 2h

rcQ

ffiffiffiffiffiffi
pA
p
ðT � TaÞ ð15:4:24Þ

Eliminating dx between the two previous equations, separating the vari-

ables, and integrating givesð
rc dT

bðT � TaÞ
¼ 2

ffiffiffi
p
p
F

ð
hffiffiffi
A
p dA ð15:4:25Þ

so that F is known if the limits of integration are taken to correspond to the

spinneret and the winder. Once F is determined, Eq. (15.4.25) yields A in terms of

T , which can be introduced into Eq. (15.4.24) to give T as a function of x and,

consequently, A as a function of x. Kase and Matsuo used this procedure to

generate area and temperature profiles for the low-speed spinning of polypropy-

lene melts [54]. Typical results are shown in Figure 15.27; agreement with

experimental data is good. These and similar steady-state results can be used to

explore the influence of the various operating variables on the filament velocity,

temperature, and stress profiles.

At higher spinning speeds, we cannot neglect inertia, gravity, and air drag

in the force balance, and all of the terms in Eq. (15.4.12) have to be retained. As a

consequence, results have to be obtained numerically. Using this method, George

has found very good agreement with data on PET up to spinning speeds as high

as 3000m=min. [59]. Simulations show that using the full Eq. (15.4.12) leads to a

significantly higher value of the stress at the freeze point, but the velocity and

temperature profiles are only slightly altered. Because the freeze-point stress is

the key variable of interest, it is essential to use the full set of equations.

Thus far, we have limited our discussion to the melt spinning of Newtonian

liquids. For materials that are more elastic than PET, this restriction needs to be

relaxed. The simplest way to do this is by using the upper-convected Maxwell

model introduced in Chapter 14. In this case, the equation equivalent to Eq.

(15.4.13) is

F

A
¼ txx � trr ð15:4:26Þ
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where the extra stresses txx and trr in the axial and radial directions, respectively,

are given implicitly by

txx þ y v
dtxx
dx
� 2txx

dv

dx

� �
¼ 2Z

dv

dx
ð15:4:27Þ

trr þ y v
dtrr
dx
þ trr

dv

dx

� �
¼ �Z dv

dx
ð15:4:28Þ

in which y is the relaxation time and Z is the shear viscosity; both y and Z are

constant if the temperature is constant.

Before proceeding further, it is convenient to make the equations dimen-

sionless by introducing the following dimensionless variables:

u ¼ v

v0
; s ¼ x

L
; T ¼ txxQ

Fv0

P ¼ trrQ
Fv0

ð15:4:29Þ

FIGURE 15.27 Filament cross section A, filament temperature t, air speed vy, and air

temperature t* at different spinneret temperatures tN : (s, d) experimental; (—) theore-

tical. (From Ref. 54.) From J. Appl. Polym. Sci., vol. 11, Kase, S., and T. Matsuo: Studies

on melt spinning: II. Steady state and transient solutions of fundamental equations

compared with experimental results, Copyright # 1967 by John Wiley & Sons, Inc.

Reprinted by permission of John Wiley & Sons, Inc.
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With the help of these variables, Eqs. (15.4.26)–(15.4.28) become

T � P ¼ u ð15:4:30Þ

T þ a u
dT

ds
� 2T

du

ds

� �
¼ 2e

du

ds
ð15:4:31Þ

P þ a u
dP

ds
þ P

du

ds

� �
¼ �e du

ds
ð15:4:32Þ

which involve the two dimensionless groups

a ¼ yv0
L

and e ¼ ZQ
FL

ð15:4:33Þ

These are three equations in the three unknowns (T , P, and u) and they can

be combined into a single second-order ordinary differential equation. The final

result is as follows [63]:

u

du=ds
� 3eþ au� au2 d2u=ds2

ðdu=dsÞ2 � 2ua2
du

ds
¼ 0 ð15:4:34Þ

which can be numerically solved subject to the boundary conditions of Eqs.

(15.4.15) and (15.4.16). Unfortunately, e is not known because F is not known.

Indeed, F is sought as part of the solution. One strategy now is to simply do a

parametric mapping: Plot uðsÞ versus s for various assumed values of a and e. A
comparison with experimental data then involves using the measured force F as a

model input. Typical velocity profiles for DR ¼ 20 are shown in Figure 15.28.

Here, a and e combinations have been picked in such a way that T ð0Þ ¼ 1. It is

seen that velocity profiles become more and more linear as a, or equivalently fluid
elasticity, is increased. This is in accord with experimental observations. In

addition, it can be shown that, everything else being equal, the viscoelastic model

predicts much higher stress levels than the Newtonian model examined earlier

[63]. A quantitative comparison between data and simulations is difficult to carry

out because no polymer melt is known to behave exactly as a Maxwell liquid.

However, agreement can be obtained between data on dilute polymer solutions in

very viscous solvents and the predictions of the Oldroyd model B [64]. This fluid

model is a linear combination of the Maxwell and Newtonian models.

If we examine the low-speed, nonisothermal manufacture of synthetic fibers

of a viscoelastic polymer, then the inclusion of the energy balance in the previous

set of equations results in the emergence of one additional dimensionless group,

St, the Stanton number. By numerically solving the entire set of equations, Fisher

and Denn discovered that the energy balance was only weakly coupled to the
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FIGURE 15.28 (a) Dimensionless velocity as a function of distance, DR ¼ 20, n ¼ 0,

T0 ¼ 1; (b) dimensionless reciprocal force as a function of viscoelastic parameter, a ¼ 1,

DR ¼ 20, n ¼ 0, T0 ¼ 1. (From Denn, M. M., C. J. S. Petrie, and P. Avenas: ‘‘Mechanics of

Steady Spinning of a Viscoelastic Liquid,’’ AIChE J., vol. 21, pp. 791–799. Reproduced

with the permission of the American Institute of Chemical Engineeres Copyright # 1975

AIChE. All rights reserved.)
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momentum balance [65]. To a good approximation, the temperature profile could

be described by the following:

T ¼ Ta þ ðT0 � TaÞ expð�St sÞ ð15:4:35Þ
where

St ¼ 1:67� 10�4
L

rcA5=6
0 v

2=3
0

ð15:4:36Þ

The numerical coefficient in Eq. (15.4.36) arises from the use of cgs units and the

form of the heat transfer coefficient proposed by Kase and Matsuo [54,55]. The

uncoupling of the energy balance means that the temperature down the spinline is

known in advance. Consequently, if the temperature dependence of Z and y is

known, Eqs. (15.4.26)–(15.4.28) can again be solved to yield the velocity and

stress profiles. Computations show that the effect of cooling is to increase the

initial rate of diameter attenuation for viscoelastic fibers [65].

At high spinning speeds, we cannot neglect inertia, air drag, and gravity, so

the complete Eq. (15.4.12) has to be used. These effects are accounted for in the

computer model of Gagon and Denn [66]. These authors compare their visco-

elastic simulations with the data of George [59], but find that due to the relatively

inelastic nature of PET, their model offers little improvement over the Newtonian

model used by George. Comparisons have not been made with data on more

elastic polymers.

15.4.3 Multi¢lament Spinning and Other
Concerns

In order to simulate industrial fiber-spinning operations, we must address the

question of multifilament spinning. If fibers are spun as a bundle, they are likely

to interact with each other. If we focus on a single fiber in a group of fibers, then

the presence of other fibers is likely to affect the temperature and velocity of the

air around the given fiber. This would alter both the air drag and heat transfer

around the fiber with the result that fiber properties may become asymmetric. In

addition, there would be property variations among fibers in the same yarn. Thus,

although the basic equations remain unchanged, we need to compute the air

velocity and air temperature around each fiber or each row of fibers. This is

attempted by some means in two of the published computer models [67,68].

Results obtained are useful in designing spinnerets to minimize interfiber and

intrafiber property differences.

One aspect of fiber spinning that we have intentionally not discussed in this

chapter is that of time-dependent behavior. This behavior can take different

forms: Fibers may break or their diameter may vary in a periodic or random

manner. This may be the result of instabilities or the sensitivity to external
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disturbances. A proper understanding can be gained only by solving the complete

time-dependent equations presented earlier. Although much progress has been

made in this direction, significant problems remain. For details, the interested

reader should consult the reviews available in the literature [47,50–53,69].

Another unresolved problem has to do with predicting structure develop-

ment during fiber spinning at high speeds. Although a large body of data has been

assembled and partly rationalized [70], the information gathered cannot be

explained or predicted based on first principles. This remains a challenge for

the future.

15.5 CONCLUSION

This chapter has been a sort of capstone. We have shown how it is possible to

couple the laws of conservation of mass, momentum, and energy with a knowl-

edge of the fundamentals of polymer behavior to analyze polymer processing

operations. Although we illustrated this with three important processes, we could

equally well have chosen any other process. (Descriptions and analyses of other

processes are available in standard books on polymer processing [18,71–74]).

Indeed, these same three processes are likely to change as technology changes.

However, the tools for analyzing these changes remain unchanged. The analysis

itself can be carried out at different levels of complexity, and the knowledge

gained depends on the level of sophistication employed. Nonetheless, information

obtained even with the use of rather naive models can often be quite useful.

Ultimately, however, numerical computations have to be used if quantitative

agreement is desired between model predictions and experimental observations.

What is important, though, is that the physics embodied in the models be correct.

If the physics is in error, no amount of powerful mathematical techniques can set

the results right. We hope that a reading of this book has conveyed this message

in a clear manner.
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PROBLEMS

15.1. Calculate the solids-conveying rate as a function of the screw rpm for an

extruder for which D ¼ 5 cm, H ¼ 0:75 cm, W ¼ 4:25 cm, and y ¼ 20�.
Assume that there is no pressure rise and that, for the polymer being

extruded, fs ¼ 0:1 while fb has the value 0.3. What would be the flow rate

if the screw was frictionless?

15.2. Under what conditions will the solids-conveying rate through an extruder

fall to zero? What is the pressure rise across the solids conveying zone in

this case?

15.3. How does the maximum possible pressure rise in the metering section of

an extruder depend on the screw rpm?

15.4. Relate the volumetric flow rate of a power law fluid to the screw rpm for

flow through the metering section of an extruder that is operated at open

discharge. How does the power-law index influence the results? Why?

15.5. If the flights are attached to the barrel and the screw (or shaft) is rotated,

does the ‘‘extruder’’ actually extrude polymer? How does the volumetric

flow rate in the metering section depend on the rate of rotation?

15.6. If the oil used in Example 15.2 has a viscosity of 1.6 P, how does the flow

rate vary with screw rpm when a rod die is attached to the extruder? The

die radius is 1mm and the die length is 1 cm. Assume that for the

extruder, L equals 20 cm.

15.7. By solving the Navier–Stokes equation in the x direction, obtain an

expression for the x component of the velocity in the metering section of

an extruder. Eliminate the pressure gradient in the x direction from this

expression by noting that there cannot be any net flow in the x direction.

15.8. Use the results of Section 15.2.4 and Problem 15.7 to obtain an

expression for the work done (per unit down-channel distance) by the

moving barrel on the polymer melt in the metering section of the extruder.

15.9. If the flow rate is kept constant in Example 15.3, how does the pressure at

the gate vary with time?
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15.10. In reaction injection molding, two liquids that can react with each other

are injected simultaneously into the mold. As reaction occurs, the

viscosity increases and, for this reason, we want the filling stage to be

over before an appreciable amount of reaction has taken place. With

reference to Figure 15.22, what should be the minimum value of the

constant flow rate Q if the two components are injected in equal

concentrations and if the reaction follows second-order kinetics, that is,

dc

dt
¼ �kc2

where k is a rate constant, and we do not want c=c0 to fall below 0.9?

Here, c0 is the initial concentration of either reactant.

15.11. Use Eqs. (15.4.11)–(15.4.13) to actually derive Eq. (15.4.14).

15.12. Make Eq. (15.4.17) dimensionless. Then, let the Reynolds number tend to

zero and thereby obtain Eq. (15.4.18).

15.13. For the same pressure drop, by what percentage amount does the flow rate

through a capillary change if the capillary radius is increased by 1%?

15.14. The equivalent form of Eq. (15.4.13) for the power-law fluid is

F

A
¼ Z1

dv

dx

� �n

where Z1 is the extensional viscosity and n is the power-law index. Obtain

the equivalent form of Eq. (15.4.18). Do you recover Eq. (15.4.18) if

n ¼ 1 and Z1 ¼ 3Z?
15.15. If the spinneret diameter in Example 15.4 is 0.7mm, what is the residence

time of a fluid element on the spinline?
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Fischer-Tropsch reaction, 44

Floor temperature, 211

Flory-Huggins equation, 181, 314

Flory-Huggins theory, 379–396, 550

Flow behavior, 573–622

Flow temperature, 47

Fluorous phase, 6

Fountain flow, 658

Fracture, 508–511

Freely jointed chain, 408

Free volume, 396, 497, 548

theory of diffusion, 547–552

Freezing point depression, 343, 345

Friction coefficient, 546

Friedel-Craft reaction, 30

Fugacity, 343–348

Functional groups, 1

Functionalizing, 36

Gaussian statistics, 393, 411

Gegen ions, 191, 222

Gel, 5, 215

Gel effect, 201

Gel permeation chromatography,

364–368

Generating function, 140, 165

Gibbs free energy, 210, 376

Glass transition temperature, 47, 407,

494–501

Grafting gelatin, 328

Griffith theory, 509

Gutta percha, 63
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Hagen-Poiseuille equation, 359, 645

Hard core model, 241

HCSTR, 154, 166, 183, 323

Henry’s law, 536, 539

Heparin, 4, 42

Herman’s orientation factor, 468

Hevea Brasiliensis, 61

Hindered rotation, 413

HIPS, 433, 520

Histogram, 20

Hoffman-Weeks plot, 461

HPLC, 35

Huggins equation, 361

Hydrogen bonding, 437

Inherent viscosity, 361

Initiator, 188, 192

Initiator efficiency, 193, 253

Injection molding, 651–666

Interaction parameter, 349, 386, 390–393,

397

Intrinsic viscosity, 358–364

Invariants of a matrix, 619

Inverse emulsion polymerization, 339

Ion exchangers, 30, 81

Ionomers, 68

Isotactic, 25

Jet swell, 575

Jetting, 659

Kaye-BKZ equation, 621

Kevlar, 465

Kinetic chain length, 199, 220

Langevin function, 417

Latex, 408

Lattice, 380

Laun’s rule, 598

Lewis acids, 190

Lewis and Randall rule, 344

Lewis bases, 190

Ligaments, 3

Light scattering, 350–354

Linear damage theory, 518

Linear viscoelasticity, 592–595

Liquid crystals, 464

director, 465

lyotropic, 464

thermotropic, 465

Lodge’s rubberlike liquid, 616–618

Lower critical solution temperature,

396–398

Macroporous resin, 81

Macroradicals, 57

Macroreticular resin, 81

Mark-Houwink equation, 362

Mass transfer, 527–531

Maxwell element, 491, 504, 594

Mechanical properties, 487–520

Melamine, 137, 150

Melt fracture, 575

Melting, 46, 459–462

Melting point, 460, 497

equilibrium, 437, 460

Melville equation, 280

Merrifield catalyst, 33

Mesophase, 464

Metalation, 30

Metallocene catalyst, 242

Metastable region, 379

Micelles, 300

Microdensitometer, 475

Microelectronics, 225

Microphases, 71

Microvoids, 553

Modulus:

elastic, 489

loss, 502, 595

shear, 491

sonic, 479

storage, 502, 595

stress relaxation, 593, 621

Mold filling, 656–664

Molecular sieve, 80

Molecular weight distribution, 19, 103,

118, 140, 160, 166, 185, 260,

317
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[Molecular weight distribution]

measurement of, 364–369

moments of, 22, 260, 318

Molecular weight measurement, 340–369

Monofunctional compounds, 163

Multifilament spinning, 679

Mutual termination, 196

Nanocomposites, 459, 541

Network, 65

Newtonian fluid, 577

Normal stress coefficients, 578

Normal stress differences, 577

measurement of, 580

Normal stress yielding (see Crazing)

Novolac, 77, 136

Nucleating agent, 449

Nucleation, 317, 443–446

Number-average chain length, 22, 113,

142, 199

Nylons, 3, 48, 132, 147, 155, 341,342,

438, 459, 652

Open-ended capillary, 534–536

Orientation factor, 468

measurement of, 474–479

Osmotic pressure, 347–350, 391,

542–544, 558–560

Pacemaker, 3

Paints, 76

Particle size distribution, 311

PEEK, 457

Peel strength, 527

PEI, 457

Penicillin, 42

Permeability, 536

PET, 48, 114, 132, 146, 463, 669

Phase equilibrium:

liquid-liquid, 388

osmotic, 347

vapor-liquid, 346, 390

Phase separation, 379

Phenol, 137

Photoconductivity, 37

Photomultiplier, 354

Physical aging, 498

Plasticizer, 51, 499

Poisson ratio, 489

Polarized-light microscope, 471–474

Polyacetylene, 41

Polyamide (see Nylons)

Polycarbonate, 652

Polydispersity index, 22, 494

Polyesterification, 18, 127

Polyethylene, 438

Polymerization:

1,2 and 1,4 addition, 26

addition, 16

condensation, 17, 129

emulsion, 80

iodine transfer, 43

plasma, 86

ring opening, 17

suspension, 80

Polymers, 1

amorphous, 45

catalyst, 87

crystalline, 45

membrane, 89

monodisperse, 7

polydisperse, 7

Polymer-spring force, 416

Polynomial approximation, 178

Polyol, 64

Polystyrene, 489, 494–497, 502–508

Polysulfone membrane, 97

Polyurethane, 63, 132

Power-law equation, 586, 662

Power-law region, 574

Primary radicals, 189, 194

Probability, 124, 283

distribution function, 408–412

Propagation reaction, 189, 194

Protonic acid, 219

Quaternization, 32

Quiescent crystallization, 450–456
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Rabinowitsch correction, 586

Radical polymerization, 188

kinetic model of, 197

Radius of gyration, 361, 367, 415, 600

Raoult’s law, 158, 169, 345

Rayleigh ratio, 353

Recycle reactor, 121, 182

Recycling, 285

Redox initiator, 82, 192

Relative viscosity, 360

Relaxation time, 575, 594

dumbbell model, 613

Rouse and Zimm models, 614

spectrum, 596

terminal, 604

Release agent, 134

Reptation, 206, 561

Resite, 77

Resole, 77, 136

Retarders, 209, 252

Rheometer, 577

Ring opening, 17

Rouse model, 614

Rubber, 46

chlorinated, 63

elasticity, 407–433

hydrochloride, 61

natural, 61

polyurethane, 63

silicone, 65

smoked sheet, 61

stress constitutive equation, 428

swelling equilibrium, 429

synthetic, 61

unvulcanized, 52

vulcanization, 429

Rubbery plateau, 495

Runge-Kutta method, 263

Sedimentation coefficient, 357

Segmental diffusion, 104

Self assembly, 226

Semibatch reactor, 154, 156

Shear thinning, 587, 602

Shish-kebab structure, 441

Short shot, 654

Similarity solution, 175

Size exclusion chromatography,

364–368

Smith and Ewart theory, 303

Solubility, 536

Solubility criteria, 376–379

Solubility parameter, 52, 398–401

Hansen, 401

Sorption, 539, 557

Spacers, 33

Specific viscosity, 360

Specific volume, 48

Spherulites, 50, 440

size measurement, 471–474

Spinneret, 668

Spinodal point, 379

Statistical approach, 119

Steady state approximation, 198, 219,

260

Step growth polymerization, 19, 129

Stereoregularity, 23

Stereoregular polymerization, 188

Stiffness, 489, 494, 502 (see also

Modulus)

Stokes-Einstein equation, 545

Strain:

Cauchy measure, 426

engineering, 489

extension ratio, 418

Finger measure, 426

Hencky measure, 418

shear, 491

true, 489

Strain energy function, 419

Strength, 487, 489, 494

Stress, 418, 488

engineering, 488

extra, 423

octahedral, 514

shear, 491

tensor (matrix), 420–423

true, 488

using dumbbell model, 608, 612

vector, 422–423

Stress constitutive equation, 420,

427–429
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Stress-strain behavior:

of elastomers, 418–420

of glassy polymers, 488–497

Supports in catalysts, 29, 227

Svedberg equation, 357

Swelling equilibrium, 429–432

Syndiotactic, 25

Tack, 62

Tackifiers, 72

Taylor meniscus instability, 515

TDI, 134

Telechelic, 69

Telomerization, 70

Temperature shift factor, 506–508

TEMPO, 225

Tentagel, 32

Terminal velocity, 354

Termination, 190, 196

Thermoplastic, 4

Thermoplastic elastomer, 432

Thermoset, 4

Theta condition, 361

Theta temperature, 353, 393

Time-temperature superposition, 504–508

Toughness, 490, 511

Transesterification, 129

Transfer reaction, 197, 203

Tresca criterion, 514

Tubular reactor, 154, 182, 204

Ultracentrifugation, 354–358

Unequal reactivity, 123, 149, 250

Upper convected Maxwell equation,

612–613

Upper critical solution temperature, 379,

392

Urea, 136

Urethane, 149

Van der Waal interaction, 49

Vapor pressure osmometry, 346

Vectra, 466

Virial expansion, 350

Viscoelasticity, 487, 491, 575

concentrated solutions and melts,

615–622

dilute solutions, 605–615

Viscometer (see also Rheometer):

capillary, 359, 584–588, 628–629

cone-and-plate, 578–584

Couette, 626

extensional, 589–592

Viscometric flow, 576–578

Viscosifier, 68

Viscosity:

complex, 597

concentration dependence of, 600

dynamic, 597

extensional, 590

molecular weight dependence of,

600–604

polymer contribution to, 611

pressure dependence of, 582

shear rate dependence of, 602

temperature dependence of, 581–582

theories of, 598–605

Viscosity-average molecular weight, 363

Viscosity number, 361

Viscosity ratio, 360

VK tube, 156

Von Mises criterion, 512

Vulcanization, 62, 429

Weight-average chain length, 22, 142

Whisker resin, 81

Wiped film reactor, 170

WLF equation, 507–508, 582

Wriggling motion, 47

Xerogel, 81

X-ray diffraction, 474–476

Yielding, 511–516

Young’s modulus (see Stiffness)

Zeolite, 44, 80

Ziegler-Natta catalyst, 10, 50

Zimm model, 614
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